Lecture 2: Finite Automata and Nondeterminism
6.045

Problem Set 0 is coming out soon!
Look for it on Piazza

Recitations start tomorrow
Hot Topics in Computing talk:

4:00 - 5:00pm
CSAIL’s Patil Conference Room (32-G449).

Scott Aaronson on Quantum Computational Supremacy and Its Applications
The DFA accepts a string \(x \) if the process on \(x \) ends in a double circle.

Above DFA accepts exactly those strings with an odd number of 1s.
Definition. A DFA is a 5-tuple $M = (Q, \Sigma, \delta, q_0, F)$

- Q is the set of states (finite)
- Σ is the alphabet (finite)
- $\delta : Q \times \Sigma \rightarrow Q$ is the transition function
- $q_0 \in Q$ is the start state
- $F \subseteq Q$ is the set of accept/final states
A DFA is a 5-tuple $M = (Q, \Sigma, \delta, q_0, F)$

Let $w_1, \ldots, w_n \in \Sigma$ and $w = w_1 \cdots w_n \in \Sigma^*$

M accepts w if the (unique) path starting from q_0 with edge labels w_1, \ldots, w_n ends in a state in F.

M rejects w iff M does not accept w

$L(M) = \text{set of all strings that } M \text{ accepts} = \text{“the language recognized by } M\text{”}$

Definition: A language L' is regular if L' is recognized by a DFA; that is, there is a DFA M where $L' = L(M)$.
Theorem: The union of two regular languages (over Σ) is also a regular language (over Σ)

Proof: Let

$M_1 = (Q_1, \Sigma, \delta_1, q_0, F_1)$ be a finite automaton for L_1

and

$M_2 = (Q_2, \Sigma, \delta_2, q'_0, F_2)$ be a finite automaton for L_2

We want to construct a finite automaton $M = (Q, \Sigma, \delta, p_0, F)$ that recognizes $L = L_1 \cup L_2$
Proof Idea: Run both M_1 and M_2 “in parallel”!

$M_1 = (Q_1, \Sigma, \delta_1, q_0, F_1)$ recognizes L_1 and $M_2 = (Q_2, \Sigma, \delta_2, q'_0, F_2)$ recognizes L_2

Define M as follows:

$Q = \{ (q_1, q_2) | q_1 \in Q_1 \text{ and } q_2 \in Q_2 \}$

$= Q_1 \times Q_2$

$p_0 = (q_0, q'_0)$

$F = \{ (q_1, q_2) | q_1 \in F_1 \text{ OR } q_2 \in F_2 \}$

$\delta((q_1, q_2), \sigma) = (\delta_1(q_1, \sigma), \delta_2(q_2, \sigma))$

How would you prove that this works?

Prove by induction on $|x|$: M on x reaches state $(p, q) \iff M_1$ on x reaches state p AND M_2 on x reaches state q
Intersection Theorem for Regular Languages

Given two languages, \(L_1 \) and \(L_2 \), define the intersection of \(L_1 \) and \(L_2 \) as

\[
L_1 \cap L_2 = \{ w \mid w \in L_1 \text{ and } w \in L_2 \}
\]

Theorem: The intersection of two regular languages is also a regular language

Idea: Simulate in parallel as before, but re-define \(F = \{ (q_1, q_2) \mid q_1 \in F_1 \text{ AND } q_2 \in F_2 \} \)
Union Theorem for Regular Languages

The union of two regular languages is also a regular language

“Regular Languages are closed under union”

Intersection Theorem for Regular Languages

The intersection of two regular languages is also a regular language
Complement Theorem for Regular Languages

The complement of a regular language is also a regular language

In other words,

if A is regular than so is \overline{A},

where $\overline{A}= \{ w \in \Sigma^* \mid w \notin A \}$

Proof Idea: Flip the final and non-final states!

We can do much more...
The **Reverse of a Language**

Reverse of A:

\[A^R = \{ w_1 \cdots w_k \mid w_k \cdots w_1 \in A, w_i \in \Sigma \} \]

Example: \{0,10,110,0101\}^R = \{0,01,011,1010\}

Intuition: If A is recognized by a DFA, then \(A^R \) is recognized by a “backwards” DFA that reads its strings from **right to left**!

Question: If A is regular, then is \(A^R \) also regular?

Can every “Right-to-Left” DFA be replaced by a normal “Left-to-Right” DFA?
Suppose M reads its input from right to left...

Then $L(M) = \{ w \mid w \text{ ends with a } 1 \}$. Is this regular?
Reverse Theorem for Regular Languages

The reverse of a regular language is also a regular language!

“Regular Languages Are Closed Under Reverse”

For every language that can be recognized by a DFA that reads its input from right to left, there is an “normal” left-to-right DFA recognizing that same language

Counterintuitive! DFAs have finite memory...

Strings can be much longer than the number of states
Reversing DFAs?

Let L be a regular language, let M be a DFA that recognizes L

We want to build a DFA M^R that recognizes L^R

Know: M accepts w \iff w describes a directed path in M from start state to an accept state

Want: M^R accepts w^R \iff M accepts w

First Attempt:
Try to define M^R as M with all the arrows reversed!
Turn start state into a final state,
turn final states into start states
Problem: M^R IS NOT ALWAYS A DFA!

It could have many start states

Some states may have
more than one

transition for a given symbol,

or it may have no transition at all!
Non-deterministic Finite Automata (NFA)

What happens with 100?

We will say this new kind of machine accepts string x if there is some path reading in x that reaches some accept state from some start state.
Non-deterministic Finite Automata (NFA)

Then, this machine recognizes: \{w \mid w \text{ contains 100}\}

We will say this new kind of machine accepts string \(x\) if \(\text{there is some path reading in } x\) that reaches \textit{some accept state} from \textit{some start state}.
At each state, we’ll allow any number (including zero) of out-arrows for letters $\sigma \in \Sigma$, including ϵ.

Set of strings accepted by this NFA = \{w | w contains a 0\}
Multiple Start States

We allow *multiple* start states for NFAs, and Sipser allows only one.

Can easily convert NFA with many start states into one with a single start state:
A **non-deterministic** finite automaton (NFA) is a 5-tuple \(N = (Q, \Sigma, \delta, Q_0, F) \) where

- \(Q \) is the set of states
- \(\Sigma \) is the alphabet
- \(\delta : Q \times \Sigma \epsilon \rightarrow 2^Q \) is the transition function
- \(Q_0 \subseteq Q \) is the set of start states
- \(F \subseteq Q \) is the set of accept states

Not deterministic!

\[2^Q \text{ is the set of all possible subsets of } Q \]

\[\Sigma_\epsilon = \Sigma \cup \{\epsilon\} \]
$N = (Q, \Sigma, \delta, Q_0, F)$

$Q = \{q_1, q_2, q_3, q_4\}$

$\Sigma = \{0,1\}$

$Q_0 = \{q_1, q_2\}$

$F = \{q_4\}$

$\delta(q_2,1) = \{q_4\}$

$\delta(q_4,1) = \emptyset$

$\delta(q_3,1) = \emptyset$

$\delta(q_1,0) = \{q_3\}$

Set of strings accepted = \{1,00,01\}
Def. Let $w \in \Sigma^*$. Let N be an NFA. N accepts w if there’s a sequence of states $r_0, r_1, \ldots, r_k \in Q$ and w can be written as $w_1 \cdots w_k$ with $w_i \in \Sigma \cup \{\varepsilon\}$ such that

1. $r_0 \in Q_0$
2. $r_i \in \delta(r_{i-1}, w_i)$ for all $i = 1, \ldots, k$, and
3. $r_k \in F$

$L(N)$ = the language recognized by N

= set of all strings that NFA N accepts

A language L' is recognized by an NFA N if $L' = L(N)$.
Def. Let \(w \in \Sigma^* \). Let \(N \) be an NFA.

\(N \) accepts \(w \) if there’s some path of states in \(N \), from a state in \(Q_0 \) to a state in \(F \), with edges labeled \(w_1 \cdots w_k \) with \(w_i \in \Sigma \cup \{ \epsilon \} \) such that \(w = w_1 \cdots w_k \).

\[L(N) = \text{the language recognized by } N \]
\[= \text{set of all strings that NFA } N \text{ accepts} \]

A language \(L' \) is recognized by an NFA \(N \) if \(L' = L(N) \).
Deterministic Computation

accept or reject

Non-Deterministic Computation

“Massive Parallelism”

“Perfect Guessing”

reject

accept

Are these equally powerful???
NFAs are generally simpler than DFAs

A (minimal) DFA recognizing the language \{1\}

An NFA recognizing the language \{1\}
Theorem: For every NFA N, there is a DFA M such that $L(M) = L(N)$

Corollary: A language A is regular if and only if A is recognized by an NFA

Corollary: A is regular iff A^R is regular, left-to-right DFAs \equiv right-to-left DFAs
From NFAs to DFAs

Input: NFA $N = (Q, \Sigma, \delta, Q_0, F)$

Output: DFA $M = (Q', \Sigma, \delta', q_0', F')$

To learn if NFA N accepts, our M will do the computation of N in parallel, maintaining the set of all possible states of N that can be reached so far.

Idea:

Set $Q' = 2^Q$
From NFAs to DFAs: Subset Construction

Input: NFA $N = (Q, \Sigma, \delta, Q_0, F)$

Output: DFA $M = (Q', \Sigma, \delta', q_0', F')$

$Q' = 2^Q$

$\delta' : Q' \times \Sigma \rightarrow Q'$

For $S \in Q'$, $\sigma \in \Sigma$: $\delta'(S, \sigma) = \bigcup_{q \in S} \varepsilon(\delta(q, \sigma))$

$q_0' = \varepsilon(Q_0)$

$F' = \{ S \in Q' \mid S \text{ contains some } f \in F \}$

For $S \subseteq Q$, the ε-closure of S is

$\varepsilon(S) = \{ r \in Q \text{ reachable from some } q \in S \text{ by taking zero or more } \varepsilon\text{-transitions} \}$
Example of the ε-closure

- $\varepsilon(\{q_0\}) = \{q_0, q_1, q_2\}$
- $\varepsilon(\{q_1\}) = \{q_1, q_2\}$
- $\varepsilon(\{q_2\}) = \{q_2\}$
Given: NFA \(N = (\{1,2,3\}, \{a,b\}, \delta, \{1\}, \{1\}) \)

Construct: Equivalent DFA \(M \)

\[M = (2^{\{1,2,3\}}, \{a,b\}, \delta', \{1,3\}, ...) \]

\(\varepsilon(\{1\}) = \{1,3\} \)
Reverse Theorem for Regular Languages

The reverse of a regular language is also a regular language.

If a language can be recognized by a DFA that reads strings from right to left, then there is an “normal” DFA that accepts the same language.

Proof Sketch?

Given a DFA for a language L, “reverse” its arrows, and flip its start and accept states, getting an NFA. Convert that NFA back to a DFA!
Using NFAs in place of DFAs can make proofs about regular languages *much* easier!

Remember this on homework/exams!