6.1400

Automata, Computability, and
Complexity

csail.mit.edu/~rrw/6.1400-2025

INSTRUCTORS & TAs

Ryan Williams

Jiatu Li Jakin Ng

{ n*' \.’_' ‘—‘ Fa ¢
. 3 -
v o
» - A e Y
1 =t . %N e

Recitations and Office Hours

Recitations on Fridays
Jakin: 11am-noon (4-257)
Jiatu: 1pm-2pm (24-121)

You're not required to attend recitations...
But it is strongly recommended
Attending lectures is also strongly recommended!

Office Hours (tentative):
Jiatu: Tuesday 4pm-5:30pm (Stata, G5 Lounge)
Jakin: Tuesday 12:30pm-2:00pm (Stata, G5 Lounge)
Ryan: Wednesday 11am-12:30, 32-G638

Textbook(s)

OXFORD

THE NATURE of
COMPUTATION

1

EoRiiaT

N e <
oL O

! {

neory o
PN

. Attion

MICHAEL SIPSER
Cristopher Moore & Stephan Mertens

MICHALEL SIPSER

Grades

B Homework
W Final
W Midterm

Class participation also counts

Homework / Problem Sets / Psets / Pests

Homework will come out on most Thursdays and will
be due on Wednesdays, at 11:59pm (<=9 psets)

No late days allowed (except from S"3) but
your lowest homework grade will be dropped

Use a word processor for written parts of
assignments! We strongly recommend LaTeX

(You can scan any drawn figures and include in the PDF)

We will provide LaTeX source code for every
homework assignment - fill it in with your answers!

Collaboration Policy

You may collaborate with others, but you must:

e Try to solve all problems by yourself first

* List your collaborators on each problem

* Write your own solutions

* If you receive a significant idea from a source,
you must acknowledge the source in your
solution.

* No LLM assistance (ask on piazza instead!)

O 8 o2 https://people.csail.mit.edu/rrw/6.1400-2025/index.html

6.1400 / 18.400 - Automata, Computability, and Complexity Theory - Spring 2025

® MIN-FORMULA

[General Info] [Problem Sets] [Lectures] [Exams]

Announcements and Q&A on Piazza

MathJax check: If you see a fancy equation here

NP =| | NTIMEn"|
k

then the math on this page is working. If you don't, then you probably disabled JavaScript or your browser is wack. Sorry.

Introduction

What is computation? Given a definition of a computational model, what problems can we hope to solve in principle with this model?
Besides those solvable in principle, what problems can we hope to efficiently solve? This course provides a mathematical introduction
to these questions. In many cases we can give completely rigorous answers; in other cases, these questions have become major
open problems in both pure and applied mathematics!

O E] piazza.com

6.1400 °° ~ Q&A Resources Statistics ~

Massachusetts Institute of Technology (MIT) - Spring 2025

Manage Class

6.1400: Computability and Complexity Theory

I =4 Add Syllabus

Course Information Staff Resources

Description 7 Edit

What is computation? Given a definition of a computational model, what
problems can we hope to solve in principle with this model? Besides those
solvable in principle, what problems can we hope to efficiently solve? This
course provides a mathematical introduction to these questions. In many
cases we can give completely rigorous answers; in other cases, these
questions have become major open problems in both pure and applied
mathematics!

By the end of this course, students will be able to classify computational
problems given to them, in terms of their computational complexity (Is the
problem regular? Not regular? Decidable? Recognizable? Neither? Solvable
in P? NP-complete? PSPACE-complete?, etc.) They will also gain a deeper
appreciation for some of the fundamental issues in computing that are
independent of trends of technology, such as the Church-Turing Thesis and
the P versus NP problem. Prerequisites: 6.042 or equivalent mathematical
maturity.

General Information 7/ Edit

Course webpage (with syllabus):

Announcements

Add an Announcement
Click the Add button to add an announcer

This class is about the
theory of computation

What is computation?
What can and cannot be computed?
What can be efficiently computed?

Philosophy, mathematics, and engineering

Why take this class?

new ways of thinking about computing
different models, different perspectives

theory often drives practice

mathematical models of computation predated computers
(present-day example: we “know” a lot about quantum computing,
but no large-scale quantum computers have been built yet!)

math is good for you!
defs, thms, and pfs... yum yum

some of the most important math of this century and last!

timelessness \-,

Course QOutline

1. Finite Automata: Simple Models

DFAs, NFAs, regular languages, regular expressions, proving no DFA
exists (non-regular languages), Myhill-Nerode Theorem, computing
the minimum DFA, streaming algorithms, communication complexity

2. Computability Theory: Powerful Models

Turing Machines, Universal Models and the Church-Turing Thesis,
decidable/recognizable languages, undecidability, reductions and
oracles, Rice’s theorem, Kolmogorov Complexity, even the
foundations of mathematics (what can and can’t be proved)...

3. Complexity Theory: Time and Space Bounded Models

time complexity, classes P and NP, NP-completeness, polynomial
time with oracles, space complexity, PSPACE, PSPACE-completeness,

randomized complexity theory, other topics TBA

Course QOutline

1. Finite Automata: started in the 1940’s

DFAs, NFAs, regular languages, regular expressions, non-regular
languages, Myhill-Nerode Theorem, computing the minimum DFA,

streaming algorithms, communication complexity

2. Computability Theory: started in the 1930’s

Turing Machines, Universal Models and the Church-Turing Thesis,
decidable/recognizable languages, undecidability, reductions and
oracles, Rice’s theorem, the recursion theorem, Kolmogorov
Complexity, even the foundations of mathematics...

3. Complexity Theory: started in the 1960’s
time complexity, classes P and NP, NP-completeness, polynomial
time with oracles, space complexity, PSPACE, PSPACE-completeness,

randomized complexity theory, other topics TBA

CS103 vs CS154

PART 1

Finite Automata

PART 2
Computability Theory

PART 3
Complexity Theory

CS103 gave you a decent intro to all three of these parts
If you haven’t taken CS103, that’s OK, but be warned...

We will cover each part in much more depth than 103

This class will emphasize

MATHEMATICAL PROOFS

A good proof should be:
Clear -- easy to understand

Correct

Problem Set 0 will help you calibrate
yourself: watch for it!
(Should take little time to do)

In writing mathematical proofs, it can be very
helpful to provide three levels of detail

1 First level: a short phrase/sentence giving
“hints” of the proof

(e.g. “Proof by contradiction,” “Proof by induction,”
“Pick the thing at random”)

[Second level: a short, one paragraph
description of the main ideas

1 Third level: the full proof (and nothing but the proof)

Prof. Sipser wrote his much of his book in this way.
| encourage you to write your solutions in this way!

Let’s do an example.
Suppose A — {1, 2, ..., 2n} with |A]| =n+1

TRUE or FALSE?
There are always two numbers x, y in A such

that x divides y (x is a factor of y)

TRUE

Example: A c {1, 2, 3,4} and |A|=3 (the case of n=2)
If 1isin A, then 1 divides every number.
If 1isn’tin A, then A ={2,3,4}, and 2 divides 4

LEVEL 1

HINT 1:

THE PIGEONHOLE PRINCIPLE

If you drop 6 pigeons in 5 holes,
then at least one hole will have
more than one pigeon

LEVEL 1

HINT 1:

THE PIGEONHOLE PRINCIPLE

If you drop 6 pigeons in 5 holes,
then at least one hole will have
more than one pigeon

LEVEL 1 “We’ll use the Pigeonhole Principle”

HINT 1:

THE PIGEONHOLE PRINCIPLE

If you drop n+1 pigeons in n holes
then at least one hole will have
more than one pigeon

HINT 2:

Every integer a can be written as
a = 2¥m, where m is an odd number (k is an integer)
Call m the “odd part” of a

Examples: The odd part of 3 is 3.
Odd part of 8 is 1. Odd part of 12 is 3.

LEVEL 2

Proof Idea:

Given Ac{], 2, ..., 2n}and |A| = n+1
Applying the pigeonhole principle,
we’ll show there are elements a, and a, of A

suchthata,;=2'"-manda,=2-m
for some odd m and integersi < j

Then a, divides a,

LEVEL 3 PrOOf'
Suppose A {1, 2, ..., 2n} with |A| = n+1

Write each element of A in the forma=2k- m
where m is an odd numberin{3], ..., 2n}

Note: There are n odd numbers in {3, ..., 2n}

Since |A| = n+1, there are two distinct
numbers in A with the same odd part, by P.H.P.

Let a, and a, have the same odd part m, where
a,;<a,.Thena,=2'-manda,=2-m
where i <j, so a, divides a,. QED

What'’s the right level of detail in a proof?

During lectures, my proofs will generally contain
the first two levels, but only part of the third
(TAs will guide you through some “third levels”)

Think about how to fill in the details!

You aren’t required to do this (except on certain
problems in homework/exams) but it can really
help you learn.

In this course, it’s often the case that the big ideas
and concepts are more important than gritty details!

Come by office hours or ask (privately) on piazza
if you worry about your level of detail in a proof!

Deterministic Finite Automata

=
()
©
)
@)
=

Anatomy of Deterministic Finite Automata

transition: for every state and alphabet symbol

states — accept/final states

/
start state (q,) _ states

directed graph, possibly with self-loops

from left to right

The automaton accepts the input string
if this process ends in a double-circle state

Otherwise, the automaton rejects the string

What strings are
accepted by this DFA?

from left to right

The automaton accepts the input string
if this process ends in a double-circle state

Otherwise, the automaton rejects the string

What strings are
accepted by this DFA?

Strings endingina l

from left to right

The automaton accepts the input string
if this process ends in a double-circle state

Otherwise, the automaton rejects the string

' Let’s make this more formal...
An alphabet Z is a finite set (e.g., Z = {0,1})

A string over X is a finite sequence of elements of 2
2* = the set of all strings over 2

For a string x, | x| is the length of x
(number of symbols in x)

The unique string of length 0 is denoted by ¢
and is called the empty string

A language over 2 is a set of strings over 2
In other words: alanguage is a subset of Z*

Languages = Problems

A language over Z is a set of strings over 2
In other words: a language is a subset of Z*

Problem: Given a string x, is x in the language?

Languages = Functions that take a string as
input, and output a single bit

Thm: Every language L over 2 uniquely
corresponds to a function f: Z* > {0,1}.

Proof Idea: Given L, define f such that:
fix)=1 ifxel
=0 otherwise

Languages = Problems

A language over Z is a set of strings over 2
In other words: a language is a subset of Z*

Problem: Given a string x, is x in the language?

Languages = Functions that take a string as
input, and output a single bit

Thm: Every language L over 2 uniquely
corresponds to a function f: Z* > {0,1}.

Proof Idea: Given f, define L={x | f(x) = 1}

Definition. A DFA is a 5-tuple M =(Q, Z, 9, q,, F)

Q is the set of states (finite)
2 is the alphabet (finite)

0 :Q x Z— Q isthe transition function
d, € Qis the start state
F — Qis the set of accept/final states

letw,, ..., w, e Zand w=w,---w,_ € 2¥
M accepts w if there arer,, ry, ..., r, € Q, s.t.

Fo= 4o
* o(r.,w)=r foralli=1,..., n, and

* IhE F M rejects w iff M does not accept w

Definition. A DFA is a 5-tuple M =(Q, Z, 9, q,, F)

Q is the set of states (finite)
2 is the alphabet (finite)

0 :Q x Z— Q isthe transition function
d, € Qis the start state
F — Qis the set of accept/final states

= W, e *
letw,,...,w, e Zand w=w;--w, €2

M accepts w if the (unique) path starting from q,
with edge labels w,, ..., w_ends in a state in F.

‘ M rejects w iff M does not accept w |

=(Q, £, §, q,, F) where Q ={q,, d,, d,, 9z}

T ={0,1}

d:Q x X — Q transition function

do € Q is start state

F ={q,, q,}

[

m/‘\
\ /
/’

0 0 1

Y Yo d1
9 Yo 92
92 ds 92
ds Yo 92

*

A DFAis a 5-tuple M =(Q, 2, §, q,, F)

Q is the set of states (finite)
2 is the alphabet (finite)

0:QxZXZ— Q isthe transition function
do, € Qs the start state

F < Qis the set of accept/final states

The problem “solved” by the DFA M is:

L(M) = set of all strings that M accepts
= “the language recognized by M”
= the function computed by M

-
1010 —»()\l».
O -

L(M) = {w | w begins with 1}

Suppose the above machine read strings from right to left...
What language would be recognized then?

L(M) = {w | wbegins with 1}

- @D

L(M) =18,1}*

0 0

1
~-O=QO
1
L(M) = {w | w has an odd number of 1s}

How would you prove this?

Q y qo, F 510 1
M = ({p,q}, {0,1}, 3, p, {q}) Pl P d

Om ala p
L = {w | w has odd

0
a
—_ -— @ number of 1s }
1 Theorem: L(M) =L

Proof: By induction on n, the length of a string.
Base Case n=0:€ ¢ Land € g L(M)

Induction Hypothesis: Suppose for all w € 2%, |w| =n,
M accepts w <~ w has odd number of 1s

Every string of length n+1 has the form w0 or wl, |w]|=n

Show that after reading w0 or w1, M correctly

accepts/rejects. Use Induction Hypothesis!

<your case analysis goes here...>

Build a DFA that accepts exactly the strings
containing 001

0,1

e AYNA.
~O=@(=~

Can we use fewer states? No! But why...?

1 0

The Problems Solved by DFAs

Definition: A language L is reqgular if

L' is recognized by a DFA;
that is, there is a DFA M where L' = L(M).

L' ={w | wcontains 001} is regular
L' ={ w | w begins with a 1} is regular

L' ={w | w has an odd number of 1s} is regular

