
Automata, Computability, and 
Complexity

csail.mit.edu/~rrw/6.1400-2025



INSTRUCTORS & TAs

Jiatu Li

Ryan Williams

Jakin Ng



Recitations and Office Hours

Recitations on Fridays
Jakin: 11am-noon (4-257)
Jiatu: 1pm-2pm (24-121) 

You’re not required to attend recitations…
But it is strongly recommended
Attending lectures is also strongly recommended!

Office Hours (tentative):
Jiatu: Tuesday 4pm-5:30pm (Stata, G5 Lounge)
Jakin: Tuesday 12:30pm-2:00pm (Stata, G5 Lounge)
Ryan: Wednesday 11am-12:30, 32-G638



Textbook(s)



Grades

Homework
Final
Midterm

Class participation also counts!

~40%
~25%

~35%



Homework / Problem Sets / Psets / Pests

Homework will come out on most Thursdays and will 
be due on Wednesdays, at 11:59pm (<= 9 psets)

Use a word processor for written parts of 
assignments! We strongly recommend LaTeX

No late days allowed (except from S^3) but 
your lowest homework grade will be dropped

We will provide LaTeX source code for every 
homework assignment – fill it in with your answers! 

(You can scan any drawn figures and include in the PDF)



Collaboration Policy

You may collaborate with others, but you must:

• Try to solve all problems by yourself first 
• List your collaborators on each problem
• Write your own solutions
• If you receive a significant idea from a source, 

you must acknowledge the source in your 
solution.

• No LLM assistance (ask on piazza instead!)







This class is about the
theory of computation

What is computation?
What can and cannot be computed?
What can be efficiently computed?

Philosophy, mathematics, and engineering



Why take this class? 

new ways of thinking about computing
different models, different perspectives

theory often drives practice
mathematical models of computation predated computers
(present-day example: we “know” a lot about quantum computing, 

but no large-scale quantum computers have been built yet!)

math is good for you!
defs, thms, and pfs… yum yum

some of the most important math of this century and last!
timelessness 



1. Finite Automata:  Simple Models
DFAs, NFAs, regular languages, regular expressions, proving no DFA 
exists (non-regular languages), Myhill-Nerode Theorem, computing 
the minimum DFA, streaming algorithms, communication complexity

2. Computability Theory:  Powerful Models
Turing Machines, Universal Models and the Church-Turing Thesis, 
decidable/recognizable languages, undecidability, reductions and 
oracles, Rice’s theorem, Kolmogorov Complexity, even the 
foundations of mathematics (what can and can’t be proved)…

3. Complexity Theory: Time and Space Bounded Models
time complexity, classes P and NP, NP-completeness, polynomial 
time with oracles, space complexity, PSPACE, PSPACE-completeness, 
randomized complexity theory, other topics TBA

Course Outline



1. Finite Automata: started in the 1940’s
DFAs, NFAs, regular languages, regular expressions, non-regular 
languages, Myhill-Nerode Theorem, computing the minimum DFA, 
streaming algorithms, communication complexity

2. Computability Theory: started in the 1930’s
Turing Machines, Universal Models and the Church-Turing Thesis, 
decidable/recognizable languages, undecidability, reductions and 
oracles, Rice’s theorem, the recursion theorem, Kolmogorov 
Complexity, even the foundations of mathematics…

3. Complexity Theory: started in the 1960’s
time complexity, classes P and NP, NP-completeness, polynomial 
time with oracles, space complexity, PSPACE, PSPACE-completeness, 
randomized complexity theory, other topics TBA

Course Outline



CS103 vs CS154

PART 1
Finite Automata

PART 2
Computability Theory

PART 3
Complexity Theory

CS103 gave you a decent intro to all three of these parts
If you haven’t taken CS103, that’s OK, but be warned...
We will cover each part in much more depth than 103



This class will emphasize 

MATHEMATICAL PROOFS

A good proof should be:

Clear -- easy to understand

Correct

Problem Set 0 will help you calibrate 
yourself: watch for it!

(Should take little time to do)



In writing mathematical proofs, it can be very 
helpful to provide three levels of detail

 First level: a short phrase/sentence giving  
“hints” of the proof

(e.g. “Proof by contradiction,” “Proof by induction,”
“Pick the thing at random”) 

 Second level: a short, one paragraph
description of the main ideas

 Third level: the full proof (and nothing but the proof)

Prof. Sipser wrote his much of his book in this way.
I encourage you to write your solutions in this way!



Suppose A  {1, 2, …, 2n}

TRUE or FALSE?
There are always two numbers x, y in A such 
that x divides y (x is a factor of y)

with |A| = n+1

TRUE

Let’s do an example.

Example: A  {1, 2, 3, 4} and |A|=3 (the case of n=2)
If 1 is in A, then 1 divides every number.
If 1 isn’t in A, then A = {2,3,4}, and 2 divides 4



THE PIGEONHOLE PRINCIPLE

If you drop 6 pigeons in 5 holes,
then at least one hole will have 

more than one pigeon

HINT 1:
LEVEL 1



THE PIGEONHOLE PRINCIPLE

If you drop 6 pigeons in 5 holes, 
then at least one hole will have 

more than one pigeon

HINT 1:
LEVEL 1



THE PIGEONHOLE PRINCIPLE

If you drop n+1 pigeons in n holes 
then at least one hole will have 

more than one pigeon

HINT 1:

HINT 2:
Every integer a can be written as 

a = 2k⋅m, where m is an odd number (k is an integer)
Call m the “odd part” of a

LEVEL 1 “We’ll use the Pigeonhole Principle”

Examples: The odd part of 3 is 3. 
Odd part of 8 is 1. Odd part of 12 is 3.



LEVEL 2

Proof Idea:
Given A  {1, 2, …, 2n} and |A| = n+1

Applying the pigeonhole principle, 
we’ll show there are elements a1 and a2 of A

such that a1 = 2i ⋅ m and a2 = 2j ⋅ m 
for some odd m and integers i < j

Then a1 divides a2



Suppose A  {1, 2, …, 2n} with |A| = n+1

Write each element of A in the form a = 2k ⋅ m
where m is an odd number in {1, ..., 2n}

Note: There are n odd numbers in {1, …, 2n}

Since |A| = n+1, there are two distinct 
numbers in A with the same odd part, by P.H.P.

Let a1 and a2 have the same odd part m, where 
a1 < a2. Then a1 = 2i ⋅ m and a2 = 2j ⋅ m
where i < j, so a1 divides a2. QED

LEVEL 3 Proof:



During lectures, my proofs will generally contain 
the first two levels, but only part of the third
(TAs will guide you through some “third levels”)

Think about how to fill in the details! 
You aren’t required to do this (except on certain 
problems in homework/exams) but it can really 
help you learn.

In this course, it’s often the case that the big ideas 
and concepts are more important than gritty details! 

What’s the right level of detail in a proof?

Come by office hours or ask (privately) on piazza 
if you worry about your level of detail in a proof!



Deterministic Finite Automata

(not a DFA)



0
1

00

1

1

1

Anatomy of Deterministic Finite Automata

states

states

q0

q1

q2

q3
start state (q0) 

accept/final states 
transition: for every state and alphabet symbol

directed graph, possibly with self-loops

0



0
1

00

1

1

1

0111 111

11

1

The automaton accepts the input string 
if this process ends in a double-circle state

The DFA reads its string 
from left to right

Otherwise, the automaton rejects the string

0



0
1

00

1

1

1

The automaton accepts the input string 
if this process ends in a double-circle state

The DFA reads its string 
from left to right

Otherwise, the automaton rejects the string

0

What strings are 
accepted by this DFA? 



0
1

00

1

1

1

The automaton accepts the input string 
if this process ends in a double-circle state

The DFA reads its string 
from left to right

Otherwise, the automaton rejects the string

0

What strings are 
accepted by this DFA? 

Strings ending in a 1



An alphabet Σ is a finite set (e.g., Σ = {0,1}) 
A string over Σ is a finite sequence of elements of Σ

For a string x, |x| is the length of x 
(number of symbols in x)

The unique string of length 0 is denoted by ε
and is called the empty string

Let’s make this more formal…

A language over Σ is a set of strings over Σ 
In other words: a language is a subset of Σ*

Σ* = the set of all strings over Σ



Problem: Given a string x, is x in the language?

Languages = Problems

A language over Σ is a set of strings over Σ 
In other words: a language is a subset of Σ*

Languages ≡ Functions that take a string as 
input, and output a single bit

Thm: Every language L over Σ uniquely 
corresponds to a function f : Σ*  {0,1}.

Proof Idea: Given L, define f such that:
f(x) = 1  if x  L

= 0  otherwise



Problem: Given a string x, is x in the language?

Languages = Problems

A language over Σ is a set of strings over Σ 
In other words: a language is a subset of Σ*

Languages ≡ Functions that take a string as 
input, and output a single bit

Thm: Every language L over Σ uniquely 
corresponds to a function f : Σ*  {0,1}.

Proof Idea: Given f, define L = {x | f(x) = 1}



Q is the set of states (finite) 
Σ is the alphabet (finite) 
 : Q  Σ → Q is the transition function
q0  Q is the start state
F  Q is the set of accept/final states

Definition.  A DFA is a 5-tuple M = (Q, Σ, , q0, F)

Let w1, ... , wn  Σ and  w = w1 ⋯ wn  Σ*
M accepts w if there are r0, r1, ..., rn  Q, s.t.
• r0 = q0
• (ri-1, wi) = ri for all i = 1, ..., n, and 
• rn F M rejects w iff M does not accept w



Q is the set of states (finite) 
Σ is the alphabet (finite) 
 : Q  Σ → Q is the transition function
q0  Q is the start state
F  Q is the set of accept/final states

Definition.  A DFA is a 5-tuple M = (Q, Σ, , q0, F)

Let w1, ... , wn  Σ and  w = w1 ⋯ wn  Σ*
M accepts w if the (unique) path starting from q0 

with edge labels w1, ... , wn ends in a state in F.
M rejects w iff M does not accept w



Q = {q0, q1, q2, q3}

Σ = {0,1}

 : Q  Σ → Q transition function*
q0  Q is start state

F  = {q1, q2}

M = (Q, Σ, , q0, F) where

 0 1

q0 q0 q1

q1 q0 q2

q2 q3 q2

q3 q0 q2

*

q2

0
1

0

0

1

1

1

q0

q1

q3

M
0



Q is the set of states (finite) 
Σ is the alphabet (finite) 
 : Q  Σ → Q is the transition function
q0  Q is the start state
F  Q is the set of accept/final states

A  DFA is a 5-tuple M = (Q, Σ, , q0, F)

L(M) = set of all strings that M accepts 
= “the language recognized by M”
≡ the function computed by M

The problem “solved” by the DFA M is:



1

0

0,1

1010 010100

Suppose the above machine read strings from right to left…
What language would be recognized then?

0,1

L(M) = { w | w begins with 1}

M



100
1

0

0,1

1010 010

0,1

L(M) =  { w | w begins with 1}

M



0,1

L(M) = {0,1}*



0 0

1

1

L(M) = { w | w has an odd number of 1s}

How would you prove this?



Q Σ q0 F
M = ({p,q}, {0,1}, , p, {q}) 

 0 1

p p q

q q p0

1

1

0

p q

L = {w | w has odd
number of 1s }

Theorem:  L(M) = L

Induction Hypothesis: Suppose for all w  Σ*, |w| = n,
M accepts w  w has odd number of 1s

Every string of length n+1 has the form w0 or w1, |w|=n
Show that after reading w0 or w1, M correctly 
accepts/rejects. Use Induction Hypothesis! 
<your case analysis goes here…>
1. If our string of length n+1 is w0, and w has even # of 1’s…

Proof:  By induction on n, the length of a string.
Base Case  n=0: ε  L and ε  L(M)



q q00

1 0

1
q0 q001

0 0 1

0,1

Build a DFA that accepts exactly the strings 
containing 001

Can we use fewer states? No! But why…?



Definition: A language L’ is regular if 
L’ is recognized by a DFA; 

that is, there is a DFA M where L’ = L(M).

L’ = { w | w contains 001} is regular

L’ = { w | w has an odd number of 1s} is regular

The Problems Solved by DFAs

L’ = { w | w begins with a 1} is regular


