6.045

Lecture 3:
Nondeterminism
and Regular Expressions
6.045

Announcements:
- Pset 0 is out, due tomorrow 11:59pm
 - Latex source of hw on piazza
 - Pset 1 coming out tomorrow
- No class next Tuesday (...because next week Monday classes will be on Tuesday)
Deterministic Finite Automata

Computation with finite memory
Non-Deterministic Finite Automata

Computation with finite memory

and magical guessing
This NFA recognizes: \{w \mid w \text{ contains 100}\}

An NFA accepts string x
if there is some path reading in x that reaches some accept state from some start state
Every NFA can be perfectly simulated by some DFA!

Theorem: For every NFA N, there is a DFA M such that $L(M) = L(N)$

Corollary: A language A is regular if and only if A is recognized by an NFA

Corollary: A is regular iff A^R is regular

left-to-right DFAs \equiv right-to-left DFAs
From NFAs to DFAs

Input: NFA $N = (Q, \Sigma, \delta, Q_0, F)$

Output: DFA $M = (Q', \Sigma, \delta', q_0', F')$

To learn if NFA N accepts, we could do the computation of N in parallel, maintaining the set of all possible states that can be reached.

Idea:

Set $Q' = 2^Q$
From NFAs to DFAs: Subset Construction

Input: NFA $N = (Q, \Sigma, \delta, Q_0, F)$

Output: DFA $M = (Q', \Sigma, \delta', q_0', F')$

$Q' = 2^Q$

$\delta' : Q' \times \Sigma \rightarrow Q'$

For $S \in Q'$, $\sigma \in \Sigma$: $\delta'(S, \sigma) = \bigcup \epsilon(\delta(q, \sigma))$
$q \in S$

$q_0' = \epsilon(Q_0)$

$F' = \{ S \in Q' \mid \text{f } \in S \text{ for some } f \in F \}$

For $S \subseteq Q$, the ϵ-closure of S is
$\epsilon(S) = \{ r \in Q \text{ reachable from some } q \in S \text{ by taking zero or more } \epsilon\text{-transitions} \}$
Reverse Theorem for Regular Languages

The reverse of a regular language is also a regular language.

If a language can be recognized by a DFA that reads strings from right to left, then there is an “normal” DFA that accepts the same language.

Proof Sketch?

Given a DFA for a language L, “reverse” its arrows, and flip its start and accept states, getting an NFA. Convert that NFA back to a DFA!
Using NFAs in place of DFAs can make proofs about regular languages much easier!

Remember this on homework/exams!
Union Theorem using NFAs?
Some Operations on Languages

→ Union: \(A \cup B = \{ w \mid w \in A \text{ or } w \in B \} \)

→ Intersection: \(A \cap B = \{ w \mid w \in A \text{ and } w \in B \} \)

→ Complement: \(\overline{A} = \{ w \in \Sigma^* \mid w \notin A \} \)

→ Reverse: \(A^R = \{ w_1 \ldots w_k \mid w_k \ldots w_1 \in A, w_i \in \Sigma \} \)

Concatenation: \(A \cdot B = \{ vw \mid v \in A \text{ and } w \in B \} \)

Star: \(A^* = \{ s_1 \ldots s_k \mid k \geq 0 \text{ and each } s_i \in A \} \)

\(A^* = \text{ set of all strings over alphabet } A \)
Regular Languages are closed under concatenation

Concatenation: $A \cdot B = \{ vw \mid v \in A \text{ and } w \in B \}$

Given DFAs M_1 for A and M_2 for B, connect the accept states of M_1 to the start state of M_2
Regular Languages are closed under concatenation

Concatenation: $A \cdot B = \{ vw \mid v \in A \text{ and } w \in B \}$

Given DFAs M_1 for A and M_2 for B, connect the accept states of M_1 to the start state of M_2
Regular Languages are closed under star

\[A^* = \{ s_1 \ldots s_k \mid k \geq 0 \text{ and each } s_i \in A \} \]

Let M be a DFA

We construct an NFA N that recognizes L(M)^*
Formally, the construction is:

Input: DFA $M = (Q, \Sigma, \delta, q_1, F)$

Output: NFA $N = (Q', \Sigma, \delta', \{q_0\}, F')$

- $Q' = Q \cup \{q_0\}$
- $F' = F \cup \{q_0\}$

$$
\delta'(q,a) = \begin{cases}
\{\delta(q,a)\} & \text{if } q \in Q \text{ and } a \neq \epsilon \\
\{q_1\} & \text{if } q \in F \text{ and } a = \epsilon \\
\{q_1\} & \text{if } q = q_0 \text{ and } a = \epsilon \\
\emptyset & \text{if } q = q_0 \text{ and } a \neq \epsilon \\
\emptyset & \text{else}
\end{cases}
$$
Regular Languages are closed under star

How would we prove that the NFA construction works? 🤔

Want to show: \(L(N) = L(M)^* \)

1. \(L(N) \supseteq L(M)^* \)

2. \(L(N) \subseteq L(M)^* \)
1. \(L(N) \supseteq L(M)^* \)

Let \(w = w_1 \cdots w_k \) be in \(L(M)^* \) where \(w_1, \ldots, w_k \in L(M) \)

We show: \(N \) accepts \(w \) by induction on \(k \)

Base Cases:

- \(k = 0 \) \((w = \varepsilon) \)
- \(k = 1 \) \((w \in L(M) \) and \(L(M) \subseteq L(N) \)\)

Inductive Step: Let \(k \geq 1 \) be an integer

I.H. \(N \) accepts all strings \(v = v_1 \cdots v_k \in L(M)^* , v_i \in L(M) \)

Let \(u = u_1 \cdots u_k u_{k+1} \in L(M)^* , u_j \in L(M) \)

\(N \) accepts \(u_1 \cdots u_k \) (by I.H.) and \(M \) accepts \(u_{k+1} \)

imply that \(N \) also accepts \(u \)

(since \(N \) has \(\varepsilon \)-transitions from final states to start state of \(M \)!)
Let \(w \) be accepted by \(N \); we want to show \(w \in L(M)* \)

If \(w = \epsilon \), then \(w \in L(M)* \)

I.H. \(N \) accepts \(u \) and takes \(k \) \(\epsilon \)-transitions

\[\Rightarrow u \in L(M)* \]

Let \(w \) be accepted by \(N \) with \(k+1 \) \(\epsilon \)-transitions.

Write \(w \) as \(w=uv \), where \(v \) is the substring read after the last \(\epsilon \)-transition.

2. \(L(N) \subseteq L(M)* \)

N accepts \(u \), so \(u \in L(M)* \)

By I.H.

\[w = uv \in L(M)* \]

\(v \in L(M) \)
Regular Languages are closed under all of the following operations:

Union: \(A \cup B = \{ w \mid w \in A \text{ or } w \in B \} \)

Intersection: \(A \cap B = \{ w \mid w \in A \text{ and } w \in B \} \)

Complement: \(\overline{A} = \{ w \in \Sigma^* \mid w \notin A \} \)

Reverse: \(A^R = \{ w_1 \ldots w_k \mid w_k \ldots w_1 \in A, w_i \in \Sigma \} \)

Concatenation: \(A \cdot B = \{ vw \mid v \in A \text{ and } w \in B \} \)

Star: \(A^* = \{ s_1 \ldots s_k \mid k \geq 0 \text{ and each } s_i \in A \} \)
Regular Expressions: Computation as Description

A different way of thinking about computation: *What is the complexity of describing the strings in the language?*
Inductive Definition of Regexp

Let \(\Sigma \) be an alphabet. We define the regular expressions over \(\Sigma \) inductively:

- For all \(\sigma \in \Sigma \), \(\sigma \) is a regexp
- \(\varepsilon \) is a regexp
- \(\emptyset \) is a regexp

If \(R_1 \) and \(R_2 \) are both regexps, then

\((R_1R_2), (R_1 + R_2), \) and \((R_1)^* \) are regexps

Examples: \(\varepsilon, 0, (1)^*, (0+1)^*, (((0)^*1)^*1) + (10)) \)
Precedence Order: *

then ·

then +

Example: \[R_1 \cdot R_2 + R_3 = ((R_1 \cdot R_2)) + R_3 \]
Definition: Regexps Describe Languages

The regexp $\sigma \in \Sigma$ represents the language $\{\sigma\}$

The regexp ε represents $\{\varepsilon\}$

The regexp \emptyset represents \emptyset

If R_1 and R_2 are regular expressions representing L_1 and L_2 then:

(R_1R_2) represents $L_1 \cdot L_2$

$(R_1 + R_2)$ represents $L_1 \cup L_2$

$(R_1)^*$ represents L_1^*

Example: $(10 + 0^*1)$ represents $\{10\} \cup \{0^k1 \mid k \geq 0\}$
 Regexps Describe Languages

For every regexp \(R \), define \(L(R) \) to be the language that \(R \) represents

A string \(w \in \Sigma^* \) is **accepted by** \(R \) (or, \(w \) **matches** \(R \)) if \(w \in L(R) \)

Examples: 0, 010, and 01010 match \((01)^*0 \)

110101110101100 matches \((0+1)^*0 \)
Assume $\Sigma = \{0,1\}$

\{ w | w has exactly a single 1 \}

0^*10^*

\{ w | w contains 001 \}

$(0+1)^*001(0+1)^*$
What language does the regexp \emptyset^* represent?

$\{\varepsilon\}$

Assume $\Sigma = \{0,1\}$
Assume $\Sigma = \{0, 1\}$

\[
\{ w \mid w \text{ has length } \geq 3 \text{ and its 3rd symbol is } 0 \}
\]

\[(0+1)(0+1)0(0+1)^*\]
Assume $\Sigma = \{0,1\}$

\{ w | $w = \varepsilon$ or every odd position in w is a 1 \}

$(1(0 + 1))^*(1 + \varepsilon)$

How expressive are regular expressions?
During the “nerve net” hype in the 1950s...
DFAs \equiv NFAs \equiv Regular Expressions!

L can be represented by some regexp

\iff L is regular
L can be represented by some regexp

⇒ L is regular
Induction Step: Suppose every regexp of length < k represents some regular language.

Consider a regexp R of length k > 1

Three possibilities for R:

\[R = R_1 + R_2 \]

\[R = R_1 R_2 \]

\[R = (R_1)^* \]
Induction Step: Suppose every regexp of length $< k$ represents some regular language.

Consider a regexp R of length $k > 1$

Three possibilities for R:

- $R = R_1 + R_2$
 By induction, R_1 and R_2 represent some regular languages, L_1 and L_2
- $R = R_1 R_2$
 But $L(R) = L(R_1 + R_2) = L_1 \cup L_2$
- $R = (R_1)^*$
 so $L(R)$ is regular, by the union theorem!
Induction Step: Suppose every regexp of length < \(k \) represents some regular language.

Consider a regexp \(R \) of length \(k > 1 \)

Three possibilities for \(R \):

\[
R = R_1 + R_2 \\
R = R_1 R_2 \\
R = (R_1)^*
\]

By induction, \(R_1 \) and \(R_2 \) represent some regular languages, \(L_1 \) and \(L_2 \)

But \(L(R) = L(R_1 \cdot R_2) = L_1 \cdot L_2 \)

Thus \(L(R) \) is regular because regular languages are closed under concatenation
Induction Step: Suppose every regexp of length $< k$ represents some regular language.

Consider a regexp R of length $k > 1$

Three possibilities for R:

1. $R = R_1 + R_2$
 By induction, R_1 represents a regular language L_1

2. $R = R_1 R_2$
 But $L(R) = L(R_1^*) = L_1^*$

3. $R = (R_1)^*$
 Thus $L(R)$ is regular because regular languages are closed under star.
Induction Step: Suppose every regexp of length < k represents some regular language.

Consider a regexp R of length k > 1

Three possibilities for R:

\[R = R_1 + R_2 \quad \text{By induction, } R_1 \text{ represents a regular language } L_1 \]

\[R = R_1 R_2 \quad \text{But } L(R) = L(R_1^*) = L_1^* \]

\[R = (R_1)^* \quad \text{Thus } L(R) \text{ is regular because regular languages are closed under star} \]

Therefore: If L is represented by a regexp, then L is regular!
Give an NFA that accepts the language represented by \((1(0 + 1))^*\)

Regular expression: \((1(0+1))^*\)
Generalized NFAs (GNFA)

L can be represented by a regexp

\iff

L is a regular language

Idea: Transform a DFA for L into a regular expression by *removing states* and re-labeling the arcs with *regular expressions*

Rather than reading in just 0 or 1 letters from the string on an arc, we can read in *entire substrings*
Generalized NFA (GNFA)

This GNFA recognizes $L(a^*b(cb)^*a)$

Accept string $x \iff$ there is some path of regexps R_1, \ldots, R_k from start state to final state such that x matches $R_1 \cdots R_k$

Is $aaabcbbcba$ accepted or rejected?

Is bba accepted or rejected?

Is $bcba$ accepted or rejected?
Generalized NFA (GNFA)

This GNFA recognizes $L(a^*b(cb)^*a)$

Accept string $\chi \iff$ there is some path of regexps R_1, \ldots, R_k from start state to final state such that χ matches $R_1 \cdots R_k$

Every NFA is also a GNFA.
Every regexp can be converted into a GNFA with just two states!
Add unique start and accept states

Goal: Replace DFA with a single regexp R

Then, $L(R) = L(DFA)$
While the machine has more than 2 states:

Pick an internal state, rip it out and re-label the arrows with regexps, to account for paths through the missing state.
While the machine has more than 2 states:

Pick an internal state, rip it out and re-label the arrows with regexps, to account for paths through the missing state.
In general:

While the machine has more than 2 states:
In general:

\[R(q_1, q_2)R(q_2, q_2)^*R(q_2, q_3) + R(q_1, q_3) \]
\[R(q_0, q_3) = (a*b)(a+b)^* \]

represents \(L(N) \)
$R(q_0, q_3) = (a*b)(a+b)^*$

represents $L(N)$
$R(q_0, q_3) = (a*b)(a+b)^*$

represents $L(N)$
Formally: Given a DFA M, add q_{start} and q_{acc} to create G

For all $q, q' \in Q$, define $R(q,q') = \sigma_1 + \cdots + \sigma_k$ s.t. $\delta(q,\sigma_i) = q'$

CONVERT(G): *(Takes a GNFA, outputs a regexp)*

If #states = 2 return $R(q_{\text{start}}, q_{\text{acc}})$

If #states > 2

pick $q_{\text{rip}} \in Q$ different from q_{start} and q_{acc}

define $Q' = Q - \{q_{\text{rip}}\}$

define R' on $Q'-\{q_{\text{acc}}\} \times Q'-\{q_{\text{start}}\}$ as:

$$R'(q_i,q_j) = R(q_i,q_{\text{rip}})R(q_{\text{rip}},q_{\text{rip}})^*R(q_{\text{rip}},q_j) + R(q_i,q_j)$$

return CONVERT(G')

Theorem: Let $R = \text{CONVERT}(G)$. Then $L(R) = L(M)$.

Claim: $L(G') = L(G)$

[Sipser, p.73-74]