Lecture 7: Streaming Algorithms and Communication Complexity
Pset 2 is due tonight, 11:59pm
- Pest 3 is out!
 Due next Wednesday
L is regular
if and only if
$(\exists \text{DFA } M)(\forall \text{ strings } x)[M \text{ acc. } x \iff x \in L]$
“M gives the correct output on all strings”

L is NOT regular
if and only if
$(\forall \text{DFA } M)(\exists \text{ string } x_M)[M \text{ acc. } x_M \iff x \notin L]$
“M gives the wrong output on x_M”

So the problem of proving L is NOT regular can be viewed as a problem about designing “bad inputs”
L is not regular if and only if
There are infinitely many strings \(w_1, w_2, \ldots \) so that for all \(i \neq j \), there’s a string \(z \) such that exactly one of \(w_i z \) and \(w_j z \) is in \(L \).

To prove that \(L \) is regular, we have to show that a special finite object (DFA/NFA/regex) exists.

To prove that \(L \) is not regular, it is sufficient to show that a special infinite set of strings exists!

We can prove the nonexistence of a DFA/NFA/regex by proving the existence of this special string set!
Streaming Algorithms

Have three components

Initialize:

<variables and their assignments>

When next symbol seen is σ:

<pseudocode using σ and vars>

When stream stops (end of string):

<accept/reject condition on vars>

(or: <pseudocode for output>)

Algorithm A computes $L \subseteq \Sigma^*$ if

A accepts the strings in L, rejects strings not in L
How to think of memory usage

The program is *not considered* as part of the memory

Space Usage of A:

\[S(n) = \text{maximum \# of bits used to store vars in A, over all inputs of length up to } n \]
DFAs and Streaming

For any $A \subseteq \Sigma^*$ define $A_n = \{x \in A \mid |x| \leq n\}$

Theorem: Let L' be computable by streaming algorithm A with space usage $\leq S(n)$.
Then for all n, there is a DFA M with $< 2^{S(n)+1}$ states such that $L'_n = L(M)_n$

For all streaming algorithms A using $S(n)$ space, and all n, there’s a DFA M of $< 2^{S(n)+1}$ states such that A and M agree on all strings of length up to n.

Note: L'_n is always regular! (It’s a finite set!)
DFAs and Streaming

For any \(A \subseteq \Sigma^* \) define \(A_n = \{ x \in A \mid |x| \leq n \} \)

Theorem: Let \(L' \) be computable by streaming algorithm \(A \) with space usage \(\leq S(n) \).

Then for all \(n \), there is a DFA \(M \) with \(< 2^{S(n)+1} \) states such that \(L'_n = L(M)_n \)

Proof Idea: States of \(M \) = The set of (at most) \(2^{S(n)+1} - 1 \) memory configurations of \(A \), over strings of length up to \(n \)

(Why \(2^{S(n)+1} - 1 \)?)

Start state of \(M \) = Initialized memory of \(A \)

Transition function = Mimic how \(A \) updates its memory

Final states of \(M \) = Subset of memory configurations in which \(A \) would accept, if the string ended there
L is not regular if and only if

There are infinitely many strings \(w_1, w_2, \ldots \) so that for all \(i \neq j \), there’s a string \(z \) such that exactly one of \(w_i z \) and \(w_j z \) is in \(L \).

In fact, Myhill-Nerode shows that the size of a distinguishing set for \(L \) is a lower bound on the number of states in a DFA for \(L \).

In other words, if \(S \) is a distinguishing set for \(L \), then any DFA for \(L \) must have at least \(|S| \) states.

We can use similar ideas to prove lower bounds on streaming algorithms!
For any $L \subseteq \Sigma^*$ define $L_n = \{x \in L \mid |x| \leq n\}$

A streaming distinguisher for L_n is a subset D_n of Σ^*: for all distinct $x, y \in D_n$, there is a z in Σ^* such that $|xz| \leq n$, $|yz| \leq n$, and exactly one of xz, yz is in L.

Streaming Theorem: Suppose for all n, there is a streaming distinguisher D_n for L_n with $|D_n| \geq 2^{S(n)}$. Then all streaming algs for L must use at least $S(n)$ space!

Idea: Use the set D_n to show that every streaming algorithm for L must enter at least $2^{S(n)}$ different memory states, over all inputs of length at most n.

But if there are at least $2^{S(n)}$ distinct memory states, then the alg must be using at least $S(n)$ bits of space!
\[L = \{ 0^k 1^k \mid k \geq 0 \} \]

Is there a streaming algorithm for L using *less than* \(\log_2(n) \) space?

Theorem: For all \(n \), every streaming algorithm computing L must use at least \(\log_2(n) \) bits of space.

Idea: Show there is a streaming distinguisher \(D_n \) for
\[L_n = \{ 0^k 1^k \mid 0 \leq k \leq n \} \] with \(|D_n| = n/2 + 1 \).

By the Streaming Theorem, it follows that all streaming algs for L need \(\geq \log_2(n/2 + 1) \) space!
Let \(x=0^a \) and \(y=0^b \) be distinct strings in \(D_n \). Set \(z=1^b \).

Then \(yz \in L \), \(xz \notin L \), and \(|xz| \leq n \), \(|yz| \leq n \). QED

Theorem: For all (even) \(n \), every streaming algorithm computing \(L \) needs at least \((\log_2 n) \) bits of space.

Proof: For even \(n \), let \(D_n = \{0^i \mid i = 0, \ldots, n/2\} \)

Claim: For all \(n \), \(D_n \) is a streaming distinguisher for \(L_n \)

Let \(x=0^a \) and \(y=0^b \) be distinct strings in \(D_n \). Set \(z=1^b \).

Then \(yz \in L \), \(xz \notin L \), and \(|xz| \leq n \), \(|yz| \leq n \). QED

Since \(|D_n| = n/2+1 \), Streaming Thm says: every streaming algorithm for \(L \) needs \(\geq \log_2 (n/2+1) \) space.

Note \(\log_2 (n/2+1) > \log_2 (n/2) = \log_2 (n) - 1 \)
Finding Frequent Items

A streaming algorithm for
\[L = \{ x \mid x \text{ has more } 1\text{'s than } 0\text{'s} \} \]
tells us if 1's occur more frequently than 0's.

What if the alphabet is more than just 1's and 0's?

And what if we want to find the “top 10” symbols?

FREQUENT ITEMS: Given \(k \) and a string \(x = x_1 \ldots x_n \in \Sigma^n \),
output the set \(S = \{ \sigma \in \Sigma \mid \sigma \text{ occurs } > n/k \text{ times in } x \} \)

(Question: How large can the set \(S \) be?)
FREQUENT ITEMS: Given k and a string $x = x_1 \ldots x_n \in \Sigma^n$, output the set $S = \{\sigma \in \Sigma \mid \sigma \text{ occurs } > n/k \text{ times in } x\}$
FREQUENT ITEMS: Given k and a string $x = x_1 \ldots x_n \in \Sigma^n$, output the set $S = \{\sigma \in \Sigma \mid \sigma \text{ occurs } > n/k \text{ times in } x\}$

Theorem: There is a two-pass streaming algorithm for FREQUENT ITEMS using $(k-1)(\log |\Sigma| + \log n)$ space!

1st pass: Initialize a set $T \subseteq \Sigma \times \{1,\ldots,n\}$ (originally empty)
When the next symbol σ is read:
If $(\sigma,m) \in T$, then $T := T - \{(\sigma,m)\} + \{(\sigma,m+1)\}$
Else if $|T| < k-1$ then $T := T + \{(\sigma,1)\}$
Else for all $(\sigma',m') \in T$,

$$T := T - \{(\sigma',m')\} + \{(\sigma',m'-1)\}$$
If $m' = 0$ then $T := T - \{(\sigma',m')\}$

Claim: At end, T contains all σ occurring $> n/k$ times in x

2nd pass: Count occurrences of all σ' appearing in T
to determine those occurring $> n/k$ times
Claim: At end, T contains all \(\sigma \) occurring > \(\frac{n}{k} \) times in x

1st pass: Initialize a set \(T \subseteq \Sigma \times \{1,\ldots,n\} \) (originally empty)
When the next symbol \(\sigma \) is read:
If \((\sigma,m) \in T \), then \(T := T - \{ (\sigma,m) \} + \{ (\sigma,m+1) \} \)
Else if \(|T| < k-1 \) then \(T := T + \{ (\sigma,1) \} \)
Else for all \((\sigma',m') \in T \),
 \(T := T - \{ (\sigma',m') \} + \{ (\sigma',m'-1) \} \)
 If \(m' = 0 \) then \(T := T - \{ (\sigma',m') \} \)

2nd pass: Count occurrences of all \(\sigma' \) appearing in T
to determine those occurring > \(\frac{n}{k} \) times
Claim: At end, if σ is not in T then σ occurs \(\leq \frac{n}{k} \) times

Idea: Have \(k-1 \) containers, \(n \) colored balls, and a trash can.

For each ball colored σ: either add it to a container, or throw it in the trash along with \(k-1 \) other balls, one from each container.

If there were \(m \) balls colored σ, and no balls of color σ are in containers at the end, there must be \(k \cdot m \leq n \) balls in the trash!

1st pass: Initialize a set \(T \subseteq \Sigma \times \{1,...,n\} \) (originally empty)
When the next symbol σ is read:

If \((σ,m) \in T \), then \(T := T \setminus \{(σ,m)\} + \{(σ,m+1)\} \)

Else if \(|T| < k-1 \) then \(T := T + \{(σ,1)\} \)

Else for all \((σ',m') \in T \),

\[
T := T \setminus \{(σ',m')\} + \{(σ',m'-1)\}
\]

If \(m' = 0 \) then \(T := T \setminus \{(σ',m')\} \)

When this happens
Decrement \(k-1 \) counters

2nd pass: Count occurrences of all σ' appearing in T
to determine those occurring > \(\frac{n}{k} \) times
Number of Distinct Elements

Distinct Elements (DE):
Input: \(x \in \{1, \ldots, 2^k\}^*, \ n = |x| < 2^{k/2} \)
Output: The number of different elements appearing in \(x \); call this \(\text{DE}(x) \)

Observation: There is a streaming algorithm for DE using \(O(kn) \) space

Theorem: Every streaming algorithm for DE requires \(\Omega(kn) \) space!
The DE problem

Input: $x \in \{0, 1, \ldots, 2^k\}^*$, $2^k > |x|^2$

Output: The number of distinct elements appearing in x

Note: There is a streaming algorithm for DE using $O(k n)$ space

Theorem: Every streaming algorithm for DE requires $\Omega(k n)$ space
Theorem: Every streaming algorithm for DE requires $\Omega(kn)$ space

Say $x, y \in \Sigma$ are length-n DE distinguishable if
$$(\exists z \in \Sigma^*)[DE(xz) \neq DE(yz)] \& |xz| \leq n, |yz| \leq n$$

Lemma: Let $S \subseteq \Sigma^*$ be such that every pair of strings in S is length-n DE distinguishable. Then, streaming algs for DE need $\geq \log_2 |S|$ bits of space (on inputs of length $\leq n$)

Proof Sketch: Let algorithm A use $< \log_2 |S|$ space. We show A cannot compute DE on all inputs of length $\leq n$. By the pigeonhole principle, there are distinct x, y in S that lead A to the same memory state. So A gives the same output on both xz and yz. But $DE(xz) \neq DE(yz)$, so A does not compute DE.
Theorem: Every streaming algorithm for DE requires $\Omega(k \, n)$ space

Lemma: Let $S \subseteq \Sigma^*$ be such that every pair of strings in S is length-n DE distinguishable. Then every streaming algorithm for DE needs $\geq \log_2 |S|$ bits of space.

Claim: For all n, there is a such a set S with $|S| \geq 2^{k \, n/4}$

Proof: For each subset T of Σ of size $n/2$, define x_T to be any concatenation of the symbols in T

For *distinct* sets T and T', x_T and $x_{T'}$ are distinguishable:

- $x_T x_T$ contains exactly $n/2$ distinct elements
- $x_{T'} x_T$ has more than $n/2$ distinct elements

The total number of such subsets T is

$$\binom{2^k}{n/2} \geq 2^{k \, n/2} / (n/2)^{n/2} \geq 2^{k \, n/4}, \text{ for } n < 2^{k/2}$$
Theorem: Every streaming algorithm for approximating the number of DE to within +- 20% error also requires $\Omega(kn)$ space!

See Lecture Notes.
Distinct Elements (DE)
Input: \(x \in \{1,\ldots,2^k\}^* \), \(n = |x| < 2^{k/2} \)
Output: The number of different elements appearing in \(x \)

Theorem: There is a *randomized* streaming algorithm that w.h.p. approximates DE to within 0.1% error, using \(O(k + \log n) \) space!

Recall: *Deterministic* streaming algorithms require at least \(\Omega(kn) \) space.
Communication Complexity
Communication Complexity

A theoretical model of distributed computing

- **Function** $f: \{0,1\}^* \times \{0,1\}^* \rightarrow \{0,1\}$
 - Two inputs, $x \in \{0,1\}^*$ and $y \in \{0,1\}^*$
 - We assume $|x| = |y| = n$. Think of n as HUGE

- **Two computers:** Alice and Bob
 - Alice *only* knows x, Bob *only* knows y

- **Goal:** Compute $f(x, y)$ by communicating as few bits as possible between Alice and Bob

We do not count computation cost. We *only* care about the number of bits communicated.
Alice and Bob Have a Conversation

In every step: A bit or STOP is sent, which is a function of the party’s input and all the bits communicated so far.

Communication cost = number of bits communicated = 4 (in the example)

We assume Alice and Bob alternate in communicating, and the last BIT sent is the value of $f(x,y)$.
Def. A *protocol* for a function f is a pair of functions $A, B : \{0,1\}^* \times \{0,1\}^* \to \{0, 1, \text{STOP}\}$ with the semantics:

On input (x, y), let $r := 0$, $b_0 := \varepsilon$.

While ($b_r \neq \text{STOP}$),

$r++$

If r is odd, Alice sends $b_r = A(x, b_1 \cdots b_{r-1})$

else Bob sends $b_r = B(y, b_1 \cdots b_{r-1})$

Output $b_{r-1} = f(x, y)$. Number of rounds $= r - 1$
Def. The cost of a protocol \((A,B)\) on \(n\)-bit strings is
\[
\max_{x,y \in \{0,1\}^n} \text{[number of rounds taken by (A,B) on (x, y)]}
\]

The communication complexity of \(f\) on \(n\)-bit strings, \(cc(f)\), is \emph{min cost} over all protocols computing \(f\) on \(n\)-bit strings

= the minimum number of rounds used by any protocol computing \(f(x, y)\), over all \(n\)-bit \(x, y\)
Example. Let $f : \{0,1\}^* \times \{0,1\}^* \to \{0,1\}$ be arbitrary.

There is always a "trivial" protocol for f:

- Alice sends the bits of her x in odd rounds
- Bob sends whatever bit he wants in even rounds
- After $2n - 1$ rounds, Bob knows x and can send $f(x, y)$

Proposition: For every f, $cc(f) \leq 2n$
Example. $\text{PARITY}(x, y) = \sum_i x_i + \sum_i y_i \mod 2$.

What’s a good protocol for computing PARITY?

Proposition: $cc(\text{PARITY}) = 2$
Example. $\text{MAJORITY}(x, y) = \text{most frequent bit in } xy$

Models voting in two “remote” locations; they want to determine a winner

What’s a good protocol for computing MAJORITY?

Proposition: $\text{cc}(\text{MAJORITY}) \leq O(\log n)$
Example. $\text{EQUALS}(x, y) = 1 \iff x = y$

Useful for checking consistency of two far-apart databases!

What’s a good protocol for computing EQUALS?