6.1400

Lecture 21.:
Space Complexity

Space Problems

Measuring Space Complexity \

FINITE

STATE
CONTROL

IIIHIIIII

3 4 5 6

We measure space compIeX|ty by fmdmg the
largest tape index reached during the computation

Let M be a deterministic Turing machine that only
accesses a finite number of cells on each input
(not necessarily halting!)

Definition: The space complexity of M is the
function S : N — N, where S(n) is the largest tape
index reached by M on any input of length n.

Definition: SPACE(S(n)) =

{L| Lis decided by a Turing machine with
O(S(n)) space complexity}

Theorem: 3SAT € SPACE(n)

Proof Idea: Given formula ¢ of length n, try
all possible assighments A to the (at most n)

variables. Evaluate ¢ on each A, and accept

iff you find A such that ¢(A) = 1.
All of this can be done in O(n) space.

Theorem: NTIME(t(n)) S SPACE(t(n))

Proof Idea: Try all possible computation
paths of t(n) steps for an NTM on length-n
input. This can be done in O(t(n)) space
(store a sequence of t(n) transitions).

One Tape vs Many Tapes

Theorem: Let s : N — N satisfy s(n) > n, for all n.
Then every s(n) space multi-tape TM has an
equivalent O(s(n)) space one-tape TM

The simulation of multitape TMs
by one-tape TMs already achieves this!

Corollary: The number of tapes doesn’t matter for
space complexity!
One tape TMs are as good as any other model!

Space Hierarchy Theorem

Intuition: If you have more space to work with,
then you can solve strictly more problems!

Theorem: For functions s, S : N > N where s(n)/S(n) > 0
SPACE(s(n)) & SPACE(S(n))

Proof Idea: Diagonalization

Make a Turing machine N that on input <M>, simulates
the TM M on input <M> using up to S(|<M>|) space,
then flips the answer.

Show L(N) is in SPACE(S(n)) but not in SPACE(s(n))

PSPACE =\) SPACE(n%)
ke N

Since for every k, NTIME(n¥) is in SPACE(n¥),
we have:

P c NP c PSPACE

The class PSPACE formalizes the set of problems
solvable by computers with bounded memory.

Fundamental (Unanswered) Question:
How does time relate to space, in computing?

SPACE(n?) problems could potentially take
much longer than n¢ time to solve, for any c!

Intuition: You can always re-use
space, but how can you re-use time?

Is P = PSPACE?

10

Time Complexity of SPACE[S(n)]

Let M be a halting TM with S(n) space complexity

How many time steps could M possibly take
on inputs of length n? Is there an upper bound?

The number of time steps is at most
the total number of possible configurations!

(If a configuration repeats, the machine is looping!)

A configuration of M specifies a
head position, state, and S(n) cells of tape content.
The total number of configurations is at most:

S(n) [Q] T3 < 20600

11

Theorem: Let S(n) be “nice”.
For every space-S(n) TM, thereisa TM
running in 2°6) time that decides the
same language.

SPACE(s(n)) = \UJ TIME(2¢"sin)
ceN

Proof Idea: For each s(n)-space bounded TM M
there is a ¢ > 0 so that on all inputs x, if M runs for
more than 2¢sl/xl) time steps on x, then M must have
repeated a configuration, so M will never halt.

12

PSPACE =\) SPACE(n)
ke N

EXPTIME =_J TIME(2"™)
keN

PSPACE c EXPTIME

P < NP c PSPACE
Is NPN? < PSPACE?

Is coNPNP <= PSPACE?

EXPTIME

PSPACE

15

P — NP c PSPACE c EXPTIME

Theorem: P # EXPTIME
Why? The Time Hierarchy Theorem!

TIME(2") P
Therefore P # EXPTIME

Corollary: At least one of the following is true:
P # NP, NP = PSPACE, or PSPACE # EXPTIME

Proving any one of them would be major!

16

PSPACE
and Nondeterminism

Definition: SPACE(s(n)) =
{L| Lis decided by a Turing machine with
O(s(n)) space complexity}

Definition: NSPACE(s(n)) =
{L | Lis decided by a non-deterministic
Turing Machine with O(s(n)) space complexity}

18

Recall:
Space S(n) computations can be
simulated in at most 2°65(n) time steps

SPACE(s(n)) = \UJ TIME(2¢"sin)
ceN

Idea: After 2°6(n) time steps, a s(n)-space bounded
computation must have repeated a configuration,
after which it will provably never halt.

19

Theorem:
NSPACE S(n) computations can also be
simulated in at most 2°6() time steps

NSPACE(s(n)) ¢ \U TIME(2¢s)
ceN

Key Idea: Think of the problem of simulating
NSPACE(s(n)) as a problem on graphs.

20

Def: The configuration graph of M on x
has nodes C for every configuration C of M on x,
and edges (C, C') if and only if C yields C’

G M has space
complexity S(n)
= Gy has
< 24:50xD) nodes

M is deterministic
= every node has

outdegree <1

M accepts x < there is a pathin M is nondeterministic

= some nodes may
have outdegree > 1

21

G, from the initial configuration
node to a node in an accept state

Def: The configuration graph of M on x
has nodes C for every configuration C of M on x,
and edges (C, C') if and only if C yields C’

G M has space
complexity S(n)
= Gy has
< 24:50xD) nodes

M is deterministic
= every node has

outdegree <1

To simulate a non-deterministic M M is nondeterministic

= some nodes may
have outdegree > 1

22

in 2060xD) time: do BFSin Gy
from the initial configuration!

PSPACE =\) SPACE(n)
ke N

NPSPACE = _J NSPACE(n¥)
keN

SPACE versus NSPACE

Is NTIME(n) € TIME(n?)?

Is NTIME(n) € TIME(n*) for some k > 1?

What about the space-bounded setting?

Is NSPACE(s(n)) = SPACE(s(n)¥)
for some k? Is PSPACE = NPSPACE?

Savitch’s Theorem

Theorem: For functions s(n) where s(n) > n
NSPACE(s(n)) S SPACE(s(n)?) O
Proof Try:

Let N be a non-deterministic TM with space
complexity s(n)

Construct a deterministic machine M that tries
every possible computation path of N

Since each branch of N uses space at most s(n),
then M uses space at most s(n)...?

25

Given configurations C, and C, of a s(n) space machine N,
and a number k (in binary), want to know
if N has a computation path from C, to C, within 2* steps

Procedure SIM(C,, C,, k):

If k =0 then accept iff C; = C, or
C, yields C, within one step.
[uses space O(s(n))]

If k > 0, then for every config C_ of O(s(n)) symbols,
if SIM(C,,C_,k-1) and SIM(C_,C,,k-1) accept
then return accept
return reject if no such C_ is found

SIM(C,, C,, k) has O(k) levels of recursion
Each level of recursion uses O(s(n)) additional space.
Theorem: SIM(C,, C,, k) uses only O(k - s(n)) space

26

Theorem: For functions s(n) where s(n) > n
NSPACE(s(n)) = SPACE(s(n)?)

Proof:
Let N be a nondeterministic TM using s(n) space

Let d > 0 be such that the number of
configurations of N(w) is at most 2¢s(Iwl)

Here’s a deterministic O(s(n)?) space algorithm for N:

M(w): For all configurations C, of N(w) in the accept state,
If SIM(q,w, C,, ds(|w]))accepts, then accept
else reject

Claim: L(M) = L(N) and M uses O(s(n)?) space

27

Theorem: For functions s(n) where s(n) > n
NSPACE(s(n)) = SPACE(s(n)?)

Proof:
Let N be a nondeterministic TM using s(n) space

Let d > 0 be such that the number of
configurations of N(w) is at most 29s(Iwl)

Here’s a deterministic O(s(n)?) space algorithm for N:

M(w): For all configurations C, of N(w) in the accept state,
If SIM(q,w, C,, ds(|w]))accepts, then accept
else reject

Why does it take only O(s(n)?) space?

28

PSPACE =\) SPACE(n)
ke N

NPSPACE = __J NSPACE(n¥)
keN

PSPACE-complete
problems

Definition: Language B is PSPACE-complete if:

1. B € PSPACE
2. Every A in PSPACE is poly-time reducible to B

(i.e. B is PSPACE-hard)

Theorem: If B is PSPACE-complete and Bis in P
then P = PSPACE

Theorem: If B is PSPACE-complete and B is in NP
then NP = PSPACE

32

