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Lecture 19:
Finish NP-Completeness,

coNP and Friends

6.1400
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Definition: A language B is NP-complete if:

1. B ∈ NP

2. Every A in NP is poly-time reducible to B
That is, A ≤P B
When this is true, we say “B is NP-hard”

Last time: We showed 
3SAT ≤P CLIQUE ≤P IS ≤P VC ≤P SUBSET-SUM ≤P KNAPSACK

All of them are in NP, and 3SAT is NP-complete,
so all of these problems are NP-complete! 
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The Subset Sum Problem

Theorem: SUBSET-SUM is NP-complete

Given: Set S = {𝒂𝟏, … , 𝒂𝒏} of positive integers 
and a positive target integer 𝒕

Is there an a subset of S that sums to the target?

SUBSET-SUM = {(S, t) | 9 𝑨 ⊆ 𝟏, … , 𝒏 s.t. 𝒕 = σ𝒊∈𝑨 𝒂𝒊}

A simple summation problem!
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The Partition Problem

Input: Set 𝑺 = {𝒂𝟏, … , 𝒂𝒏} of positive integers 

Decide: Is there an 𝑺’ ⊆ 𝑺 where (σ𝒊∈𝑺′ 𝒂𝒊) = (σ𝒊∈𝑺−𝑺′ 𝒂𝒊)?

(Formally: PARTITION is the set of all encodings of sets 𝑺
such that the answer to the question is yes.)

In other words, is there a way to partition 𝑺 into
two parts, so that both parts have equal sum?

A problem in Fair Division:
Think of 𝒂𝒊 as “value” of item 𝒊. Want to divide a set of items 

into two parts 𝑺′ and 𝑺 − 𝑺′, of the same total value.
Give 𝑺′ to one party, and 𝑺 − 𝑺′ to the other.

Theorem: PARTITION is NP-complete



5

PARTITION is NP-complete

(1) PARTITION is in NP

(2) SUBSET-SUM P PARTITION

Input: Set S = {a1, …, an} of positive integers 
and a positive integer t

Claim: (S,t) ∈ SUBSET-SUM ⇔ T ∈ PARTITION
That is, S has a subset that sums to t 
⇔ T can be partitioned into two sets with equal sums
Easy case: t > A = i ai 

Reduction: First, let A := i ai

If t > A then output {1,2}
Else output T := {a1, …, an, 2A-t, A+t}
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What’s the sum of all numbers in T? 4A 

Therefore: T ∈ PARTITION
⇔ There is a T’ ⊆ T that sums to 2A.

Proof of  (S,t) ∈ SUBSET-SUM ⇒ T ∈ PARTITION:

If (S,t) ∈ SUBSET-SUM, then let S’ ⊆ S sum to t.
The set S’ ∪ {2A-t} sums to 2A, so T ∈ PARTITION

Input: Set S = {a1,…, an} of positive integers, positive t

Output: T := {a1,…, an,2A-t,A+t}, where A := σi ai

Claim: (S,t) ∈ SUBSET-SUM ⇔ T ∈ PARTITION
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Input: Set S = {a1,…, an} of positive integers, positive t

Output: T := {a1,…, an,2A-t,A+t}, where A := σi ai

Remember: sum of all numbers in T is 4A.

T ∈ PARTITION ⇔ There is a T’ ⊆ T that sums to 2A.

Proof of:  T ∈ PARTITION  ⇒ (S,t) ∈ SUBSET-SUM

If T ∈ PARTITION, let T’ ⊆ T be a subset that sums to 2A.
Observation: Exactly one of {2A-t,A+t} is in T’.

If (2A-t) ∈ T’, then T’ – {2A-t} sums to t. By Observation,
the set T’ – {2A-t} is a subset of S. So (S,t) ∈ SUBSET-SUM.

If (A+t) ∈ T’, then (T – T’) – {2A-t} sums to (2A – (2A-t)) = t
By Observation, (T – T’) – {2A-t} is a subset of S.
Therefore (S,t) ∈ SUBSET-SUM in this case as well.

Claim: (S,t) ∈ SUBSET-SUM ⇔ T ∈ PARTITION
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The Bin Packing Problem

Input: Set 𝑺 = {a1,…, an} of positive integers, 
a bin capacity B, and a number of bins K.

Decide: Can 𝑺 be partitioned into disjoint subsets 
𝑺𝟏, … , 𝑺𝑲 such that each 𝑺𝒊 sums to at most B?

Think of 𝒂𝒊 as the capacity of item 𝒊.
Is there a way to pack the items of S into K bins, 

where each bin has capacity B?

Ubiquitous problem in shipping and optimization!

Theorem: BIN PACKING is NP-complete
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BIN PACKING is NP-complete

(1) BIN PACKING is in NP (Why?)

(2) PARTITION P BIN PACKING 

Proof: Given an instance S = {a1, …, an} of PARTITION,
output an instance of BIN PACKING with:

S = {a1, …, an}
B = (i ai)/2

K = 2

Then, S ∈ PARTITION ⇔ (S,B,k) ∈ BIN PACKING:
There is a partition of S into two equal sums 

iff there is a solution to this Bin Packing instance!
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P vs NP is Subtle 

Let G denote a graph, and s and t denote nodes.
Recall: a simple path is a walk with no cycles

SHORTEST PATH 
= {(G, s, t, k) |

G has a simple path of < k edges from s to t }

LONGEST PATH
= {(G, s, t, k) | 

G has a simple path of ≥ k edges from s to t }

Are either of these in P? Are both of them?
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coNP and Friends

coNPNPNP

(Note: any resemblance to other characters, 
living or animated, is purely coincidental)

PNP
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NP: “Nifty Proofs”

For every L in NP, 
if x ∈ L then there is a “short proof” that x ∈ L:

L = {x | ∃y of poly(|x|) length so that V(x,y) accepts}
But if x ∉ L, there might not be a short proof!

There is an asymmetry between 
the strings in L and strings not in L.

Compare with a recognizable language L: 
Can always verify x ∈ L in finite time (a TM accepts x),

but if x ∉ L, that could be because 
the TM goes in an infinite loop on x!
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Definition: coNP = { L | L  NP }

The strings 𝑵𝑶𝑻 in L have nifty proofs.
Recall we can write any NP problem L in the form:
L = {x | ∃y of poly(|x|) length so that V(x,y) accepts}
Therefore:
L = {x | ∃y of poly(|x|) length so that V(x,y) accepts}

= {x | ∀y of poly(|x|) length, V(x,y) rejects} 

Instead of using an “existentially guessing” 
(nondeterministic) machine,
we can define a “universally verifying” machine!

What do coNP problems look like?
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Definition: coNP = { L | ¬L ∈ NP }

A co-nondeterministic machine
has multiple computation paths, 
and has the following behavior:

- the machine accepts
if all paths reach accept state

- the machine rejects
if at least one path reaches 
reject state

What does a coNP computation look like?
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Definition: coNP = { L | ¬L ∈ NP }

In NP algorithms, we can use a 
“guess” instruction in pseudocode:
Guess string y of k|x|k length…
and the machine accepts if some y 
leads to an accept state

In coNP algorithms, we can use a 
“try all” instruction:
Try all strings y of k|x|k length…
and the machine accepts if every y 
leads to an accept state

What does a coNP computation look like?
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TAUTOLOGY = {  |  is a Boolean formula and 
every variable assignment satisfies  }  

Theorem:  TAUTOLOGY is in coNP

How would we write pseudocode for a 
coNP machine that decides TAUTOLOGY?

How would we write TAUTOLOGY as the 
complement of some NP language?
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Is P  coNP?
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Is NP = coNP?
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P
NP

coNP
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Definition: A language B is coNP-complete if

1. B ∈ coNP

2. For every A in coNP, there is a 
polynomial-time reduction from A to B

(B is coNP-hard)

Key Trick:  Can use  A ≤𝑷 B   ⇔ ¬A ≤𝑷 ¬B 
to turn NP-hardness into co-NP hardness

coNP = { L | ¬L ∈ NP }



21

UNSAT = {  |  is a Boolean formula and no
variable assignment satisfies  }

Theorem: UNSAT is coNP-complete

Proof: (1) UNSAT ∈ coNP (why?)

(2) UNSAT is coNP-hard:

Let A ∈ coNP. We show A P UNSAT

Since A ∈ NP, we have A P 3SAT by the Cook-
Levin theorem. This reduction already works!

w ∈ A  ⇒ w ∈ 3SAT

w ∉  A ⇒ w ∉ 3SAT

w ∉ A ⇒ w ∉ UNSAT

w ∈ A ⇒ w ∈ UNSAT
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TAUTOLOGY = {  |  is a Boolean formula and 
every variable assignment satisfies  }  

= { |   UNSAT}

Theorem: TAUTOLOGY is coNP-complete

(1) TAUTOLOGY  coNP (already shown)

(2) TAUTOLOGY is coNP-hard:

UNSAT P TAUTOLOGY:
Given Boolean formula , output 

UNSAT = {  |  is a Boolean formula and no
variable assignment satisfies  }

Theorem: UNSAT is coNP-complete
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Is P = NP  coNP?

NP ∩ coNP = { L | L and L  NP }

L ∈ NP ∩ coNP means that
both 𝒙 ∈ L and 𝒙 ∉ L have “nifty proofs”
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FACTORING
=  { (n, k) | n > k > 1 are integers written in binary, 
and there is a prime factor p of n where k ≤ p < n }

If FACTORING ∈ P, we could use the algorithm to 
factor any integer, and break RSA!
Can binary search on k to find a prime factor of n.

Theorem: FACTORING ∈ NP ∩ coNP

An Interesting Problem in NP ∩ coNP
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PRIMES = {n | n is a prime number
written in binary}

PRIMES is in P
Manindra Agrawal, Neeraj Kayal and Nitin Saxena
Ann. of Math. Volume 160, Number 2 (2004), 781-793. 
Abstract 
We present an unconditional deterministic polynomial-
time algorithm that determines whether an input 
number is prime or composite.
https://en.wikipedia.org/wiki/AKS_primality_test

Theorem (Pratt ‘70s): PRIMES ∈ NP ∩ coNP

http://projecteuclid.org/handle/euclid.annm
https://en.wikipedia.org/wiki/AKS_primality_test


Theorem: FACTORING ∈ NP ∩ coNP

Proof:   (1) FACTORING ∈ NP

(2) FACTORING ∈ coNP

A prime factor p of n such that p ≥ k is a proof that 
(n, k) is in FACTORING  
(can check primality in P, can check p divides n in P)

The prime factorization p1
E1 … pm

Em of n is a proof 
that (n, k) is not in FACTORING:

Verify each pi is prime in P, and that p1
E1 … pm

Em = n
Verify that for all i=1,…,m  that pi < k

FACTORING
=  { (n, k) | n > k > 1 are integers written in binary, 

there is a prime factor p of n where k ≤ p < n }



Theorem:  If FACTORING ∈ P, then there is 
a polynomial-time algorithm which, given an integer n,
outputs either “n is PRIME” or a prime factor of n.

Idea: Binary search for the prime factor! 
Given binary integer n, initialize an interval [2,n].
If (n, 2) is not in FACTORING then output “PRIME”
If (n,⌈n/2⌉) is in FACTORING then 

shrink interval to [⌈n/2⌉,n] (set k := ⌈3n/4⌉)
else, shrink interval to [2,⌈n/2⌉] (set k := ⌈n/4⌉)

Keep picking k to halve the interval after each (n,k) call 
to FACTORING. Takes O(log n) calls to FACTORING!

FACTORING
=  { (n, k) | n > k > 1 are integers written in binary, 

there is a prime factor p of n where k ≤ p < n }
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P
NP

Decidable

coNP

FACTORING

TAUTOLOGY

SAT

CLIQUE

UNSAT

VC

SUBSET-

SUM



29

NP-complete problems:

SAT, 3SAT, CLIQUE, VC, SUBSET-SUM, …

coNP-complete problems:

UNSAT, TAUTOLOGY, NOHAMPATH, …

(NP ∩ coNP)-complete problems:

Nobody knows if they exist!

P, NP, coNP can be defined in terms of specific 
machine models, and for every possible machine 
we can give a simple encoding of it.

NP ∩ coNP is not known to have a 
corresponding machine model!


