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Lecture 21:
Space Complexity
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Space Problems
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Measuring Space Complexity

We measure space complexity by finding the
largest tape index reached during the computation
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Let M be a deterministic Turing machine that only 
accesses a finite number of cells on each input
(not necessarily halting!)

Definition: The space complexity of M is the 
function 𝑺 : ℕ→ ℕ, where 𝑺(𝒏) is the largest tape 
index reached by M on any input of length 𝒏.

{ L | L is decided by a Turing machine with 
O(𝑺(𝒏)) space complexity}

Definition: SPACE(𝑺(𝒏)) =
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Theorem: 3SAT ∈ SPACE(n)

Proof Idea: Given formula 𝝓 of length 𝒏, try 
all possible assignments A to the (at most 𝒏) 
variables. Evaluate 𝝓 on each A, and accept 
iff you find A such that 𝝓(A) = 1. 
All of this can be done in O(n) space.

Theorem: NTIME(t(n)) ⊆ SPACE(t(n))

Proof Idea: Try all possible computation 
paths of t(n) steps for an NTM on length-n 
input. This can be done in O(t(n)) space
(store a sequence of t(n) transitions).
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Theorem: Let s : ℕ → ℕ satisfy s(n)  n, for all n. 
Then every s(n) space multi-tape TM has an 
equivalent O(s(n)) space one-tape TM

The simulation of multitape TMs 
by one-tape TMs already achieves this!

Corollary: The number of tapes doesn’t matter for 
space complexity! 

One tape TMs are as good as any other model!

One Tape vs Many Tapes
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Intuition: If you have more space to work with,
then you can solve strictly more problems!

Space Hierarchy Theorem

Theorem: For functions s, S : ℕ → ℕ where s(n)/S(n) → 0

SPACE(s(n)) ⊊ SPACE(S(n))

Proof Idea: Diagonalization
Make a Turing machine N that on input <M>, simulates 
the TM M on input <M> using up to S(|<M>|) space,
then flips the answer. 

Show L(N) is in SPACE(S(n)) but not in SPACE(s(n))
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P  NP  PSPACE

PSPACE =         SPACE(nk)
k  N

Since for every k, NTIME(nk) is in SPACE(nk),
we have:
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The class PSPACE formalizes the set of problems 
solvable by computers with bounded memory.

SPACE(n2) problems could potentially take 
much longer than nc time to solve, for any c!

Intuition: You can always re-use 
space, but how can you re-use time?

Is P = PSPACE?

Fundamental (Unanswered) Question:
How does time relate to space, in computing?
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Let M be a halting TM with S(n) space complexity 

How many time steps could M possibly take 
on inputs of length 𝒏?  Is there an upper bound?

The number of time steps is at most 
the total number of possible configurations! 

(If a configuration repeats, the machine is looping!)

S(n) |Q| |Γ|S(n) ≤ 2O(S(n))

A configuration of M specifies a 
head position, state, and S(n) cells of tape content. 

The total number of configurations is at most:

Time Complexity of SPACE[S(n)]
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Theorem: Let S(n) be “nice”.
For every space-S(n) TM, there is a TM 
running in 2O(S(n)) time that decides the 

same language. 

SPACE(s(n))  TIME(2c ¢ s(n))

Proof Idea: For each s(n)-space bounded TM M 
there is a c > 0 so that on all inputs x, if M runs for 

more than 2c s(|x|) time steps on x, then M must have 
repeated a configuration, so M will never halt.

c  N
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EXPTIME =         TIME(2   )
k  N

nk

PSPACE  EXPTIME

PSPACE =         SPACE(nk)
k  N
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Is NPNP  PSPACE?

Is coNPNP  PSPACE?

P  NP  PSPACE
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P  NP  PSPACE  EXPTIME

Theorem: P ≠ EXPTIME

Why? The Time Hierarchy Theorem!

TIME(2n)  P
Therefore P ≠ EXPTIME

Corollary: At least one of the following is true:

P ≠ NP, NP ≠ PSPACE, or PSPACE ≠ EXPTIME

Proving any one of them would be major!
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PSPACE

and Nondeterminism
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{ L | L is decided by a non-deterministic
Turing Machine with O(s(n)) space complexity}

Definition: SPACE(s(n)) =

Definition: NSPACE(s(n)) =

{ L | L is decided by a Turing machine with 
O(s(n)) space complexity}
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Recall:
Space S(n) computations can be 

simulated in at most 2O(S(n)) time steps

SPACE(s(n))  TIME(2c ¢ s(n))

Idea: After 2O(s(n)) time steps, a s(n)-space bounded 
computation must have repeated a configuration, 

after which it will provably never halt.

c  N
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Theorem:
NSPACE S(n) computations can also be 
simulated in at most 2O(S(n)) time steps

NSPACE(s(n))  TIME(2c ¢ s(n))

Key Idea: Think of the problem of simulating 
NSPACE(s(n)) as a problem on graphs.

c  N
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Def: The configuration graph of M on x 
has nodes 𝑪 for every configuration 𝑪 of M on x,
and edges (𝑪, 𝑪’) if and only if 𝑪 yields 𝑪’

𝑮𝑴,𝒙 M has space 
complexity 𝑺(n) 

⇒ 𝑮𝑴,𝒙 has 

≤ 𝟐𝒅⋅𝑺( 𝒙 ) nodes

M is deterministic
⇒ every node has 

outdegree ≤ 1  

M is nondeterministic
⇒ some nodes may
have outdegree > 1

M accepts x   there is a path in 
𝑮𝑴,𝒙 from the initial configuration 
node to a node in an accept state
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Def: The configuration graph of M on x 
has nodes 𝑪 for every configuration 𝑪 of M on x,
and edges (𝑪, 𝑪’) if and only if 𝑪 yields 𝑪’

𝑮𝑴,𝒙 M has space 
complexity 𝑺(n) 

⇒ 𝑮𝑴,𝒙 has 

≤ 𝟐𝒅⋅𝑺( 𝒙 ) nodes

M is deterministic
⇒ every node has 

outdegree ≤ 1  

M is nondeterministic
⇒ some nodes may
have outdegree > 1

To simulate a non-deterministic M 

in 𝟐𝑶(𝑺 𝒙 ) time:  do BFS in 𝑮𝑴,𝒙

from the initial configuration!
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PSPACE =         SPACE(nk)
k  N

NPSPACE =          NSPACE(nk)
k  N
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SPACE versus NSPACE

Is NTIME(n) ⊆ TIME(n2)?

Is NTIME(n) ⊆ TIME(nk) for some k > 1?

What about the space-bounded setting?

Is NSPACE(s(n))  SPACE(s(n)k)
for some k? Is PSPACE = NPSPACE?
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Savitch’s Theorem

Theorem: For functions s(n) where s(n)  n

NSPACE(s(n)) ⊆ SPACE(s(n)2)

Proof Try:

Let N be a non-deterministic TM with space 
complexity s(n)

Construct a deterministic machine M that tries 
every possible computation path of N 

Since each branch of N uses space at most s(n), 
then M uses space at most s(n)…?
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Given configurations C1 and C2 of a s(n) space machine N, 
and a number k (in binary), want to know 
if N has a computation path from C1 to C2 within 2k steps

Procedure SIM(C1, C2, k):

If k = 0 then accept iff C1 = C2 or 
C1 yields C2 within one step. 

If k > 0, then for every config Cm of O(s(n)) symbols,
if SIM(C1,Cm,k-1) and SIM(Cm,C2,k-1) accept

then return accept
return reject if no such Cm is found

[ uses space O(s(n)) ]

SIM(C1, C2, k) has O(k) levels of recursion
Each level of recursion uses O(s(n)) additional space. 
Theorem: SIM(C1, C2, k) uses only O(k ⋅ s(n)) space
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Proof:
Let N be a nondeterministic TM using s(n) space

M(w): For all configurations Ca of N(w) in the accept state,
If SIM(qow, Ca, d s(|w|)) accepts, then accept

else reject

Theorem: For functions s(n) where s(n)  n

NSPACE(s(n))  SPACE(s(n)2)

Let d > 0 be such that the number of
configurations of N(w) is at most 2d s(|w|)

Claim: L(M) = L(N) and M uses O(s(n)2) space

Here’s a deterministic O(s(n)2) space algorithm for N:
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Proof:
Let N be a nondeterministic TM using s(n) space

M(w): For all configurations Ca of N(w) in the accept state,
If SIM(qow, Ca, d s(|w|)) accepts, then accept

else reject

Theorem: For functions s(n) where s(n)  n

NSPACE(s(n))  SPACE(s(n)2)

Here’s a deterministic O(s(n)2) space algorithm for N:

Why does it take only O(s(n)2) space?

Let d > 0 be such that the number of
configurations of N(w) is at most 2d s(|w|)
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PSPACE =         SPACE(nk)
k  N

NPSPACE =          NSPACE(nk)
k  N
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PSPACE-complete
problems
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Definition: Language B is PSPACE-complete if:

1. B  PSPACE

2. Every A in PSPACE is poly-time reducible to B
(i.e. B is PSPACE-hard)

Why poly-time?

Theorem: If B is PSPACE-complete and B is in P
then P = PSPACE

Theorem: If B is PSPACE-complete and B is in NP
then NP = PSPACE


