6.045

Lecture 3:
Nondeterminism
and Regular Expressions



6.045

Announcements:

- Pset 0 is out, due tomorrow 11:59pm
- Latex source of hw on piazza
- Pset 1 coming out tomorrow

- No class next Tuesday (...because next week
Monday classes will be on Tuesday)



Deterministic Finite Automata

Computation with finite memory



Non-Deterministic Finite Automata

Computation with finite memory
and magical guessing



Non-determinigtic Finite Automata (NFA)

A A D
OFO+0+-0O

t

This NFA recognizes: {w | w contains 100}

An NFA accepts string x
if there is some path reading in x that
reaches some accept state from some start state



Every NFA can be perfectly simulated

by some DFA! -

Theorem: For every NFA N, thereisa DFA M
such that L(M) = L(N)

Corollary: A language A is regular
if and only if A is recognized by an NFA

Corollary: A is regular iff AR is regular
left-to-right DFAs = right-to-left DFAs



From NFAs to DFAs
Input: NFAN = (Q, 2, 5, Q,, F)
Output: DFAM = (Q/, 2, &', q,', F')

N\
SININ

LN

To learn if NFA N accepts, we

could do the computation of

N in parallel, maintaining the

set of all possible states that
can be reached

Idea:

Set Q' = 22



From NFAs to DFAs: Subset Construction
Input: NFAN = (Q, 2, §, Q,, F)
Output: DFAM = (Q/, 2, &', q,, F')

Q' =22
d: QA xI->Q
ForSeQ,ce2 0(S0o)=U €(d(q,0)) *
ges
do = &(Qy)

FF={SeQ'|feSforsomefecF}

For S < Q, the e-closure of S is

£(S) = {r € Q reachable from some q € S
by taking zero or more e-transitions}




Reverse Theorem for Regular Languages

The reverse of a regular language
is also a regular language

If a language can be recognized by a DFA that
reads strings from right to left,
then there is an “normal” DFA that accepts the
same language

Proof Sketch?

Given a DFA for a language L, “reverse” its arrows,
and flip its start and accept states, getting an NFA.
Convert that NFA back to a DFA!



Using NFAs in place of DFAs can
make proofs about regular
languages much easier!

Remember this on homework/exams!



Union Theorem using NFAs?




Some Operations on Languages

=—> UniontAuB={w|weAorweB}

—> IntersectiontAnB={w|weAandweB}

—> Complement: -A={we2*|wgA}

—> Reverse: AR={w,..w |w,..w, e A w e 2}
Concatenation: A-B={vw|veAandwe B}

Star: A*={s,...s, | k20and eachs; € A}

A* = set of all strings over alphabet A



Regular Languages are closed under
concatenation

Concatenation: A-B={vw |veAandw e B}
Given DFAs M, for A and M, for B, connect

the accept states of M, to the start state of M,




Regular Languages are closed under
concatenation

Concatenation: A-B={vw |veAandw e B}
Given DFAs M, for A and M, for B, connect

the accept states of M, to the start state of M,

O L(N) = L(M,) - L(M,) O



Regular Languages are closed under star
A*={s;..s, | k20and eachs, € A}
Let M be a DFA
We construct an NFA N that recognizes L(M)*




Formally, the construction is:
Input: DFAM = (Q, 2, 5, q,, F)
Output: NFAN = (Q/, £, &', {q,}, F')

Q'=qQu {qo}
F'=F U {qo}
{5(q,a)} ifqeQandaze
{94} ifge Fanda=¢
o'(g,a) = {q4} ifq=q,anda=¢
%) ifq=qg,andaze

% else



Regular Languages are closed under star

How would we prove that the NFA

—
—

construction works? - °

Want to show: L(N)=L(M)*

1. L(N) D L(M)*

2. L(N) C L(M)*



1. L(N) D L(M)*

Let w = w,---w, be in L(M)* where w,,...,w, € L(M)
We show: N accepts w by induction on k
Base Cases:

v k=0 (w =€)
v k=1 (w € L(M) and L(M) < L(N))

Inductive Step: Let k = 1 be an integer
I.H. N accepts all strings v =v,---v, € L(M)*, v,eL(M)
Let u = u,---uuy,, € L(IM)*, u;eL(M)
N accepts u,---u, (by I.H.) and M accepts u,,,

imply that N also accepts u
(since N has &-transitions from final states to start state of M!)



2. L(N) C L(M)*

Let w be accepted by N; we want to show w € L(M)*

If w=¢g,thenw € L(M)”“/

I.H. N accepts u and
takes k e-transitions
= u € L(M)*

Let w be accepted
by N with k+1
e-transitions.

Write w as w=uy,
where v is the substring
read after the last e-
transition

Y
!e N accepts u, so

\ By I.H.
!

w = uvel(M)*

accept



Regular Languages are closed
under all of the following operations:

UniontAuB={w|weAorweB}
IntersectiontAnB={w|weAandwe B}
Complement: —-A={wec2*|wgA}

Reverse: AR={w,..w, |w,..w, e A,w; € X}
Concatenation: A-B={vw|veAandweB}

Star: A*={s,...s, | k20andeach s, € A}



Regular Expressions:
Computation as
Description
A different way of thinking about computation:

What is the complexity of describing
the strings in the language?



Inductive Definition of Regexp

Let 2 be an alphabet. We define the regular
expressions over 2 inductively:

Forall 6 € 2, o is aregexp
€ Is a regexp
& is a regexp

If R, and R, are both regexps, then
(R{R,), (R, +R,), and (R,)* are regexps

Examples: ¢, 0, (1)%, (0+1)%, ((((0)*1)*1) + (10))



Precedence Order: K

then -
then +

Example: R*R,+R;= ((R;*)-R,) + R,



Definition: Regexps Describe Languages

The regexp o € Z represents the language {c}
The regexp € represents {€}

The regexp O represents O

If R, and R, are regular expressions
representing L, and L, then:
(R{R,) represents L,-L,
(R;+R,) represents L, UL,

(R,)* represents L,*

Example: (10 + 0*1) represents {10} LU {01 | k > 0}



Regexps Describe Languages

For every regexp R,
define L(R) to be the language that R represents

A string w € 2* is accepted by R
(or, w matches R) if w € L(R)

Examples: 0, 010, and 01010 match (01)*0
110101110101100 matches (0+1)*0



Assume Z={0,1}

{ w | w has exactly a single 1}

0*10*

{w | w contains 001 }

(0+1)*001(0+1)*



Assume Z={0,1}

What language does
the regexp J* represent?

{€}



Assume Z={0,1}

{ w | w has length 2 3 and its 3rd symbol is 0 }

(0+1)(0+1)0(0+1)*



Assume Z={0,1}

{w | w=¢g orevery odd positioninwisal}

(1(0 + 1))*(1 + €)

How expressive are regular expressions?



During the “nerve net” hype in the 1950s...

U. S. AIR FORCE

PROJECT RAND

RESEARCH MEMORANDUM

-~

REPRESENTATION OF EVENTS I» D

FINITE AUTOM

S. C. Kleene
RM-T04

15 December 1951

~




=
DFAs = NFAs = Regular Expressions!

L can be represented by some regexp
<> Lisregular



L can be represented by some regexp
—> Lis regular



Induction Step: Suppose every regexp of length < k
represents some regular language.

Consider a regexp R of length k> 1

Three possibilities for R:
R=R;+R,
R=R,R,

R = (R1)*



Induction Step: Suppose every regexp of length < k
represents some regular language.

Consider a regexp R of length k> 1

Three possibilities for R:

R=R;+R, Byinduction, R; and R, represent
some regular languages, L, and L,

R=R;R, But L(R) = L(R, +R,) =L, U L,
R = (R,)* so L(R) is regular, by the union theorem!
-\



Induction Step: Suppose every regexp of length < k
represents some regular language.

Consider a regexp R of length k> 1

Three possibilities for R:

R=R;+R, Byinduction, R; and R, represent
some regular languages, L, and L,
R=R;R, But L(R) = L(R,-R,) = L,L,
R = (R,)* Thus L(R) is regular because regular
1 languages are closed under concatenation



Induction Step: Suppose every regexp of length < k
represents some regular language.

Consider a regexp R of length k> 1

Three possibilities for R:

R=R;+R, By induction, R, represents
a regular language L,

But L(R) = L(R,*) = L,*

R = (R,)* Thus L(R) is regular because regular
1 languages are closed under star

R=R,R,



Induction Step: Suppose every regexp of length < k
represents some regular language.

Consider a regexp R of length k> 1

Three possibilities for R:

R=R;+R, By induction, R, represents
a regular language L,

But L(R) = L(R,*) = L,*

R = (R,)* Thus L(R) is regular because regular
1 languages are closed under star

R=R,R,

Therefore: If Lis represented by a regexp,
then L is regular!



Give an NFA that accepts the language
represented by (1(0 + 1))*

0-0:0:0

&

Regular expression: (1(0+1))*



Generalized NFAs (GNFA)

L can be represented by a regexp

L is a regular language

Idea: Transform a DFA for L into a regular
expression by removing states and
re-labeling the arcs with reqular expressions

Rather than reading in just 0 or 1 letters from the
string on an arc, we can read in entire substrings



Generalized NFA (GNFA)

This GNFA recognizes L(a*b(cb)*a) cb

Accept string x <> there is some path of regexps R+, ...
from start state to final state such that x matches R4 - Rk

Is aaabcbcba accepted or rejected?

Is bba accepted or rejected?

Is bcba accepted or rejected?



Generalized NFA (GNFA)

This GNFA recognizes L(a*b(cb)*a) cb

Accept string x <> there is some path of regexps R+, ...
from start state to final state such that x matches R4 - Rk

Every NFA is also a GNFA.

Every regexp can be converted into
a GNFA with just two states!



&
& \
— %

Add unique start and accept states

Goal: Replace m with a single regexp R

Then, L(R) = L(DFA)



&
& \
— %

While the machine has more than 2 states:

Pick an internal state, rip it out and
re-label the arrows with regexps,
to account for paths through the missing state

O—>8—>O

C



&
& \
— %

While the machine has more than 2 states:

Pick an internal state, rip it out and
re-label the arrows with regexps,
to account for paths through the missing state

oO———



t 4
E \
—VO{ GNFA |&~
- <

While the machine has more than 2 states:

In general:

R(q11q3)

R(q}gg‘



t 4
E \
—VO{ GNFA ‘»@
- <

While the machine has more than 2 states:

In general:

R(q1rq2)R(qzlqz)*R(q2sq3) + R(q1 !q3)



a a,b

— — — —

R(d,,43) = (a*b)(a+b)*
represents L(N)



a,b

a*b £

R(d,,43) = (a*b)(a+b)*
represents L(N)



R(d,,43) = (a*b)(a+b)*
represents L(N)



Formally: Givena DFA M, add q.,., and g, . to create G
For all q, g’ €Q, define R(q,q’) = 6,+:--+ 0, s.t. 6(q,0;) = q’
CONVERT(G): (Takes a GNFA, outputs a regexp)

If #states =2 return R(q..cs U.cc)

If #states > 2
pick q,,€Q different from g, and q,

define Q' = Q- {qy,} defines a
define R on Q'-{q,..} x Q"-{q ..} as: | NEW GNFA G’

R'(a;,q;) = R(q;,9,;,)R(di,,91ip) *R(q,i,9;) + R(q;,9;)

return CONVERT(G') Claim:

Theorem: Let R = CONVERT(G). L(G’) = L(G)
Then L(R) = L(M). [Sipser, p.73-74]




