6.045

Lecture 9
Turing Machines:
Recognizability, Decidability,
The Church-Turing Thesis

Turing Machine (1936)

In each step:
- Reads a symbol
- Writes a symbol

ds - Changes state
- Moves Left or Right
tape “blanks”
head

angefor] J PP T

INFINITE REWRITABLE TAPE

Turing Machine (1936)

A. M. Toring [Nov. 12

ON COMPUTABLE NUMBERS, WITH AN APPLICATION TO
THE ENTSCHEIDUNGSPROBLEM

By A. M. Turixe.

[Received 28 May, 1936.—Recead 12 November, 1936.]

The “computable’” numbers may be described briefly as the real
numbers whose expressions as a decimal are calculable by finite means.
Although the subject of this paper is ostensibly the computable numbers.
it is almost equally easy to define and investigate computable functions
of an integral vaviable or a real or computable variable, computahle
predicates, and so forth. The fundamental problems involved are,
however. the same in each case, and I have chosen the computable numbers
for explicit treatment as involving the least cumbrous technique. I hope
shontlv to give an account of the relations of the computable numbers,

P b e D Lo PO | N s U o | D T KU RERen) M0 YRS, SNGEL (WRRSINe. [T Ao e T M

(e A #inspired
WARE HOUSE FILLETD
WITH MILES aND

MILES OF q'ﬂ
: T T LI}

REWRITABLE TAPE! :‘_tﬁl-‘“&:.-_“'.'-'

".'—-E-l.. Lo

WHAT ARE WE | , — = 'r"ﬂ,‘i_____.
EVER GOING To DO f LTI TIrD
...-_E —

o)

A

D

]

And thus the Turing Machine was born.

https://www.cs.utah.edu/~draperg/cartoons/2005/turing.html

Turing Machines versus DFAs

The input is written on an infinite tape
with “blank” symbols after the input

The “tape head” can move right and left

The TM can both write to and read from the tape,
and can write symbols that aren’t part of input

Accept and Reject take immediate effect

ATM forL={whw | w € {0,1}* } over 2£={0,1,#}

STATE
Qo Fr Y1, FnD# Ye, F Do, F Y1, Ano O Yo LEFT

and so on...

o xfxfufelxjefe] |

1. If there’s no # on the tape (or more than one #), reject.

2. While there is a bit to the left of #,
Replace the first bit b with X, and check if the first bit b’
to the right of the # is identical to b. (If not, reject.)
Replace that bit b” with an X too.

3. If there’s a bit to the right of #, then reject else accept

6

Definition: A Turing Machine is a 7-tuple
T=(Q, %, T, 0, dy) Uacceptr Areject), Where:

Q is a finite set of states

2 is the input alphabet, where

[is the tape alphabet, where
0:QxI-> QxTrlx{L, R}
q, € Q is the start state

Jaccept € Q is the accept state

= “blank”

& 2
elandzcT

Oreject € Q is the reject state, and Oreject Z Yaccept

read Write move Z =10}

0 — L1, R

10—>O R
— L1 R

This Turing machine decides the language {0}

= “blank”

read

write move Z =10}

~,\ 7

-0

= “blank”

0—-0,R — L1, R
— —

028’5
— L, L

This Turing machine recognizes the language {0}

Three kinds of behaviors:

accepting, rejecting, and running forever!

Turing Machine Configurations

tujofafofojofafafo

corresponds to the configuration:

4,1101000110 € (Q Ur)*

Turing Machine Configurations

ojuofafofojofufufo

corresponds to the configuration:

09,101000110 € (Q UI)*

Turing Machine Configurations

ofojofojojufafafajof

corresponds to the configuration:

0000011110q,0 € (Q Ur)*

Defining Acceptance and Rejection for TMs

Let C, and C, be configurations ofa TM M
Definition. C, yields C, if M is in configuration C,
after running M in configuration C, for one step

Example. Suppose 6(q,, b) = (q,, ¢, L) accepting
Then aq,bb yields q,acb computation
Suppose 6(q,, a) = (4 ¢, R) history of M on x
Then abq,a yields abcq,

Let w € 2* and M be a Turing machine.

M accepts w if there are configs C,, C,, ..., C,, s.t.
* C,=q,w [the initial configuration]
 CyieldsC,, fori=0,..., k-1, and

* C, contains the accept state q, .,

13

A TM M recognizes a language L
if M accepts exactly those strings in L

A language L is recognizable
(a.k.a. recursively enumerable)
if some TM recognizes L

A TM M decides a language L if M accepts all
strings in L and rejects all strings not in L

A language L is decidable (a.k.a. recursive)
if some TM decides L

L(M) := set of strings M accepts

14

A Turing machine for deciding {0*"| n20}

Turing Machine PSEUDOCODE:

1. Sweep from left to right, x-out every other 0

If in step 1, the tape had only one 0, accept

3. Ifinstep 1, the tape had an odd number of 0’s
(at least 3), reject

4. Move the head left to the first input symbol.

. Go to step 1.

N

Ul

Why does this work?
Observation: Every time we return to step 1,
the number of 0’s on the tape has been halved.

MULT = {a'bick | k =i*j, and i, j, k = 1}
TURING MACHINE PSEUDOCODE:

1. If the input doesn’t match a*b*c*, reject.
2. Move the head back to the leftmost symbol.
3. Cross off one a, scan to the right until see b.
Sweep between b’s and ¢’s, crossing off one of
each until all b’s are crossed off.
If all ¢’s get crossed off while doing this, reject.
4. Uncross all the b’s.
If there is some a left, then repeat stage 3.
If all @’s are crossed off,
Check if all ¢’s are crossed off.
If yes, then accept, else reject.

MULT = {a'bick | k =i*j, and i, j, k = 1}

Check matches a*b*c* aab b b CCCCCC
Cross off an a éabbbCCCCCC

e dabbbéééece

“Uncross” the b’s éab b b gggc C C

I S A A A A 4

Repeat the ééb.b.b.gggggg

crossing, until all a’s
crossed (or reject early) Accept

Turing Machines are Robust!

Many variants and models can be defined.

As long as your favorite model reads and

writes a finite number of symbols in each
step, it doesn’t matter!

A good ole TM can still simulate it!

Multitape Turing Machines

FINITE
STATE
CONTROL

d:Q x> Qxkx{LR}

Theorem: Every Multitape Turing Machine can be
transformed into a single tape Turing Machine

fofo] | [
FINITE
CONTROL
FINITE
STATE .
controL | [L]ofof#f f#f" [#

Theorem: Every Multitape Turing Machine can be
transformed into a single tape Turing Machine

<pojo] | [
FINITE
CONTROL

FINITE

STATE 4 4
controw | [L0fo]# | f#]" |#

Theorem: Every Multitape Turing Machine can be
transformed into a single tape Turing Machine

FINITE
STATE

CONTROL

FINITE

STATE 4 4
controw | [L0f0]# | #]" |#

Theorem: Every Multitape Turing Machine can be
transformed into a single tape Turing Machine

FINITE
CONTROL

FINITE

STATE . " 4
controw | [Lfofo# | #]" |#

Theorem: Every Multitape Turing Machine can be
transformed into a single tape Turing Machine

FINITE
CONTROL

FINITE

STATE
controw | [Lfofol |4 f#["]#

Nondeterministic Turing Machines

Have multiple transitions for a state, symbol pair

Theorem: Every nondeterministic Turing machine N
can be transformed into a Turing Machine M that
accepts precisely the same strings as N. (L(M)=L(N))

Proof Idea (more details in Sipser p.178-179)
Pick a natural ordering on the strings in (QU I U #)*

M(w): For all stringsD € (QU T U #)* in the ordering,

Check if D = Cy# --- #C, where C,, ...,C, is an
accepting computation history for N on w.
If so, accept.

27

What else can Turing Machines do?

They can analyze and
simulate other TMs

(M) —s yes/no
code of M

To do that, we need to
encode TMs as strings.

28

Fact: We can encode Turing Machines as bit strings

start reject
n states State state

\

0"10™10%10510t10710"1 ...

/1)

m tape symbols
(first k are input accept
symbols) state

((p,i), (q,j,L))=0r1010910'101
((p, i), (a,], R)) = 0101091011001

blank
symbol

Can map every TM M to a bit string (M)

29

We can also encode DFAs and NFAs
as bit strings, and w € X* as bit strings

For x € 2* define b,(x) to be its binary encoding
For x, y € 2*, define the pair of x and y as
a binary string encoding both x and y

(%, y) := 01211 b(x) by(y)
Then we define the following languages over {0,1}:

Ao ={ (D, w) | D encodes a DFA over some 2,
and D acceptsw € 2* }

Ayia ={ (N, w) | N encodes an NFA, N accepts w }

@ A, ={ (M, w) | M encodes a TM, M accepts w }

30

Universal Turing Machines

Theorem: There is a Turing machine U
which takes as input:
- the code of an arbitrary TM M
- and an input string w
such that U accepts (M, w) <& M accepts w.

This is a fundamental property of TMs:
There is a Turing Machine that
can run arbitrary Turing Machine code!

Note that DFAs/NFAs do not have this property.
That is, Ay, and A,;, are not regular.

31

Want: U accepts (M, w) <> M accepts w.

Can make a multitape TM U with four tapes:

1. Input tape: receives (M, w)

2. State tape: holds the current state of M

3. Machine code tape: holds transitions of M

4. Simulation tape: content is identical to M’s tape

... 0910'10°P10'101 ...

wq - w,yaooooooo ---

For each step of M: U looks up the matching transition in
machine code tape, updates the state and simulation tape

32

Apea ={ (D, w) | D is a DFA that accepts string w }

Theorem: Ay, is decidable

Proof: A DFA is a special case of a TM.
Run the universal U on (D, w) and output its answer!

Ayia = { (N, w) | N is an NFA that accepts string w }
Theorem: Ay, is decidable. (Why?)

A ={(M,w) | MisaTM that accepts string w }

Theorem: A;,, is recognizable
(Why?)

33

The Church-Turing Thesis

Everyone’s
Intuitive Notion = Turing Machines
of Algorithms

This is not a theorem —
it is a falsifiable scientific hypothesis.

And it has been thoroughly tested!

34

Thm: There are unrecognizable languages

S

Assuming the Church-Turing Thesis,
this means there are problems that
NO computing device will ever solve!

We will prove there is no onto function
from the set of all Turing Machines to
the set of all languages over {0,1}.
(But the proof will work for any finite %)

Therefore, the function mapping every TM M to its
language L(M), fails to cover all possible languages

35

