
M.I.T. — 6.045: Automata, Computability, and Complexity Handout
Ryan Williams Updated 2/26/2020

Notes on Streaming Algorithms1

A streaming algorithm is an algorithm that receives its input as a “stream” of data,
and that proceeds by making only one pass (or a small number of passes) through the
data. As for any other kind of algorithm, we want to design streaming algorithms that
are fast and that use as little memory as possible. A DFA can be viewed as a streaming
algorithm that uses only a constant (O(1)) amount of memory, processes each data
item (alphabet symbol) in its input stream in constant (O(1)) time, and solves a
decision problem defined on the input. In general, we are interested in streaming
algorithms for computations on numbers, and computations with other non-binary
output, and we are interested in algorithms with memory usage and processing-time-
per-input-item are not constants, as long as we can make them feasibly small even
for very large streams. (For simplicity, here we will focus almost totally on the
“low memory” aspect, and not talk much about the running time of our algorithms.
Running time will come later in the class!)

The streaming model is appropriate for settings in which the data to be processed
is not stored anywhere but it is generated dynamically, and is fed to the streaming
algorithm as it is being generated. Typical examples are the stream of measurements
from a sensor network, the stream of transactions going to and from an online bank,
the stream of search strings in a search engine, of page requests coming to a web
server, video and audio streams, and so on.

In these notes, we will see examples of streaming algorithms and their space usage.
We will also see how to apply ideas from the Myhill-Nerode theorem and its proof to
prove space lower bounds for streaming algorithms, showing both logarithmic lower
bounds and linear lower bounds in certain cases.

1 The Streaming Model

More formally, we think of a streaming algorithm working over an alphabet Σ as
having three basic components.

• Initialization. This component initializes all the variables that will be used in
the computation.

• Update rule. This component says, for every new symbol σ ∈ Σ received from
the stream, how the variables should change as a result.

1These notes began from the lecture notes of Luca Trevisan, while we were teaching CS154 at
Stanford. Many of the sentences are his (probably most of the good ones).

1

• Stopping rule. This component tells us what to do when the stream ends:
what is the accept/reject condition, or in general how the output should be
derived.

In what follows, we won’t really care about the efficiency / running time of these
rules. What we will care about is space usage: the number of bits of memory that
the streaming algorithm needs to compute the answer. In a situation where the data
is of some length n, where n is truly gigantic (e.g., 1019 or more), we would like the
space usage of our streaming algorithm to be significantly less than n.

Definition 1 The space usage of a streaming algorithm A is a function S : N→ N,
where S(n) is the maximum number of bits used to store the variables in A, over all
inputs of length up to n.

We say that a streaming algorithm A uses at most S(n) space if for all n, A
has space usage at most S(n) on all inputs of length up to n.

We say that a streaming algorithm A uses at least S(n) space if for infinitely
many n, A has space usage at least S(n) on all inputs of length up to n.

Given our extremely generic notion of streaming algorithm and space usage, essen-
tially every interesting problem can be solved using at most n space, by just storing
the entire input in the algorithm. A space usage like O(

√
n) would be nicer, but

something like O(log n) would be even better. (Note that a streaming algorithm with
a space usage of O(1) is equivalent to having a DFA!)

We will be particularly interested in cases where we can prove that there is a streaming
algorithm with at most a · S(n) + a space for solving a problem L, and we can prove
that every streaming algorithm uses at least b · S(n) + b space, for some constants
a ≥ b > 0. This means that we have found a streaming algorithm that is very
close to the best possible for space usage; and if a = b, our algorithm really is the
best possible! In such a case, we would say that L has an O(s(n))-space streaming
algorithm, and L has an Ω(s(n))-space streaming lower bound.

2 An Example

We start with a very simple streaming problem: Given a string x1 · · ·xn ∈ {0, 1}?,
does it have more ones than zeroes? We can formalize this by considering the language

Majority = {x | x has more 1s than 0s}.

There is a simple streaming algorithm for Majority with modest space usage:

2

• Initialize: C := 0 and B := 0

• When next symbol seen is σ:
If (C = 0) then B := σ, C := 1
If (C 6= 0) and (B = σ) then C := C + 1
If (C 6= 0) and (B 6= σ) then C := C − 1

• When stream stops: if B = 1 and C > 0 then accept, else reject.

(For an intuitive explanation about why this works, see the slides.)

What is the space usage of this algorithm? Suppose the integer in C is stored in
binary. We need one bit to store B, and we need at most log2(n) +O(1) bits to store
the binary counter.

2.1 Proving a lower bound

Maintaining a simple counter is easy; could we somehow use less memory, and still
solve the Majority problem? And if not, how could we prove that? Here we will
show how to import ideas from the Myhill-Nerode theorem, and prove:

Theorem 2 For all even n, every streaming algorithm computing Majority needs
to use at least log2(n) bits of space.

The argument can be modified to work for odd n as well, it is just a little more
technical. Let’s introduce the lower bound framework for streaming algorithms.

Proving lower bounds on streaming. We first introduce an analogue of distin-
guishing sets, as seen in the Myhill-Nerode theorem.

Definition 3 Let L ⊆ Σ? and let n ∈ N. A streaming distinguisher for Ln is
a subset Sn of Σ? where, for every distinct x, y ∈ Sn, there is a z ∈ Σ? such that
|xz| ≤ n, |yz| ≤ n, and exactly one of xy, yz is in L.

Observe that the only difference between a “streaming distinguisher” and a “distin-
guishing set” from the Myhill-Nerode theorem, is the requirement that the strings xz
and yz all be of length at most n. This is important for us, because we care about
how the space usage (memory states) of the streaming algorithm grows, as the lengths
of inputs grow. Note that this extra length requirement means that Sn contains only
strings of length at most n.

Now we are ready to state our main theorem for streaming lower bounds:

3

Theorem 4 (Streaming Lower Bound Theorem) Suppose for all n, there is a
streaming distinguisher Sn for Ln with |Sn| ≥ 2S(n). Then every streaming algorithm
for L uses at least S(n) space on inputs of length ≤ n.

Proof: For every n, let Sn = {x1, . . . , xk} be a streaming distinguisher for Ln, with
|Sn| ≥ 2S(n)+1. Let A be a streaming algorithm for L, and let mi be the memory state
that A is in, after reading in xi.

We claim that mi 6= mj for all i 6= j. Suppose for contradiction that A reaches the
same memory state m after reading in both xi and xj. Then for any string z, A must
give the same output on both xiy and xjz. However, by definition of Sn, there is a
string z such that exactly one of xiz, xjz is in L. Therefore A must give an incorrect
answer on at least one of xiz, xjz, a contradiction.

Since all of the memory states {m1, . . . ,mk} are distinct, and all strings xiz and xjz
read among those memory states have length at most n, the algorithm A must reach
at least |Sn| ≥ 2S(n) distinct memory states, over the strings of length up to n. Now,
if A used at most S(n) − 1 space on inputs of length ≤ n, then A would only have

at most
∑S(n)−1

i=0 2i = 2S(n) − 1 distinct memory states over those inputs. Therefore
A must use at least S(n) space. �

Rather than proving a lower bound for Majority here (unfortunately, we slipped
up and put something like that on the pest this week), I will prove a related lower
bound for another problem that we know to not be regular. (I’ll probably add the
Majority lower bound later on.)

Theorem 5 For all even n, every streaming algorithm computing L = {0k1k | k ≥ 0}
must use at least blog2(n)c bits of space.

Proof: For all even n, we give a streaming distinguisher Sn for Ln with |Sn| ≥
n/2 + 1. By Theorem 4, this implies that for all even n, every streaming algorithm
for L uses at least log2(n/2 + 1) space. Note that

log2(n/2 + 1) > log2(n/2) = log2(n)− 1,

and space usage must be an integer, so the space usage is at least blog2(n)c.
To get the streaming distinguisher, we simply define

Sn = {0i | i = 0, 1, . . . , n/2}.

Consider any two strings 0a and 0b from Sn. Set z = 1b. Then 0a1b /∈ L, 0b1b ∈ L,
and both strings are of length at most n. Therefore Sn is a streaming distinguisher
for Ln, and the proof is complete. �

4

Remark 6 We can improve the above space lower bound, by choosing the slightly
larger set Sn = {0i1j | i = 0, 1, . . . , n/2, j = 0, 1}. Then |Sn| = 2(n/2 + 1) = n + 2.
Given two strings 0i and 0i′ with i 6= i′, we can distinguish them as in the previous
proof. Given any x = 0i and y = 0i′1, even if i = i′, we can distinguish x and y with
the string 01i+1, because x01i+1 = 0i+11i+1 is in L, but y01i+1 = 0i′101i+1 is not in
L. Therefore the above space bound can be further improved to log2(n+ 2).

Note it is easy to get a streaming algorithm with log2(n) + O(1) space usage for the
above L, by simply keeping a binary counter of the 0’s, and compare that count to
the number of 1’s. (The slides give precise pseudocode.)

3 Most Frequent Element

Another example of a simple but non-trivial streaming algorithm is given by the
following typical interview question: suppose we are allowed to make one pass through
a sequence x1, . . . , xn of elements from a set Σ, and that we know that one value from
Σ occurs more than n/2 times in the sequence; find the most frequently repeated
value using only two variables, using a total memory of only log2 n+ log2 |Σ| bits. (If
you haven’t seen this puzzle before, think about how you would do it.)

The problem of finding a most frequently occurring element (MFE) in a data stream is
an important one in many of the settings that motivate the streaming model. (Think
of keeping track of the page that receives the most hits, or the best selling item, etc.)
In general, that is, without the guarantee that there is an element occurring in a
majority of places in the sequence, there is, unfortunately, no memory-efficient way
to find a most frequent element.

We will show that every deterministic streaming algorithm that solves the MFE prob-
lem must use at least Ω(n · `) bits of memory, where n is the length of the strings and
` = log2 |Σ| is the bit-length of one element of Σ. We will assume 2` > n2.

We now give a generic definition of distinguishability for streaming problems.

Definition 7 We say that two streams x, y are distinguishable for a streaming prob-
lem P on inputs of length n, if there is a stream z such that all the correct answers
to problem P for input x · z are different from all the correct answers to problem P
for input y · z, and the streams x · z and y · z have length n.

For example, two streams x, y are distinguishable for MFE if there is a stream z such
that no “most frequent element” of x · z is also a “most frequent element” of y · z.

The following fact gives us a generic way to prove memory lower bounds.

5

Lemma 8 Suppose that we can find D(n,Σ) strings in Σ∗ that are distinguishable
for problem P on inputs of length n. Then, every deterministic streaming algorithm
for P must use ≥ log2D(n,Σ) bits of space on inputs of length n.

Proof: Suppose there is a streaming algorithm A using m(n,Σ) < log2D(n,Σ) bits
of memory that solves P on inputs of length n. Then A has ≤ 2m(n,Σ) < D(n,Σ)
distinct internal states, and there are two distinguishable strings x and y such that
A is in the same internal state after reading x and after reading y. This means that,
for every z, A gives the same output for the input x · z and the input y · z. So, for
every z, there must be an output that is correct both for the input x ·z and the input
y · z, contradicting the distinguishability of x and y. �

Now we turn to applying Lemma 8 to the MFE problem.

Definition 9 For every n, Σ, define the language Ln,Σ ⊆ Σn of sequences x1, . . . , xn,
such that xi ∈ Σ for all i, and 0 is a most frequently occurring element.

Lemma 10 There are 2Ω(n`) distinguishable strings for MFE on inputs of length n.

Proof: For every subset S = {s1, . . . , s(n−5)/2} ⊂ Σ − {0} of n−5
2

nonzero elements
of Σ, consider the sequence

xS := 0, 0, 0, s1, s1, . . . , sn−5
2
, sn−5

2

of length n−2 where 0 is repeated 3 times, the elements of S are repeated twice each,
and no other element is present.

All such sequences are distinguishable strings, because if we consider any two different
sequences xS and xT , and we take an element s which belongs to S but not to T ,
we see that attaching (s, s) to xS gives us a sequence not in Ln,Σ (because the most
frequent element is s 6= 0, which occurs 4 times), while attaching (s, s) to xT gives us
an element of Ln,Σ, because 0 occurs 3 times and all other elements occur only once.

The number of distinguishable strings that we have constructed is

(
2` − 1
n−5

2

)
≥

(
2` − 1

e ·
(
n−5

2

))n−5
2

≥ 2Ω(n`)

where we use the fact that
(
N
K

)
≥
(

N
eK

)K
and the assumption that 2` > n2, so that(

2` − 1

e ·
(
n−5

2

)) ≥ Ω(2`/2)

This completes the proof. �

Putting together Lemma 8 and Lemma 10, we have shown:

6

Theorem 11 Every deterministic streaming algorithm for the MFE problem requires
memory Ω(n`), where n is the length of the stream and ` is the bit-length of each data
item, assuming 2` > n2.

4 Number of Distinct Elements

Another useful computation to make over a data stream is to figure out how many
distinct elements (DE) there are in the stream. For example, from a stream of page
requests we would like to know from how many distinct IP address we are getting
requests, as a first approximation of the number of unique readers.

For simplicity, we will continue to work with the assumption |Σ| = 2` > n2.

To prove lower bounds for this problem, we will reason directly about the streaming
algorithm as before. We say that two streams x, y are distinguishable for the DE
problem if there is a stream z such that the number of distinct elements in x · z is
different from the number of distinct elements of y · z.

Theorem 12 There are 2Ω(n`) distinguishable strings for the DE problem on inputs of
length n, hence the DE problem requires Ω(n`) bits of memory for every deterministic
streaming algorithm.

Proof: For every subset S = {s1, . . . , sn/2} ⊆ Σ of size n/2, consider the sequence
xS = s1, . . . , sn/2. For every two sequences xS and xT , we can see that they are
distinguishable, because xS · xS has n/2 distinct elements, and xT · xS has strictly
more than n/2 distinct elements.

The number of distinguishable strings we have constructed is(
2`

n
2

)
≥
(

2 · 2`

n

)n/2

≥ 2Ω(n`),

where we have used the estimate
(
n
k

)
≥
(
n
k

)k
and the fact that 2k > n2. �

What about approximating the number of distinct elements?

Theorem 13 There are 2Ω(n`) distinguishable strings for the problem of approximat-
ing DE within a ±20% relative error on inputs of length n, hence the DE problem
requires Ω(n`) bits of memory for every deterministic streaming algorithm.

Proof: We will use the following fact without proof: under the usual assumption
2` > n2, there is a collection S of 2Ω(nl) subsets of Σ, each of size n/2, and such that
every two sets S, T ∈ S have at most n/10 elements in common.

7

Now, for every set S ∈ S, consider the sequence xS = s1, . . . , sn/2. For every two
sequences xS and xT , we can see that they are distinguishable, because xS · xS has
n/2 distinct elements, and so the range of possible answers of a 20%-approximate
algorithm is between .4n and .6n, while xT ·xS has at least .9n distinct elements and
so the range of valid answers is between .72n and 1.08n, so no answer can be valid
for both sequences. �

5 Randomness Helps! (Optional Material)

The DE problem, however, admits very efficient randomized approximate streaming
algorithms. For example, it is possible to achieve a 1% approximation with high
probability using only O(`+ log n) bits of memory.

The basic idea is to randomly pick a hash function h : Σ→ [0, 1] that randomly maps
data items to real numbers in the range [0, 1]. Then, given a sequence x1, . . . , xn, we
compute h(xi) for each i, and store the minimum hash value m; the output is 1/m.

The point of the algorithm is that (assuming h to be a perfectly random hash func-
tion), the process of evaluating h(xi) for each i and defining m to be the minimum is
the same probabilistic process as picking k random real numbers in [0, 1], where k is
the number of distinct elements in x1, . . . , xn, then defining m to be the minimum.

The latter process is well understood, and m tends to be approximately 1/k, so that
1/m is an approximation to k.

Here is a simplified version of the analysis: we want to show that there is a good
probability that the minimum of k random real numbers in the range [0, 1] is Ω(1/k)
and O(1/k). First, we see that the probability that the minimum is more than 5/k is

(
1− 5

k

)k

≤ e−5 < 0.007

and the probability that the minimum is less than 1/(10k) is at most 1/10.

The storage required to implement the algorithm is the memory used to store h, plus
the memory needed to store the current minimum. Real numbers are represented
with finite precision, which affects the algorithm negligibly, and h is picked not as a
completely random function (which would require storage space proportional to |Σ|)
but as “pairwise independent” hash function, which requires storage O(log |Σ|). The
analysis of the completely random case needs to be adjust to deal with the more
limited randomness property of the hash function used in the implementation.

Both the probability of finding a good approximation and the range of approximation
can be improved with various techniques.

8

	The Streaming Model
	An Example
	Proving a lower bound

	Most Frequent Element
	Number of Distinct Elements
	Randomness Helps! (Optional Material)

