
Lecture 3:
Nondeterminism

and Regular Expressions

6.045

Announcements:
- Pset 0 is out, due tomorrow 11:59pm

- Latex source of hw on piazza
- Pset 1 coming out tomorrow

- No class next Tuesday (…because next week

Monday classes will be on Tuesday)

6.045

Deterministic Finite Automata

Computation with finite memory

Non-Deterministic Finite Automata

Computation with finite memory

and magical guessing

1 0

1

0 1

0,1

0

This NFA recognizes: {w | w contains 100}

An NFA accepts string x
if there is some path reading in x that

reaches some accept state from some start state

Non-deterministic Finite Automata (NFA)

Theorem: For every NFA N, there is a DFA M
such that L(M) = L(N)

Corollary: A language A is regular
if and only if A is recognized by an NFA

Corollary: A is regular iff AR is regular
left-to-right DFAs ≡ right-to-left DFAs

Every NFA can be perfectly simulated
by some DFA!

From NFAs to DFAs

Input: NFA N = (Q, Σ, , Q0, F)

Output: DFA M = (Q, Σ, , q0, F)

accept

To learn if NFA N accepts, we
could do the computation of
N in parallel, maintaining the
set of all possible states that

can be reached

Set Q = 2Q
Idea:

Q = 2Q

 : Q  Σ → Q

(S,) = [ε((q,))

qS

q0 = ε(Q0)

F = { S  Q | f  S for some f  F }

*

For S  Q, the ε-closure of S is
ε(S) = {r ∈ Q reachable from some q ∈ S

by taking zero or more ε-transitions}

*

From NFAs to DFAs: Subset Construction

Input: NFA N = (Q, Σ, , Q0, F)

Output: DFA M = (Q, Σ, , q0, F)

For S  Q’,   Σ:

Reverse Theorem for Regular Languages

The reverse of a regular language
is also a regular language

If a language can be recognized by a DFA that
reads strings from right to left,

then there is an “normal” DFA that accepts the
same language

Proof Sketch?

Given a DFA for a language L, “reverse” its arrows,
and flip its start and accept states, getting an NFA.

Convert that NFA back to a DFA!

Using NFAs in place of DFAs can
make proofs about regular

languages much easier!

Remember this on homework/exams!

Union Theorem using NFAs?

0 0

1

1

0

Some Operations on Languages

Union: A  B = { w | w  A or w  B }

Intersection: A  B = { w | w  A and w  B }

Complement: A = { w  Σ* | w  A }

Reverse: AR = { w1 …wk | wk …w1  A, wi  Σ}

Concatenation: A  B = { vw | v  A and w  B }

Star: A* = { s1 … sk | k ≥ 0 and each si  A }

A* = set of all strings over alphabet A (note: k can be 0)

Regular Languages are closed under
concatenation

Given DFAs M1 for A and M2 for B, connect

the accept states of M1 to the start state of M2

Concatenation: A  B = { vw | v  A and w  B }

0
0,1

00

1

1

1

M1

0
0,1

00

1

1

1

M2

Regular Languages are closed under star

Let M be a DFA

We construct an NFA N that recognizes L(M)*

0
0,1

00

1

1

1

A* = { s1 … sk | k ≥ 0 and each si  A }

Formally, the construction is:

Input: DFA M = (Q, Σ, , q1, F)

Output: NFA N = (Q, Σ, , {q0}, F)

Q = Q  {q0}

F = F  {q0}

(q,a) =

{(q,a)}

{q1}

{q1}



if q  Q and a ≠ ε

if q  F and a = ε

if q = q0 and a = ε

if q = q0 and a ≠ ε

 else

How would we prove that the NFA
construction works?

Want to show: L(N) = L(M)*

1. L(N)  L(M)*

2. L(N)  L(M)*

Regular Languages are closed under star

1. L(N) L(M)*

Let w = w1⋯wk be in L(M)* where w1,…,wk  L(M)

We show: N accepts w by induction on k

Base Cases:

k = 0
k = 1

Inductive Step: Let k ≥ 1 be an integer

I.H. N accepts all strings v = v1⋯vk  L(M)*, viL(M)

N accepts u1⋯uk (by I.H.) and M accepts uk+1

imply that N also accepts u
(since N has 𝜀-transitions from final states to start state of M!)

✓

✓

(w = ε)
(w  L(M) and L(M) ⊆ L(N))

Let u = u1⋯ukuk+1  L(M)* , ujL(M)

Let w be accepted by N; we want to show w  L(M)*

If w = ε, then w  L(M)*

I.H. N accepts u and
takes k ε-transitions

 u  L(M)*

accept

ε

ε

uL(M)*

vL(M)

2. L(N)  L(M)*

By I.H.

u

v

w = uvL(M)*

N accepts u, so

Let w be accepted
by N with k+1
ε-transitions.

Write w as w=uv,
where v is the substring

read after the last ε-
transition

✓

Regular Languages are closed
under all of the following operations:

Union: A  B = { w | w  A or w  B }

Intersection: A  B = { w | w  A and w  B }

Complement: A = { w  Σ* | w  A }

Reverse: AR = { w1 …wk | wk …w1  A, wi  Σ}

Concatenation: A  B = { vw | v  A and w  B }

Star: A* = { s1 … sk | k ≥ 0 and each si  A }

Regular Expressions:
Computation as

Description

A different way of thinking about computation:
What is the complexity of describing

the strings in the language?

Inductive Definition of Regexp

For all  ∊ Σ,  is a regexp

ε is a regexp

 is a regexp

If R1 and R2 are both regexps, then

(R1R2), (R1 + R2), and (R1)* are regexps

Let Σ be an alphabet. We define the regular
expressions over Σ inductively:

Examples: ε, 0, (1)*, (0+1)*, ((((0)*1)*1) + (10))

Syntax

Precedence Order: *
then 

then +

· R2R1*(Example: R1*R2 + R3 = ()) + R3

Definition: Regexps Describe Languages

The regexp  ∊ Σ represents the language {}

The regexp ε represents {ε}

The regexp  represents 

If R1 and R2 are regular expressions
representing L1 and L2 then:

(R1R2) represents L1  L2

(R1 + R2) represents L1  L2

(R1)* represents L1*

Example: (10 + 0*1) represents {10}  {0k1 | k ≥ 0}

Semantics

Regexps Describe Languages

For every regexp R,
define L(R) to be the language that R represents

A string w ∊ Σ* is accepted by R

(or, w matches R) if w ∊ L(R)

Examples: 0, 010, and 01010 match (01)*0

110101110101100 matches (0+1)*0

{ w | w has exactly a single 1 }

Assume Σ = {0,1}

{ w | w contains 001 }

What language does
the regexp * represent?

Assume Σ = {0,1}

{ w | w has length ≥ 3 and its 3rd symbol is 0 }

Assume Σ = {0,1}

{ w | w = ε or every odd position in w is a 1 }

Assume Σ = {0,1}

How expressive are regular expressions?

During the “neural net craze” of the 1950s…

L can be represented by some regexp
 L is regular

DFAs ≡ NFAs ≡ Regular Expressions!

L can be represented by some regexp
 L is regular

Induction Step: Suppose every regexp of length < k
represents some regular language.

Three possibilities for R:

R = R1 + R2

R = R1 R2

R = (R1)*

Consider a regexp R of length k > 1

Induction Step: Suppose every regexp of length < k
represents some regular language.

Three possibilities for R:

R = R1 + R2

R = R1 R2

R = (R1)*

Consider a regexp R of length k > 1

By induction, R1 and R2 represent
some regular languages, L1 and L2

But L(R) = L(R1 + R2) = L1 [L2

so L(R) is regular, by the union theorem!

Induction Step: Suppose every regexp of length < k
represents some regular language.

Three possibilities for R:

R = R1 + R2

R = R1 R2

R = (R1)*

Consider a regexp R of length k > 1

By induction, R1 and R2 represent
some regular languages, L1 and L2

But L(R) = L(R1·R2) = L1·L2

Thus L(R) is regular because regular
languages are closed under concatenation

Induction Step: Suppose every regexp of length < k
represents some regular language.

Three possibilities for R:

R = R1 + R2

R = R1 R2

R = (R1)*

Consider a regexp R of length k > 1

By induction, R1 represents
a regular language L1

But L(R) = L(R1*) = L1*
Thus L(R) is regular because regular

languages are closed under star

Induction Step: Suppose every regexp of length < k
represents some regular language.

Three possibilities for R:

R = R1 + R2

R = R1 R2

R = (R1)*

Consider a regexp R of length k > 1

By induction, R1 represents
a regular language L1

But L(R) = L(R1*) = L1*
Thus L(R) is regular because regular

languages are closed under star

Therefore: If L is represented by a regexp,
then L is regular!

Give an NFA that accepts the language
represented by (1(0 + 1))*

1 (0+1)()*Regular expression:

L can be represented by a regexp


L is a regular language



Idea: Transform a DFA for L into a regular
expression by removing states and

re-labeling the arcs with regular expressions

Generalized NFAs (GNFA)

Rather than reading in just 0 or 1 letters from the
string on an arc, we can read in entire substrings

q1

cb

aa*b
q0 q2

Accept string 𝒙 there is some path of regexps 𝑹𝟏, … , 𝑹𝒌

from start state to final state such that 𝒙 matches 𝑹𝟏 ⋯ 𝑹𝒌

Is bba accepted or rejected?

Is bcba accepted or rejected?

Generalized NFA (GNFA)

Is aaabcbcba accepted or rejected?

q1

cb

aa*b
q0 q2

This GNFA recognizes L(a*b(cb)*a)

Every NFA is also a GNFA.
Every regexp can be converted into

a GNFA with just two states!

Generalized NFA (GNFA)

Accept string 𝒙 there is some path of regexps 𝑹𝟏, … , 𝑹𝒌

from start state to final state such that 𝒙 matches 𝑹𝟏 ⋯ 𝑹𝒌

DFA
ε

ε

ε

ε

ε

Add unique start and accept states

Goal: Replace with a single regexp 𝑹DFA

Then, L(𝑹) = L(DFA)

DFA
ε

ε

ε

ε

ε

While the machine has more than 2 states:

Pick an internal state, rip it out and
re-label the arrows with regexps,

to account for paths through the missing state

a

c

b

DFA
ε

ε

ε

ε

ε

While the machine has more than 2 states:

Pick an internal state, rip it out and
re-label the arrows with regexps,

to account for paths through the missing state

ab*c

NFA
ε

ε

ε

ε

ε

In general:

R(q1,q2)

R(q2,q2)

R(q2,q3)
q1

q2 q3

G

R(q1,q3)

While the machine has more than 2 states:

NFA
ε

ε

ε

ε

ε

In general:

R(q1,q2)R(q2,q2)*R(q2,q3) + R(q1,q3)

q1
q3

G

While the machine has more than 2 states:

q1

b

a

ε
q2

a,b

ε
q0 q3

R(q0,q3) = (a*b)(a+b)*

represents L(N)

Formally: Given a DFA M, add qstart and qacc to create G

CONVERT(G): (Takes a GNFA, outputs a regexp)

If #states = 2 return R(qstart, qacc)

If #states > 2

pick qripQ different from qstart and qacc

define Q = Q – {qrip} defines a
new GNFA Gdefine R on Q’-{qacc} x Q’-{qstart} as:

R(qi,qj) = R(qi,qrip)R(qrip,qrip)*R(qrip,qj) + R(qi,qj)

For all q, q’Q, define R(q,q’) = σ1++ σk s.t. δ(q,σi) = q’

return CONVERT(G) Claim:
L(G’) = L(G)

[Sipser, p.73-74]
Theorem: Let R = CONVERT(G).

Then L(R) = L(M).

q3

q2

b

a

b

q1

b

a

a

ε

ε

ε

bb

DFAs NFAs

Regular
Languages

Regular
Expressions

DEFINITION GNFAs

Many Languages Are Not Regular:

Limitations on DFAs/NFAs

a.k.a.
“Lower Bounds” on DFAs/NFAs

Regular or Not?

C = { w | w has equal number of 1s and 0s}

D = { w | w has equal number of
occurrences of 01 and 10 }

Σ = {0,1}

