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Lecture 9
Turing Machines:

Recognizability, Decidability,
The Church-Turing Thesis

6.045



Turing Machine (1936)

FINITE 

STATE 

CONTROL

INFINITE REWRITABLE TAPE

I N P U T

q0q1

A …
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In each step:
- Reads a symbol
- Writes a symbol
- Changes state
- Moves Left or Right

“blanks”tape 
head
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Turing Machine (1936)

INFINITE REWRITABLE TAPE

I N P U TA …
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https://www.cs.utah.edu/~draperg/cartoons/2005/turing.html

#inspired



Turing Machines versus DFAs

The TM can both write to and read from the tape,
and can write symbols that aren’t part of input

The “tape head” can move right and left

The input is written on an infinite tape

Accept and Reject take immediate effect

with “blank” symbols after the input
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A TM for L = { w#w | w  {0,1}* } over 𝚺={0,1,#}

STATE

0 1 1 # 0 1 1

q0, FIND # qGO LEFT

0

q1, FIND # q#, FIND 

#1

q0, FIND 

0

q1, FIND 

1X XX

1. If there’s no # on the tape (or more than one #), reject.
2. While there is a bit to the left of #,

Replace the first bit b with X, and check if the first bit b’
to the right of the # is identical to b. (If not, reject.) 
Replace that bit b’ with an X too.

3. If there’s a bit to the right of #, then reject else accept

and so on…
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Definition: A Turing Machine is a 7-tuple 
T = (Q, Σ, Γ, , q0, qaccept, qreject), where: 

Q is a finite set of states

Γ is the tape alphabet, where   Γ and Σ  Γ

q0  Q is the start state

Σ is the input alphabet, where   Σ

 : Q  Γ → Q  Γ  {L, R}

qaccept  Q is the accept state

qreject  Q is the reject state, and qreject  qaccept
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 = “blank”



0 → 0, R

read write move

→ , R

qaccept

qreject

0 → 0, R

→ , R

This Turing machine decides the language {0}

Σ = {0}

 = “blank”



0 → 0, R

read write move

→ , R

qaccept

0 → 0, R

→ , R

0 → 0, R

 → , L

This Turing machine recognizes the language {0}

Σ = {0}

 = “blank”

Three kinds of behaviors: 
accepting, rejecting, and running forever!
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Turing Machine Configurations

q01101000110 2 (Q [ Γ)*

corresponds to the configuration:

q0

1 0 0 0 0 01 1 1 1
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Turing Machine Configurations

0q1101000110 2 (Q [ Γ)*

corresponds to the configuration:

q1

1 0 0 0 0 00 1 1 1



Turing Machine Configurations

0000011110q7 2 (Q [ Γ)*

corresponds to the configuration:

q7

0 0 0 1 1 00 0 1 1
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Defining Acceptance and Rejection for TMs

Let C1 and C2 be configurations of a TM M
Definition. C1 yields C2 if  M is in configuration C2

after running M in configuration C1 for one step

Example. Suppose (q1, b) = (q2, c, L)
Then aq1bb yields q2acb
Suppose (q1, a) = (q2, c, R)
Then abq1a yields abcq2

Let w  Σ* and M be a Turing machine.
M accepts w if there are configs C0, C1, ..., Ck, s.t.

• C0 = q0w  [the initial configuration]
• Ci yields Ci+1 for i = 0, ..., k-1, and 
• Ck contains the accept state qaccept

accepting 
computation 

history of M on x



A TM M recognizes a language L 
if M accepts exactly those strings in L

A TM M decides a language L if M accepts all 
strings in L and rejects all strings not in L

A language L is recognizable 
(a.k.a. recursively enumerable)

if some TM recognizes L

A language L is decidable (a.k.a. recursive)
if some TM decides L
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L(M) := set of strings M accepts



A Turing machine for deciding { 0   | n ≥ 0 }2n

1. Sweep from left to right, x-out every other 0
2. If in step 1, the tape had only one 0, accept
3. If in step 1, the tape had an odd number of 0’s

(at least 3), reject
4. Move the head left to the first input symbol.
5. Go to step 1.

Turing Machine PSEUDOCODE:

Why does this work?

Observation: Every time we return to step 1, 
the number of 0’s on the tape has been halved.
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even
0’s

Step 1

odd        
0’s

0 → , R

 → , R

qacceptqreject

0 → x, R

x → x, R
 → , R

x → x, R

0 → 0, L
x → x, L

x → x, R

 → , L
 → , R

0 → x, R
0 → 0, R

 → , R
x → x, R

q0 q1

q2

q3

q4

{ 0   | n ≥ 0 }2n

Step 2

Step 3

Step 4
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0 → , R

 → , R

qacceptqreject

0 → x, R

x → x, R
 → , R

x → x, R

0 → 0, L
x → x, L

x → x, R

 → , L
 → , R

0 → x, R
0 → 0, R

 → , R
x → x, R

{ 0   | n ≥ 0 }2n

q0 q1

q2

q3

q4

q00000

q1000

xq300

x0q40

x0xq3

x0q2x

xq20x

q2x0x

q2x0x

… 17

q1x0x

xq10x



MULT = {aibjck | k = i*j, and i, j, k ≥ 1}

1. If the input doesn’t match a*b*c*, reject.
2. Move the head back to the leftmost symbol.
3. Cross off one a, scan to the right until see b. 

Sweep between b’s and c’s, crossing off one of 
each until all b’s are crossed off.
If all c’s get crossed off while doing this, reject.

4. Uncross all the b’s. 
If there is some a left, then repeat stage 3.
If all a’s are crossed off,

Check if all c’s are crossed off.
If yes, then accept, else reject.

TURING MACHINE PSEUDOCODE:



MULT = {aibjck | k = i*j, and i, j, k ≥ 1}

aabbbcccccc
ảabbbcccccc
ảaḃḃḃḉḉḉccc
ảabbbḉḉḉccc
ảảḃḃḃḉḉḉḉḉḉ

Check matches a*b*c*

Cross off an a

Cross off one c 
for each b

“Uncross” the b’s

Repeat the 
crossing, until all a’s

crossed (or reject early) Accept
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Turing Machines are Robust!

Many variants and models can be defined.
As long as your favorite model reads and 
writes a finite number of symbols in each 

step, it doesn’t matter! 

A good ole TM can still simulate it! 



Multitape Turing Machines

 : Q  Γk → Q  Γk  {L,R}k

FINITE 

STATE 

CONTROL
k
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FINITE 

STATE 

CONTROL

0 01

FINITE 

STATE 

CONTROL 0 01 # # #
. . .

Theorem: Every Multitape Turing Machine can be 
transformed into a single tape Turing Machine
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FINITE 

STATE 

CONTROL

0 01

FINITE 

STATE 

CONTROL 0 01 # # #
. . .

Theorem: Every Multitape Turing Machine can be 
transformed into a single tape Turing Machine
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FINITE 

STATE 

CONTROL

0 01

FINITE 

STATE 

CONTROL 0 01 # # #
. . .

Theorem: Every Multitape Turing Machine can be 
transformed into a single tape Turing Machine

24



FINITE 

STATE 

CONTROL

0 01

FINITE 

STATE 

CONTROL 0 01 # # #
. .

Theorem: Every Multitape Turing Machine can be 
transformed into a single tape Turing Machine
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.



Theorem: Every Multitape Turing Machine can be 
transformed into a single tape Turing Machine

FINITE 

STATE 

CONTROL

0 01

FINITE 

STATE 

CONTROL 0 01 # # #
. . .

26



27

Theorem: Every nondeterministic Turing machine N
can be transformed into a Turing Machine M that  
accepts precisely the same strings as N. (L(M)=L(N))

Nondeterministic Turing Machines

Proof Idea (more details in Sipser p.178-179)

Pick a natural ordering on the strings in (Q [ Γ [ #)* 

M(w): For all strings D 2 (Q [ Γ [ #)* in the ordering,

Check if D =  C0#  #Ck where C0, …,Ck is an
accepting computation history for N on w. 
If so, accept.

Have multiple transitions for a state, symbol pair



What else can Turing Machines do?

28

M’⟨M⟩
code of M

𝒚𝒆𝒔/𝒏𝒐

They can analyze and 
simulate other TMs

To do that, we need to 
encode TMs as strings.



Fact: We can encode Turing Machines as bit strings

0n10m10k10s10t10r10u1 …

n states

m tape symbols 

(first k are input 

symbols)

start 

state

accept 

state

reject 

state

blank 

symbol

( (p, i), (q, j, L) ) = 0p10i10q10j101

( (p, i), (q, j, R) ) = 0p10i10q10j1001
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Can map every TM M to a bit string ⟨M⟩



We can also encode DFAs and NFAs 
as bit strings, and w 2 Σ* as bit strings

ADFA = { ⟨D, w⟩ | D encodes a DFA over some Σ,
and D accepts w 2 Σ* }

ANFA = { ⟨N, w⟩ | N encodes an NFA, N accepts w }

ATM = { ⟨M, w⟩ | M encodes a TM, M accepts w }

For x ∈ Σ* define bΣ(x) to be its binary encoding
For x, y ∈ Σ*, define the pair of x and y as

a binary string encoding both x and y
⟨x, y⟩ := 0|bΣ(x)|1 bΣ(x) bΣ(y)

Then we define the following languages over {0,1}:
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Universal Turing Machines

Theorem: There is a Turing machine U
which takes as input:
- the code of an arbitrary TM M
- and an input string w
such that U accepts ⟨M, w⟩M accepts w.

This is a fundamental property of TMs: 

There is a Turing Machine that 
can run arbitrary Turing Machine code! 

Note that DFAs/NFAs do not have this property.
That is, ADFA and ANFA  are not regular.
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Want: U accepts ⟨M, w⟩M accepts w.
Can make a multitape TM U with four tapes:
1. Input tape: receives ⟨M, w⟩
2. State tape: holds the current state of M 
3. Machine code tape: holds transitions of M
4. Simulation tape: content is identical to M’s tape
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U

⟨M, w⟩

0𝑞

… 0q10i10p10j101 …

𝑤1⋯𝑤𝑛□□□□□□□□⋯

For each step of M: U looks up the matching transition in 
machine code tape, updates the state and simulation tape
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ADFA = { ⟨D, w⟩ | D is a DFA that accepts string w }

Theorem: ADFA is decidable

Proof: A DFA is a special case of a TM. 
Run the universal U on ⟨D, w⟩ and output its answer! 

ATM = { ⟨M, w⟩ | M is a TM that accepts string w }

Theorem: ATM is recognizable
(Why?)

ANFA = { ⟨N, w⟩ | N is an NFA that accepts string w }

Theorem: ANFA is decidable. (Why?)
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The Church-Turing Thesis

Everyone’s 
Intuitive Notion 

of Algorithms

=    Turing Machines

This is not a theorem –
it is a falsifiable scientific hypothesis. 

And it has been thoroughly tested!
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Thm: There are unrecognizable languages

Assuming the Church-Turing Thesis, 
this means there are problems that 

NO computing device will ever solve!

We will prove there is no onto function
from the set of all Turing Machines to 

the set of all languages over {0,1}. 
(But the proof will work for any finite Σ)

Therefore, the function mapping every TM M to its 
language L(M), fails to cover all possible languages


