6.1400

Lecture 23: Finish PSPACE, Randomized Complexity

TQBF = { $\phi \mid \phi$ is a true quantified Boolean formula }

Theorem: TQBF is PSPACE-Complete

TQBF as a Two-Player Game Two players, called E and A

Given a fully quantified Boolean formula $\exists y \forall x [(x \lor y) \land (\neg x \lor \neg y)]$

The game starts at the leftmost quantified variable

E chooses values for variables quantified by \exists

A chooses values for variables quantified by ∀

E wins if the resulting formula evaluates to true

A wins otherwise

FG = { $\phi \mid \phi$ is a QBF and Player E has a winning strategy in the Formula Game on ϕ }

Theorem: FG = TQBF, so FG is also PSPACE-complete

The Geography Game

Two players take turns naming cities from anywhere in the world

Each city chosen must begin with the same letter that the previous city ended with

Austin \rightarrow Newark \rightarrow Kalamazoo \rightarrow Opelika

Cities cannot be repeated

Whenever someone can no longer name any more cities, they lose and the other player wins

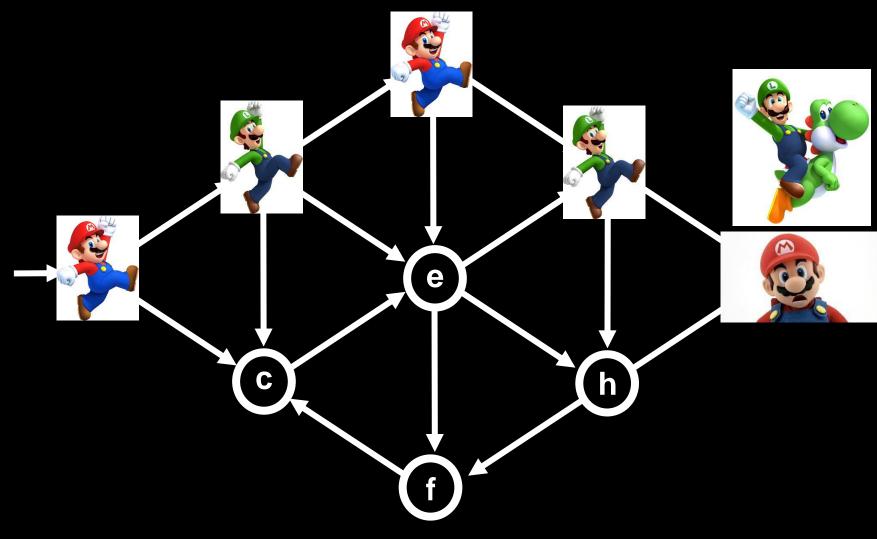
Geography played on a directed graph

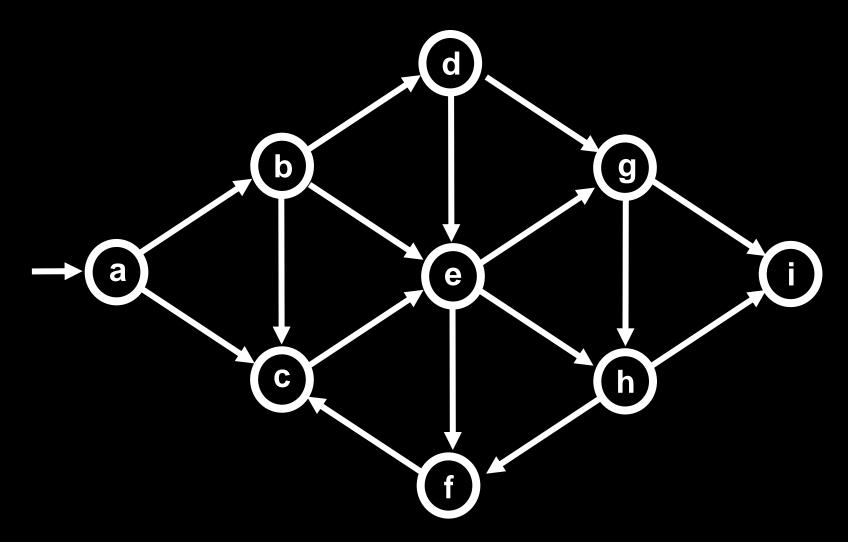
Nodes represent cities. Edges represent moves. An edge (a,b) means: *"if the current city is a, then a player could choose city b next"*

But cities cannot be repeated! Each city can be visited at most once

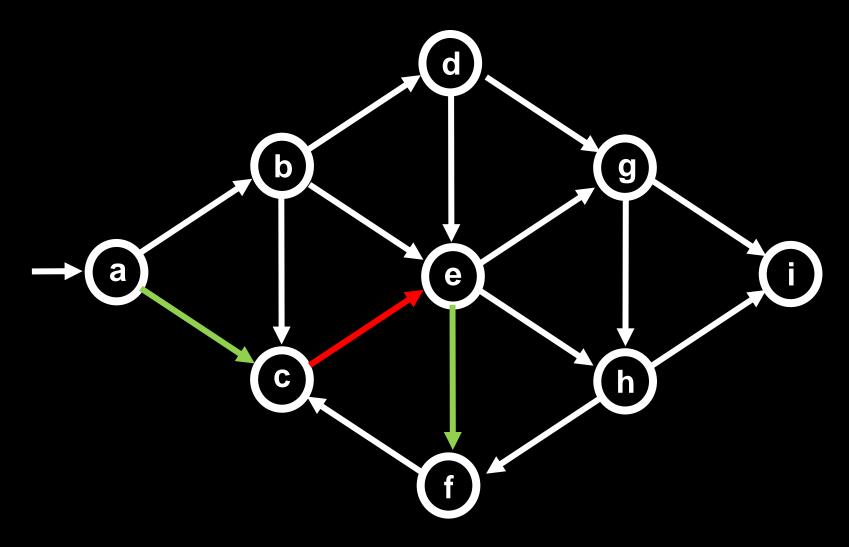
Whenever a player cannot move to any adjacent city, they are "stuck"- they lose and the other player wins

Given a graph and a node a, does Player 1 have a winning strategy starting from a? Like a two-player Hamiltonian path problem!





Who has a winning strategy in this game?



Player 1 has a winning strategy!

GG = { (G, a) | Player 1 has a winning strategy for geography on graph G starting at node a }

Theorem: GG is PSPACE-Complete

Last Time: GG is in PSPACE

GG is PSPACE-hard

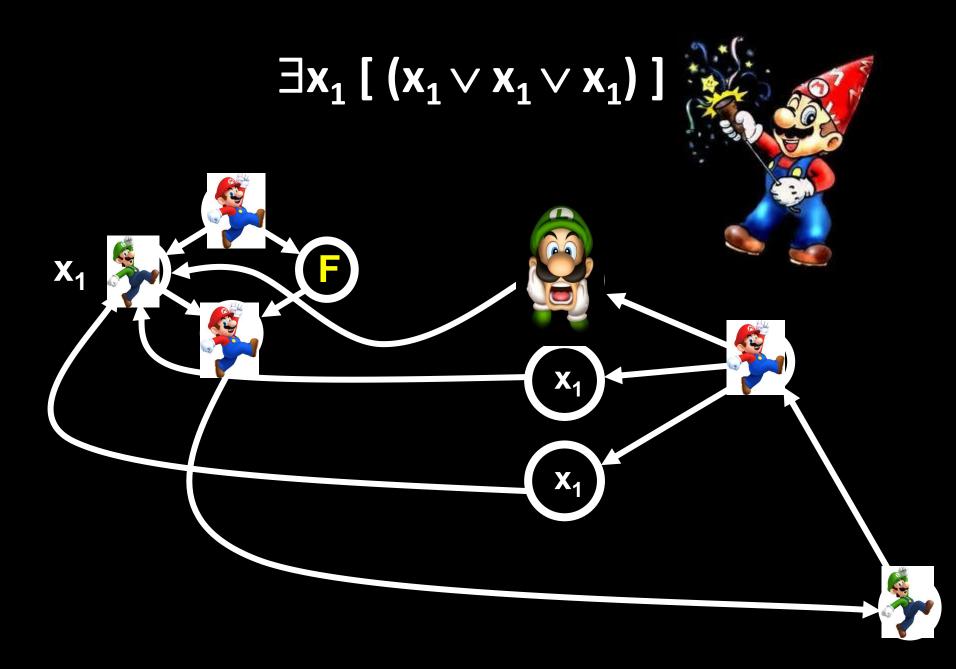
- We show that $FG \leq_{P} GG$
- Convert a quantified formula ϕ into (G, a) such that:
- Player E has winning strategy in ϕ (ϕ is true) if and only if
- Player 1 has winning strategy in (G, a)
- For simplicity we assume ϕ is of the form:

 $\phi = \exists \mathbf{x}_1 \forall \mathbf{x}_2 \exists \mathbf{x}_3 \dots \exists \mathbf{x}_k [F]$

where F is in CNF: an AND of ORs of literals. (Quantifiers alternate, and first & last move is E's)

 $\exists \mathbf{x_1} \forall \mathbf{x_2} ... \exists \mathbf{x_k} (\mathbf{x_1} \lor \mathbf{x_k} \lor \mathbf{x_2})$ a $\wedge (\neg x_1 \vee \neg x_2 \vee \neg x_2)$ **X**₁ **X**₁ \wedge ••• **C**₁ $\mathbf{X}_{\mathbf{k}}$ **X**₂ **X**₂ **C**₂ ¬**X**₁) С ¬**X**₂) $\mathbf{X}_{\mathbf{k}}$ F ז<mark>א</mark>ר **C**_n 12

 $\exists \mathbf{x_1} \forall \mathbf{x_2} ... \exists \mathbf{x_k} (\mathbf{x_1} \lor \mathbf{x_k} \lor \mathbf{x_2})$ a $\wedge (\neg x_1 \vee \neg x_2 \vee \neg x_2)$ **X**₁ **X**₁ \wedge ••• **C**₁ $\mathbf{X}_{\mathbf{k}}$ X_2 **X**₂ C_2 **¬X**1 ∫ -X2 $\mathbf{X}_{\mathbf{k}}$ 6 1**Χ**2 Cn 13



GG = { (G, a) | Player 1 has a winning strategy for geography on graph G starting at node a }

Theorem: GG is PSPACE-Complete

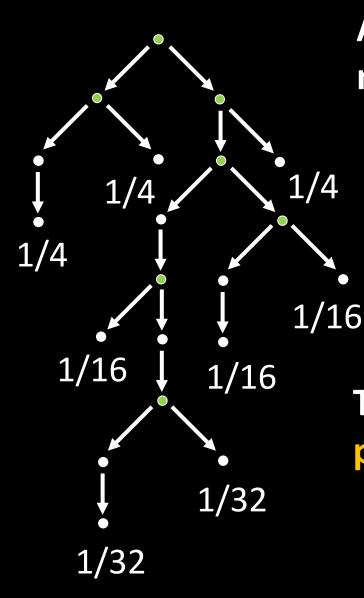
Question: Is Chess a PSPACE-complete problem?

No, because determining whether a player has a winning strategy takes **CONSTANT** time and space *(OK, the constant is large...)*

But generalized versions of Chess, Go, Hex, Checkers, etc. (on n x n boards) can be shown to be PSPACE-hard

Randomized / Probabilistic Complexity

Probabilistic TMs

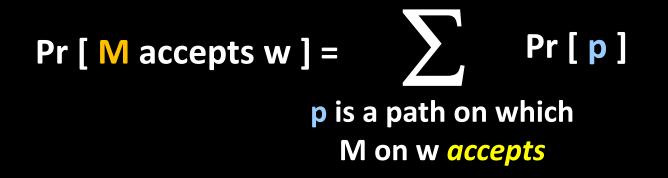


A probabilistic TM M is a nondeterministic TM where: **Each nondeterministic step** is called a coin flip Each nondeterministic step has only two legal next moves (heads or tails) The probability that M runs on a path p is: **Pr[p]** = 2^{-k} where k is the number of coin flips that occur on path p

Probabilistic/Randomized Algorithms

Why study randomized algorithms?

- 1. They can be simpler than deterministic algorithms
- 2. They can be more efficient than deterministic algorithms
- 3. Can randomness be used to solve problems provably much faster than deterministic algorithms? This is an open question!



We can characterize NP in terms of probabilities:

Theorem: A language A is in NP if there is a nondeterministic polynomial time TM M such that for all strings w:

w ∈ A ⇒ Pr[Maccepts w] > 0 w ∉ A ⇒ Pr[Maccepts w] = 0 Theorem: A language A is in coNP if there is a nondeterministic polynomial time TM M such that for all strings w:

 $w \in A \Rightarrow Pr[Maccepts w] = 0$ $w \notin A \Rightarrow Pr[Maccepts w] > 0$

Theorem: A language A is in NP if there is a nondeterministic polynomial time TM M such that for all strings w:

 $w \in A \Rightarrow Pr[Maccepts w] > 0$ $w \notin A \Rightarrow Pr[Maccepts w] = 0$ Definition. A probabilistic TM M decides a language A with error ε if for all strings w,

 $w \in A \Rightarrow Pr [M accepts w] \ge 1 - \varepsilon$

 $w \notin A \Rightarrow Pr [M doesn't accept w] \ge 1 - \varepsilon$

Error Reduction Lemma

Lemma: Let ɛ be a constant, 0 < ɛ < 1/2, let k ∈ N.</p>
If M₁ has error 1/2-ɛ and runs in t(n) time
then there is an equivalent machine M₂ such that
M₂ has error < 1/2^{n^k} and runs in O(n^k · t(n)/ɛ²) time
Proof Idea:

On input w, M_2 runs M_1 on w for m = 10 n^k/ ϵ^2 random independent trials, records the m answers of M_1 on w, returns most popular answer (accept or reject)

Can use Chernoff Bound to show the error is $< 1/2^{n^k}$ Probability that the Majority answer over $10m/\epsilon^2$ trials is *different* from the $1/2+\epsilon$ prob event is $< 1/2^m$

Error Reduction Lemma

Lemma: Let ɛ be a constant, 0 < ɛ < 1/2, let k ∈ N.</p>
If M₁ has error 1/2-ɛ and runs in t(n) time
then there is an equivalent machine M₂ such that
M₂ has error < 1/2^{n^k} and runs in O(n^k · t(n)/ɛ²) time
Proof Idea:

On input w, M_2 runs M_1 on w for m = 10 n^k/ ϵ^2 random independent trials, records the m answers of M_1 on w, returns most popular answer (accept or reject)

Define indicator $X_i = 1$ iff M_1 outputs correctly in trial iSet $X = \sum_i X_i$. Then $E[X] = \sum_i E[X_i] \ge (1/2 + \varepsilon)m$ Show: $\Pr[M_2$ (w) is wrong] = $\Pr[X < m/2] < 1/2^{\varepsilon^2 m/10}$

BPP = Bounded Probabilistic P

BPP = { L | L is recognized by a probabilistic polynomial-time TM with error at most 1/3 }

Why 1/3?

It doesn't matter what error value we pick, as long as the error is smaller than $1/2 - 1/n^k$ for some constant k

When the error is smaller than 1/2, we can apply the error reduction lemma and get $1/2^{n^c}$ error Checking Matrix Multiplication CHECK = { (M₁, M₂, N) | M₁, M₂ and N are n by n matrices and M₁ · M₂ = N }

If M_1 and M_2 are n x n matrices, computing $M_1 \cdot M_2$ takes $O(n^3)$ time normally, and $O(n^{2.372})$ time using very sophisticated methods.

Here is an O(n²)-time randomized algorithm for CHECK: Pick a 0-1 bit vector r at random, test if $M_1 \cdot M_2 r = Nr$ Claim: If $M_1 \cdot M_2 = N$, then $Pr[M_1 \cdot M_2 r = Nr] = 1$ If $M_1 \cdot M_2 \neq N$, then $Pr[M_1 \cdot M_2 r = Nr] \leq 1/2$ If we pick 20 random vectors and test them all, what is the probability of incorrect output?

Checking Matrix Multiplication CHECK = { (M_1, M_2, N) | M_1 , M_2 and N are matrices and $M_1 \cdot M_2 = N$ Pick a 0-1 bit vector r at random, test if $M_1 \cdot M_2 r = Nr$ Claim: If $M_1 \cdot M_2 \neq N$, then $Pr[M_1 \cdot M_2 r = Nr] \leq 1/2$ **Proof:** Define $M' = N - (M_1 \cdot M_2)$. M' is a non-zero matrix. Some row M'_i is non-zero, some entry M'_{i,i} is non-zero. Want to show: $Pr[M'r = \vec{0}] \le 1/2$ We have: $Pr[M'r = \vec{0}] \leq Pr[\langle M'_{i}, r \rangle = 0]$ = $\Pr[\sum_{k} M'_{i,k} \cdot r_{k} = 0]$ (def of inner product) $= \Pr[-r_{i} = (\sum_{k \neq i} M'_{i,k} \cdot r_{k})/M'_{i,i}] \leq 1/2$ Why $\leq 1/2$? After everything else is assigned on RHS, there is at most one value of r_i that satisfies the equation!

27

An arithmetic formula is like a Boolean formula, except it has +, -, and * instead of OR, NOT, AND.

- ZERO-POLY = { p | p is an arithmetic formula that is *identically* zero}
- Identically zero means: all coefficients are 0
- **Two examples of formulas in ZERO-POLY:**
- $(x + y) \cdot (x + y) x \cdot x y \cdot y 2 \cdot x \cdot y$ Abbreviate as: $(x + y)^2 - x^2 - y^2 - 2xy$ $(x^2 + a^2) \cdot (y^2 + b^2) - (x \cdot y - a \cdot b)^2 - (x \cdot b + a \cdot y)^2$

There is a rich history of polynomial identities in mathematics. Useful also in program testing!

Testing Univariate Polynomials

Let p(x) be a polynomial in one variable over Z

$$p(x) = a_0 + a_1 x + a_2 x^2 + ... + a_d x^d$$

Suppose p is hidden in a "black box" – we can only see its inputs and outputs. Want to determine if p is *identically* 0

Simply evaluate p on d+1 distinct values! Non-zero degree d polynomials have ≤ d roots. But the *zero polynomial* has every value as a root.

Testing Multivariate Polynomials

Let p(x₁,...,x_n) be a polynomial in n variables over Z

Suppose $p(x_1,...,x_n)$ is given to us, but as a very complicated arithmetic formula. Can we efficiently determine if p is identically 0?

If $p(x_1,...,x_n)$ is a product of m polynomials, each of which is a polynomial in t terms, $\prod_m (\sum_t stuff)$ Then expanding the expression into a \sum of \prod could take t^m time!

Big Idea: Evaluate p on *random values*

Theorem (Schwartz-Zippel-DeMillo-Lipton) Let $p(x_1, x_2, ..., x_n)$ be a *nonzero* polynomial, where each x_i has degree at most d. Let $F \subset Z$ be finite. If $a_1, ..., a_m$ are selected randomly from F, then: $Pr[p(a_1, ..., a_m) = 0] \leq dn/|F|$

Proof (by induction on n):

Base Case (n = 1):

$Pr[p(a_1) = 0] \le d/|F|$

Nonzero polynomials of degree d have most d roots, so at most d elements in F can make p zero

Inductive Step (n > 1): Assume true for n-1 and prove for n Let $p(x_1,...,x_n)$ be not identically zero. Write: $p(x_1,...,x_n) = p_0 + x_n p_1 + x_n^2 p_2 + ... + x_n^d p_d$ where x_n does not occur in any $p_i(x_1, \dots, x_{n-1})$ **Observe: At least one p_i is not identically zero** Suppose $p(a_1,...,a_n) = 0$. Let $q(x_n) = p(a_1,...,a_{n-1},x_n)$. Two cases: (1) $q \equiv 0$. That is, for all j, $p_i(a_1,...,a_{n-1}) = 0$ (including p_i) $Pr[(1)] \le Pr[p_i(a_1,...,a_{n-1}) = 0] \le (n-1)d/|F|$ by induction (2) q is not identically zero, but $q(a_n) = 0$. Note q is a univariate degree-d polynomial! Pr [(2)] \leq Pr[q(a_n) = 0] \leq d/|F| by univariate case Pr [(1) or (2)] \leq Pr[(1)] + Pr[(2)] \leq nd/|F|