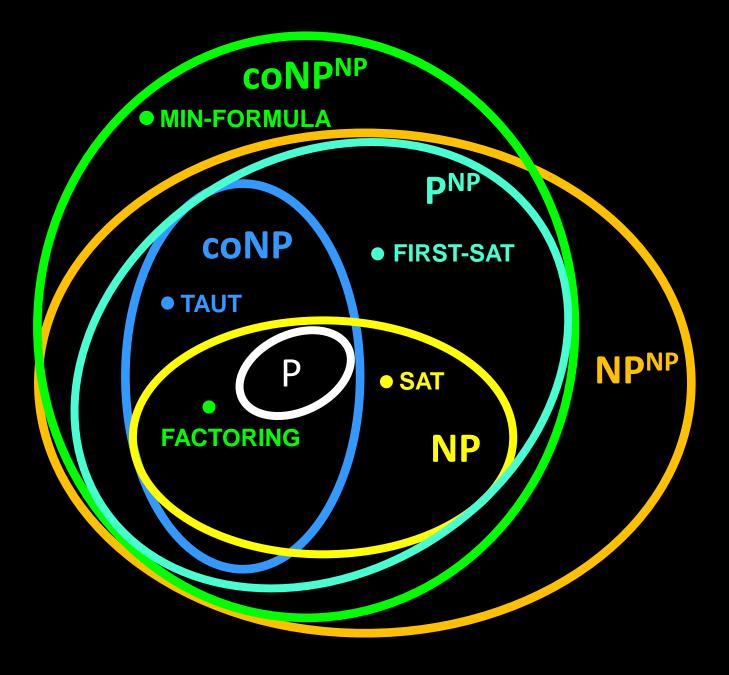
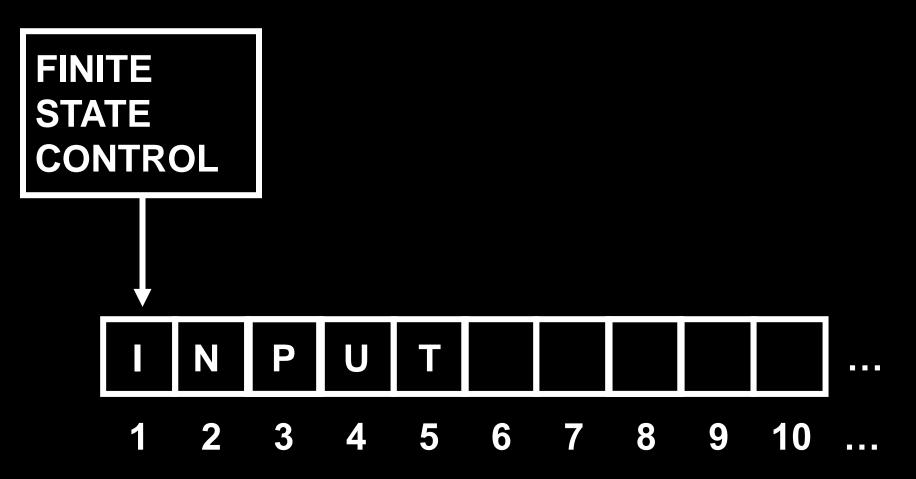
6.1400

Lecture 21: Space Complexity



Space Problems



We measure *space* complexity by finding the *largest tape index reached* during the computation

Let M be a deterministic Turing machine that only accesses a finite number of cells on each input (not necessarily halting!)

Definition: The space complexity of M is the function $S : \mathbb{N} \to \mathbb{N}$, where S(n) is the largest tape index reached by M on any input of length n.

Definition: SPACE(S(n)) =
 { L | L is decided by a Turing machine with
 O(S(n)) space complexity}

Theorem: 3SAT ∈ SPACE(n)

Proof Idea: Given formula ϕ of length n, try all possible assignments A to the (at most n) variables. Evaluate ϕ on each A, and accept iff you find A such that $\phi(A) = 1$. All of this can be done in O(n) space.

Theorem: NTIME(t(n)) \subseteq SPACE(t(n))

Proof Idea: Try all possible computation paths of t(n) steps for an NTM on length-n input. This can be done in O(t(n)) space (store a sequence of t(n) transitions).

One Tape vs Many Tapes

Theorem: Let $s : \mathbb{N} \to \mathbb{N}$ satisfy $s(n) \ge n$, for all n. Then every s(n) space multi-tape TM has an equivalent O(s(n)) space one-tape TM

The simulation of multitape TMs by one-tape TMs already achieves this!

Corollary: The number of tapes doesn't matter for space complexity! **One tape TMs are as good as any other model!**

Space Hierarchy Theorem

Intuition: If you have more *space* to work with, then you can solve strictly more problems!

Theorem: For functions s, $S : \mathbb{N} \rightarrow \mathbb{N}$ where $s(n)/S(n) \rightarrow 0$ SPACE(s(n)) \subsetneq SPACE(S(n))

Proof Idea: Diagonalization

Make a Turing machine N that on input <M>, simulates the TM M on input <M> using up to S(|<M>|) space, then flips the answer.

Show L(N) is in SPACE(S(n)) but not in SPACE(s(n))

$\begin{array}{l} \textbf{PSPACE} = \bigcup_{k \in \mathbb{N}} \textbf{SPACE}(n^k) \\ \end{array}$

Since for every k, NTIME(n^k) is in SPACE(n^k), we have:

$P \subseteq NP \subseteq PSPACE$

The class PSPACE formalizes the set of problems solvable by computers with *bounded memory*.

Fundamental (Unanswered) Question: How does time relate to space, in computing?

SPACE(n²) problems could potentially take much longer than n^c time to solve, for *any* c!

Intuition: You can always re-use space, but how can you re-use time? Is P = PSPACE? **Time Complexity of SPACE[S(n)]** Let M be a halting TM with S(n) space complexity How many time steps could M possibly take on inputs of length *n*? *Is there an upper bound?*

The number of time steps is at most the total number of possible *configurations*!

(If a configuration repeats, the machine is looping!)

A configuration of M specifies a head position, state, and S(n) cells of tape content. The total number of configurations is at most: $\frac{S(n) |Q| |\Gamma|^{S(n)} \leq 2^{O(S(n))}}{C|^{S(n)} \leq 2^{O(S(n))}}$ Theorem: Let S(n) be "nice". For every space-S(n) TM, there is a TM running in 2^{O(S(n))} time that decides the same language.

$\frac{\text{SPACE}(s(n)) \subseteq \bigcup \text{TIME}(2^{c \cdot s(n)})}{c \in N}$

Proof Idea: For each s(n)-space bounded TM M there is a c > 0 so that on all inputs x, if M runs for more than 2^{c s(|x|)} time steps on x, then *M must have* repeated a configuration, so M will never halt.

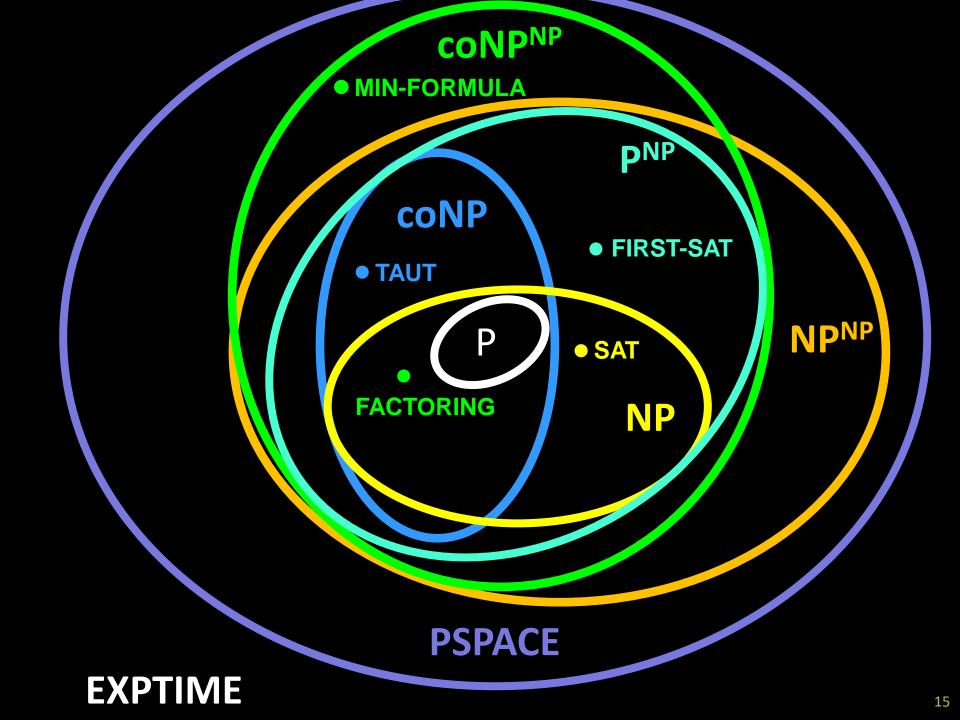
$\begin{array}{l} \textbf{PSPACE} = \bigcup SPACE(n^k) \\ k \in N \end{array}$

EXPTIME = $\bigcup_{k \in \mathbb{N}} \text{TIME}(2^{n^k})$

$PSPACE \subseteq EXPTIME$

$P \subseteq NP \subseteq PSPACE$ Is $NP^{NP} \subseteq PSPACE$?

$\mathsf{IS CONP^{NP}} \subseteq \mathsf{PSPACE}?$



$P \subseteq NP \subseteq PSPACE \subseteq EXPTIME$ **Theorem:** $P \neq EXPTIME$ Why? The Time Hierarchy Theorem! **TIME(2ⁿ)** ⊄ **P** Therefore **P** ≠ **EXPTIME Corollary:** At least one of the following is true: $P \neq NP$, $NP \neq PSPACE$, or $PSPACE \neq EXPTIME$

Proving any one of them would be major!

PSPACE and Nondeterminism

Definition: SPACE(s(n)) =
{ L | L is decided by a Turing machine with
 O(s(n)) space complexity}

Definition: NSPACE(s(n)) =
{ L | L is decided by a non-deterministic
 Turing Machine with O(s(n)) space complexity}

Recall:

Space S(n) computations can be simulated in at most 2^{O(S(n))} time steps

$\frac{\text{SPACE}(s(n)) \subseteq \bigcup \text{TIME}(2^{c \cdot s(n)})}{c \in N}$

Idea: After 2^{O(s(n))} time steps, a s(n)-space bounded computation must have repeated a configuration, after which it will provably never halt.

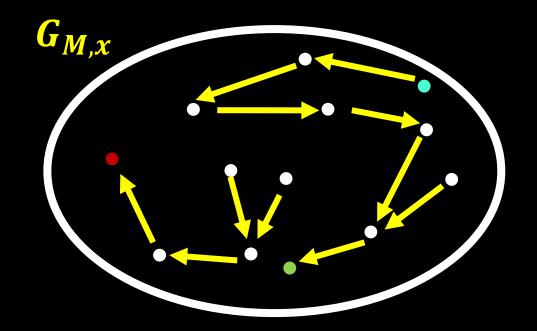
Theorem:

NSPACE S(n) computations can also be simulated in at most 2^{O(S(n))} time steps

$\frac{\text{NSPACE}(s(n)) \subseteq \bigcup \text{TIME}(2^{c \cdot s(n)})}{c \in N}$

Key Idea: Think of the problem of simulating NSPACE(s(n)) as a problem on graphs.

Def: The configuration graph of M on x has nodes *C* for every configuration *C* of M on x, and edges (*C*, *C*') if and only if *C* yields *C*'

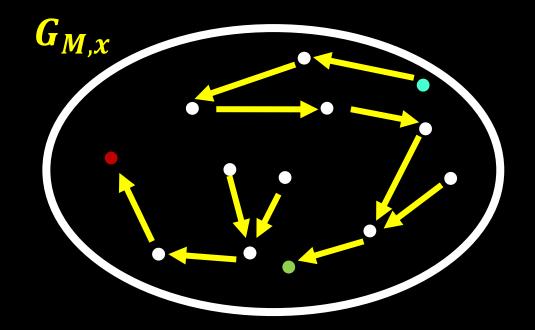


M accepts $x \Leftrightarrow$ there is a path in $G_{M,x}$ from the initial configuration node to a node in an accept state

 $\begin{array}{l} \text{M has space} \\ \text{complexity } S(n) \\ \Rightarrow G_{M,x} \text{ has} \\ \leq 2^{d \cdot S(|x|)} \text{ nodes} \end{array}$

M is deterministic \Rightarrow every node has outdegree ≤ 1

M is nondeterministic ⇒ some nodes may have outdegree > 1 **Def:** The configuration graph of M on x has nodes *C* for every configuration *C* of M on x, and edges (*C*, *C*') if and only if *C* yields *C*'



To simulate a non-deterministic M in $2^{O(S(|x|))}$ time: do BFS in $G_{M,x}$ from the initial configuration! $\begin{array}{l} \text{M has space} \\ \text{complexity } S(n) \\ \Rightarrow G_{M,x} \text{ has} \\ \leq 2^{d \cdot S(|x|)} \text{ nodes} \end{array}$

M is deterministic \Rightarrow every node has outdegree ≤ 1

M is nondeterministic ⇒ some nodes may have outdegree > 1

$\begin{array}{l} \textbf{PSPACE} = \bigcup_{k \in \mathbb{N}} \textbf{SPACE}(n^k) \\ \end{array}$

$\begin{array}{l} \textbf{NPSPACE} = \bigcup & \textbf{NSPACE}(n^k) \\ k \in N \end{array}$

SPACE versus NSPACE

Is NTIME(n) \subseteq TIME(n²)?

Is NTIME(n) \subseteq TIME(n^k) for some k > 1?

What about the space-bounded setting?

Is NSPACE(s(n)) \subseteq SPACE(s(n)^k) for some k? Is PSPACE = NPSPACE?

Savitch's Theorem

Theorem: For functions s(n) where $s(n) \ge n$ **NSPACE(s(n))** \subseteq **SPACE(s(n)²)**

Proof Try:

Let N be a non-deterministic TM with space complexity s(n)

Construct a deterministic machine M that tries every possible computation path of N

Since each branch of N uses space at most s(n), then M uses space at most s(n)...?

Given configurations C_1 and C_2 of a s(n) space machine N, and a number k (in binary), want to know if N has a computation path from C_1 to C_2 within 2^k steps

Procedure SIM(C₁, C₂, k): If k = 0 then *accept* iff $C_1 = C_2$ or C₁ yields C₂ within one step. [uses space O(s(n))] If k > 0, then for every config C_m of O(s(n)) symbols, if SIM(C₁,C_m,k-1) and SIM(C_m,C₂,k-1) accept then return accept return reject if no such C_m is found

SIM(C_1 , C_2 , k) has O(k) levels of recursion Each level of recursion uses O(s(n)) additional space. Theorem: SIM(C_1 , C_2 , k) uses only O(k \cdot s(n)) space Theorem: For functions s(n) where $s(n) \ge n$ NSPACE $(s(n)) \subseteq$ SPACE $(s(n)^2)$

Proof:

Let N be a nondeterministic TM using s(n) space Let d > 0 be such that the number of configurations of N(w) is at most 2^{d s(|w|)}

Here's a deterministic O(s(n)²) space algorithm for N:

M(w): For all configurations C_a of N(w) in the accept state, If SIM(q_ow, C_a, d s(|w|)) accepts, then accept else reject

Claim: L(M) = L(N) and M uses O(s(n)²) space

Theorem: For functions s(n) where $s(n) \ge n$ NSPACE $(s(n)) \subseteq$ SPACE $(s(n)^2)$

Proof:

Let N be a nondeterministic TM using s(n) space Let d > 0 be such that the number of configurations of N(w) is at most 2^{d s(|w|)}

Here's a deterministic O(s(n)²) space algorithm for N:

M(w): For all configurations C_a of N(w) in the accept state, If SIM(q_ow, C_a, d s(|w|)) accepts, then *accept* else *reject*

Why does it take only O(s(n)²) space?

$\begin{array}{l} \textbf{PSPACE} = \bigcup_{k \in \mathbb{N}} \textbf{SPACE(n^k)} \\ \end{array}$

$NPSPACE = \bigcup NSPACE(n^k)$ $k \in N$

PSPACE-complete problems

Definition: Language B is **PSPACE-complete** if:

1. $B \in PSPACE$

2. Every A in PSPACE is poly-time reducible to B (i.e. B is PSPACE-hard) Why poly-time?

Theorem: If B is PSPACE-complete and B is in P then P = PSPACE

Theorem: If B is PSPACE-complete and B is in NP then NP = PSPACE