Lecture 6:
The Myhill-Nerode Theorem and Streaming Algorithms
Announcements:
- One-day Extension on Pset 2? Vote?
DFA Minimization Theorem:

For every regular language A, there is a unique (up to re-labeling of the states) minimal-state DFA M^* such that $A = L(M^*)$.

Furthermore, there is an efficient algorithm which, given any DFA M, will output this unique M^*.

If such algorithms existed for more general models of computation, that would be an engineering breakthrough!!
How could we show whether two regular expressions are equivalent?

Claim: There is an algorithm which given regular expressions R and R', determines whether $L(R) = L(R')$.
The Myhill-Nerode Theorem:

For every language L:

Either there’s a DFA for L

or there’s a set of strings that “trick”

every possible DFA trying to recognize L
In DFA Minimization, we defined an equivalence relation between states of a DFA.

We can also define a similar equivalence relation over *strings* in a *language*:

Let $L \subseteq \Sigma^*$ and $x, y \in \Sigma^*$

$x \equiv_L y$ means: for all $z \in \Sigma^*$, $xz \in L$ \iff $yz \in L$

Def. x and y are indistinguishable to L iff $x \equiv_L y$

Claim: \equiv_L ("L-equivalent") is an equivalence relation
Let \(L \subseteq \Sigma^* \) and \(x, y \in \Sigma^* \)

\[x \equiv_L y \implies \text{for all } z \in \Sigma^*, xz \in L \iff yz \in L \]

Def. \(x \) and \(y \) are indistinguishable to \(L \) iff \(x \equiv_L y \)

Claim: \(\equiv_L \) ("L-equivalent") is an equivalence relation

Reflexive:
\[x \equiv_L x : \text{for all } z \in \Sigma^*, xz \in L \iff xz \in L \]

Symmetric:
\[x \equiv_L y : \text{for all } z \in \Sigma^*, xz \in L \iff yz \in L \]

Equivalent to: for all \(z \in \Sigma^* \), \(yz \in L \iff xz \in L, \ y \equiv_L x \)

Transitive:
\[x \equiv_L y : \text{for all } z \in \Sigma^*, xz \in L \iff yz \in L \]
\[y \equiv_L w : \text{for all } z \in \Sigma^*, yz \in L \iff wz \in L \]

Implies for all \(z \in \Sigma^* \), \(xz \in L \iff wz \in L, \ x \equiv_L x \]
Let \(L \subseteq \Sigma^* \) and \(x, y \in \Sigma^* \).

\(x \equiv_L y \) means: for all \(z \in \Sigma^* \), \(xz \in L \iff yz \in L \).

Suppose we partition all strings in \(\Sigma^* \) into equivalence classes under \(\equiv_L \).

If the number of parts is finite \(\rightarrow \) can construct a DFA!

If the number of parts is infinite \(\rightarrow \) there is no DFA!

The Myhill-Nerode Theorem:

If the number of parts is finite \(\rightarrow \) can construct a DFA!

If the number of parts is infinite \(\rightarrow \) there is no DFA!
Mapping strings to DFA states

Given DFA $M = (Q, \Sigma, \delta, q_0, F)$, we define a function $\Delta : \Sigma^* \rightarrow Q$ as follows:

$\Delta(\varepsilon) = q_0$

$\Delta(\sigma) = \delta(q_0, \sigma)$

$\Delta(\sigma_1 \cdots \sigma_{k+1}) = \delta(\Delta(\sigma_1 \cdots \sigma_k), \sigma_{k+1})$

$\Delta(w) = \textit{the state of } M \textit{ reached after reading in } w$

Note: $\Delta(w) \in F \iff M \text{ accepts } w$
Let $L \subseteq \Sigma^*$ and $x, y \in \Sigma^*$

$x \equiv_L y$ means: for all $z \in \Sigma^*$, $xz \in L \iff yz \in L$

The Myhill-Nerode Theorem:
A language L is regular if and only if the number of equivalence classes of \equiv_L is finite.

Proof (\Rightarrow) Let $M = (Q, \Sigma, \delta, q_0, F)$ be any DFA for L.
Define the relation: $x \approx_M y \iff \Delta(x) = \Delta(y)$

Claim: \approx_M is an equivalence relation with $|Q|$ classes

Claim: If $x \approx_M y$ then $x \equiv_L y$

Proof: $x \approx_M y$ implies for all $z \in \Sigma^*$, xz and yz reach the same state of M. So $xz \in L \iff yz \in L$, and $x \equiv_L y$

Corollary: The number of \equiv_L classes is at most the number of \approx_M classes (which is $|Q|$)
Let $L \subseteq \Sigma^*$ and $x, y \in \Sigma^*$

$x \equiv_L y$ means: for all $z \in \Sigma^*$, $xz \in L \iff yz \in L$

The Myhill-Nerode Theorem:
A language L is regular if and only if the number of equivalence classes of \equiv_L is finite.

Claim: If $x \approx_M y$ then $x \equiv_L y$

Corollary: The number of \equiv_L classes is at most the number of \approx_M classes (which is $|Q|$)

Proof: Let $S = \{x_1, x_2, \ldots\}$ be distinct strings, one from every \equiv_L class. $|S| = \text{number of } \equiv_L \text{ classes.}$

Thus for all $i \neq j, x_i \not\equiv_L x_j$. By the claim: $x_i \approx_M x_j$.

So each $x_i \in S$ is in a distinct \approx_M equivalence class.

\implies The number of \approx_M classes is at least $|S|$.
Let \(L \subseteq \Sigma^* \) and \(x, y \in \Sigma^* \)

\(x \equiv_L y \) means: for all \(z \in \Sigma^* \), \(xz \in L \iff yz \in L \)

(\(\iff \)) If the number of equivalence classes of \(\equiv_L \) is \(k \) then there is a DFA for \(L \) with \(k \) states

Idea: Build a DFA whose states are the equivalence classes of \(\equiv_L \)

Define a DFA \(M \) where:

- \(Q \) is the set of equivalence classes of \(\equiv_L \)
- \(q_0 = [\varepsilon] = \{ y \mid y \equiv_L \varepsilon \} \)
- for all \(x \in \Sigma^* \), \(\delta([x], \sigma) = [x \sigma] \) (well-defined??)
- \(F = \{ [x] \mid x \in L \} \)

Claim: \(M \) accepts \(x \) if and only if \(x \in L \)
Define a DFA M where:

- Q is the set of equivalence classes of \equiv_L
- $q_0 = [\varepsilon] = \{y \mid y \equiv_L \varepsilon\}$
- $\delta([x], \sigma) = [x \sigma]$
- $F = \{[x] \mid x \in L\}$

Claim: M accepts x if and only if $x \in L$

Proof: Let M run on $x = x_1 \cdots x_n \in \Sigma^*$, for $x_i \in \Sigma$. M starts in state $[\varepsilon]$, reads x_1 and moves to $[x_1]$, reads x_2 and moves to $[x_1 x_2]$, ..., and ends in state $[x_1 \cdots x_n]$.

So, M accepts $x_1 \cdots x_n$ \iff $[x_1 \cdots x_n] \in F$

By definition of the set F, $[x_1 \cdots x_n] \in F$ \iff $x \in L$
The Myhill-Nerode Theorem gives us a new way to prove that a given language is not regular:

L is not regular
if and only if
there are infinitely many equiv. classes of \equiv_L

L is not regular
if and only if
There are infinitely many strings w_1, w_2, \ldots so that for all $w_i \neq w_j$, w_i and w_j are distinguishable to L:
there is a $z \in \Sigma^*$ such that
exactly one of $w_i z$ and $w_j z$ is in L
L is not regular \textit{if and only if} there are infinitely many strings w_1, w_2, \ldots so that for all $w_i \neq w_j$, w_i and w_j are distinguishable to L.

To prove that L is regular, we have to show that a special finite object (DFA/NFA/regex) exists.

To prove that L is not regular, it is sufficient to show that a special infinite set of strings exists!

We can prove the nonexistence of a DFA/NFA/regex by proving the existence of this special string set!
Using Myhill-Nerode to prove non-regularity:

Theorem: \(L = \{0^n 1^n \mid n \geq 0\} \) is not regular.

Proof: Consider the infinite set of strings

\[S = \{0, 00, 000, \ldots, 0^n, \ldots\} \]

Claim: \(S \) is a distinguishing set for \(L \).

Take any pair \((0^m, 0^n)\) of distinct strings in \(S \)

Let \(z = 1^m \)

Then \(0^m 1^m \) is in \(L \), but \(0^n 1^m \) is *not* in \(L \)

So all pairs of strings in \(S \) are distinguishable to \(L \)

Hence there are infinitely many equivalence classes of \(\equiv_L \), and \(L \) is not regular!
Theorem: \(\text{PAL} = \{x \ x^R \mid x \in \{0, 1\}^*\} \) is not regular.

Proof: Consider the infinite set of strings
\[
S = \{01^k0 \mid k \geq 1\}
\]
Claim: \(S \) is a distinguishing set for \(L \).
Take any pair \((01^k0, 01^j0)\) of strings where \(j \neq k \)
Let \(z = 01^k0 \)
Then \(01^k0 \ 01^k0 \) is in \(\text{PAL} \), but \(01^j0 \ 01^k0 \) is \textit{not} in \(\text{PAL} \)
So all pairs of strings in \(S \) are distinguishable to \(\text{PAL} \)

Hence there are infinitely many equivalence classes of \(\equiv_L \), and \(L \) is not regular
(by the Myhill-Nerode theorem)
Streaming Algorithms
Streaming Algorithms
Streaming Algorithms

Have three components

Initialize:
<variables and their assignments>

When next symbol seen is σ:
<pseudocode using σ and vars>

When stream stops (end of string):
<accept/reject condition on vars>
(or: <pseudocode for output>)

Algorithm A **computes** $L \subseteq \Sigma^*$ if
A **accepts** the strings in L, **rejects** strings not in L
Streaming Algorithms

01011101

Streaming algorithms differ from DFAs in several significant ways:

1. Streaming algorithms could output more than one bit

2. The “memory” or “space” of a streaming algorithm can (slowly) increase as it reads longer strings

3. Could also make multiple passes over the input, could be randomized

Can recognize non-regular languages!
$L = \{ x \mid x \text{ has more 1's than 0's} \}$

Initialize: $C := 0$ and $B := 0$

When next symbol seen is σ:
- If ($C = 0$) then $B := \sigma$, $C := 1$
- If ($C \neq 0$) and ($B = \sigma$) then $C := C + 1$
- If ($C \neq 0$) and ($B \neq \sigma$) then $C := C - 1$

When stream stops:
- accept if $B=1$ and $C > 0$, else reject

$B =$ the majority bit
$C =$ how many more times B appears

On all strings of length n, the algorithm uses $(\log_2 n)+O(1)$ bits of space (to store B and C)
How to think of memory usage

The program is *not considered* as part of the memory

Space usage of A:

\[S(n) = \text{maximum # of bits used to store vars in A, over all inputs of length up to } n \]
\[L = \{ 0^n 1^n \mid n \geq 0 \} \]

Initialize: \(z := 0, s := \text{false}, \text{fail} := \text{false} \)

When next symbol seen is \(\sigma \):
- If (not \(s \)) and (\(\sigma = 0 \)) then \(z := z + 1 \)
- If (not \(s \)) and (\(\sigma = 1 \)) then \(s := \text{true}; z := z - 1 \)
- If (\(s \)) and (\(\sigma = 0 \)) then \(\text{fail} := \text{true} \)
- If (\(s \)) and (\(\sigma = 1 \)) then \(z := z - 1 \)

When stream stops:
- \textbf{accept} if and only if (not \(\text{fail} \)) and (\(z = 0 \))

\(z \) = how many more times 0 appears than 1

\(s \) = “Started reading 1s yet?”

\(\text{fail} \) = “Reject for certain?”

On all strings of length \(n \),
uses \((\log_2 n) + O(1) \) space
DFAs and Streaming

Thm: Let L' be recognized by DFA M with $\leq 2^p$ states. Then L' is computable by a streaming algorithm A using $\leq p$ bits of space.

Proof Idea: Define algorithm A as follows.

- **Initialize:** Encode the *start state* of M in memory.
- **When next symbol seen is σ:**
 - Update state of M using M’s transition function
- **When stream stops:**
 - *Accept* if current state of M is final, else *reject*
Thm: Let L' be recognized by DFA M with $\leq 2^p$ states. Then L' is computable by a streaming algorithm A using $\leq p$ bits of space.

Initialize: $B = 0$

When reading σ:
Set $B := \sigma$

When stream stops:
Accept iff $B = 1$

Uses 1 bit of space
DFAs and Streaming

For any $A \subseteq \Sigma^*$ define $A_n = \{x \in A \mid |x| \leq n\}$

Theorem: Let L' be computable by streaming algorithm A using $\leq S(n)$ bits of space on all strings of length up to n.
Then for all n, there is a DFA M with $< 2^{S(n)+1}$ states such that $L'_n = L(M)_n$

That is, for all streaming algorithms A using $S(n)$ space, there’s a DFA M of $< 2^{S(n)+1}$ states such that A and M agree on all strings of length up to n.

Note: L'_n is always regular! (It’s finite!)
DFAs and Streaming

For any $A \subseteq \Sigma^*$ define $A_n = \{x \in A \mid |x| \leq n\}$

Theorem: Let L' be computable by streaming algorithm A using $\leq S(n)$ bits of space on all strings of length up to n. Then for all n, there is a DFA M with $< 2^{S(n)+1}$ states such that $L'_n = L(M)_n$

Proof Idea: States of $M = \text{at most } 2^{S(n)+1} - 1 \text{ possible memory configurations of } A, \text{ over strings of length up to } n$
Start state of $M = \text{Initialized memory of } A$
Transition function = Mimic how A updates its memory
Final states of $M = \text{Subset of memory configurations in which } A \text{ would accept, if the string ended there}$
Example: $L = \{ x \mid x \text{ has more 1's than 0's} \}$

Initialize: $C := 0$ and $B := 0$

When next symbol seen is σ,
If ($C = 0$) then $B := \sigma$, $C := 1$
If ($C \neq 0$) and ($B = \sigma$) then $C := C + 1$
If ($C \neq 0$) and ($B \neq \sigma$) then $C := C - 1$

When stream stops,
accept if $B=1$ and $C > 0$, else reject

Example: 6-state DFA that agrees with L on all strings of length ≤ 3
(We only let C go up to 2)
Theorem: Let L' be computable by streaming algorithm A using $S(n)$ bits of space on all strings of length up to n. Then for all n, there is a DFA M with $< 2^{S(n)+1}$ states such that $L'_n = L(M)_n$.

Corollary: Suppose for some n, every DFA M agreeing with L'_n requires at least $Q(n) := 2^{S(n)+1}$ states. Then L' is not computable by a streaming algorithm using $S(n) = \log_2(Q(n)/2) = \log_2(Q(n))-1$ space! That is, L' requires at least $\log_2(Q(n))$ space for some n.

For any $A \subseteq \Sigma^*$ define $A_n = \{x \in A \mid |x| \leq n\}$.