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Lecture 23:
Finish PSPACE,

Randomized Complexity

6.1400
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TQBF = { 𝝓 | 𝝓 is a true quantified 
Boolean formula }

Theorem: TQBF is PSPACE-Complete
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TQBF as a Two-Player Game

Two players, called E and A

Given a fully quantified Boolean formula 

E chooses values for variables quantified by 

A chooses values for variables quantified by 

The game starts at the leftmost quantified variable

E wins if the resulting formula evaluates to true

A wins otherwise

yx [ (x  y)  (x  y) ]
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FG = { 𝝓 | 𝝓 is a QBF and Player E has a 
winning strategy in the Formula Game on 𝝓 }

Theorem: FG = TQBF, 
so FG is also PSPACE-complete
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The Geography Game

Two players take turns naming cities from 
anywhere in the world

Each city chosen must begin with the same letter 
that the previous city ended with

Austin → Newark → Kalamazoo → Opelika

Cities cannot be repeated

Whenever someone can no longer name 
any more cities, they lose and the other player wins
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Geography played on a directed graph

Nodes represent cities. Edges represent moves.
An edge (a,b) means: “if the current city is a, then 
a player could choose city b next”

But cities cannot be repeated! 
Each city can be visited at most once  

Whenever a player cannot move to any adjacent city,
they are “stuck”– they lose and the other player wins

Generalized Geography 

Like a two-player Hamiltonian path problem!

Given a graph and a node a, 
does Player 1 have a winning strategy starting from a?
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Generalized Geography 
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Generalized Geography 
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Who has a winning strategy in this game?
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Generalized Geography 
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Player 1 has a winning strategy!
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GG = { (G, a) | Player 1 has a winning strategy  
for geography on graph G starting at node a }

Theorem: GG is PSPACE-Complete

Last Time: GG is in PSPACE
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We show that FG P GG

Convert a quantified formula  into (G, a) such that:

Player E has winning strategy in  ( is true) 
if and only if 

Player 1 has winning strategy in (G, a)

For simplicity we assume  is of the form:

 = x1x2x3…xk [F]

where F is in CNF: an AND of ORs of literals.
(Quantifiers alternate, and first & last move is E’s)

GG is PSPACE-hard
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GG = { (G, a) | Player 1 has a winning strategy  
for geography on graph G starting at node a }

Theorem: GG is PSPACE-Complete
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But generalized versions of Chess, Go, Hex, 
Checkers, etc. (on n x n boards)

can be shown to be PSPACE-hard

Question: 
Is Chess a PSPACE-complete problem?

No, because determining whether a player 
has a winning strategy takes CONSTANT
time and space (OK, the constant is large…)
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Randomized / Probabilistic
Complexity
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Probabilistic TMs

Each nondeterministic step 
is called a coin flip

Each nondeterministic step 
has only two legal next 
moves (heads or tails)

A probabilistic TM M is a 
nondeterministic TM where:

The probability that M runs on a 
path p is: Pr [ p ] = 2-k

where k is the number of coin 
flips that occur on path p

1/4

1/4 1/4

1/16

1/32

1/32

1/16

1/16
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Probabilistic/Randomized Algorithms

Why study randomized algorithms?

1. They can be simpler than 
deterministic algorithms

2. They can be more efficient than 
deterministic algorithms

3. Can randomness be used to solve problems
provably much faster than 
deterministic algorithms? 

This is an open question!
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Pr [ M accepts w ] = 
p is a path on which  

M on w accepts

Pr [ p ]

Theorem: A language A is in NP if there is a 
nondeterministic polynomial time TM M such that 
for all strings w:

w ∉ A ⇒ Pr[ M accepts w ] = 0

w ∈ A ⇒ Pr[ M accepts w ] > 0

We can characterize NP in terms of probabilities:
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Theorem: A language A is in NP if there is a 
nondeterministic polynomial time TM M such that 
for all strings w:

w  A ⇒ Pr[ M accepts w ] = 0

w  A ⇒ Pr[ M accepts w ] > 0

Theorem: A language A is in coNP if there is a 
nondeterministic polynomial time TM M such that 
for all strings w:

w  A ⇒ Pr[ M accepts w ] > 0

w  A ⇒ Pr[ M accepts w ] = 0
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Definition. A probabilistic TM M decides a 
language A with error  if for all strings w,

w  A ⇒ Pr [ M accepts w ]  1 - 

w  A ⇒ Pr [ M doesn’t accept w ]  1 - 



23

Lemma:  Let  be a constant, 0 <  < 1/2, let k ∈ ℕ.

If M1 has error 1/2- and runs in t(n) time
then there is an equivalent machine M2 such that

M2 has error < 1/𝟐𝒏
𝒌

and runs in O(nk · t(n)/2) time

Proof Idea:

On input w, M2 runs M1 on w for m = 10 nk/2 random 
independent trials, records the m answers of M1 on w, 
returns most popular answer (accept or reject)

Error Reduction Lemma

Can use Chernoff Bound to show the error is < 𝟏/𝟐𝒏
𝒌

Probability that the Majority answer over 10m/2

trials is different from the 1/2+ prob event is  < 𝟏/𝟐𝒎
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Lemma:  Let  be a constant, 0 <  < 1/2, let k ∈ ℕ.

If M1 has error 1/2- and runs in t(n) time
then there is an equivalent machine M2 such that

M2 has error < 1/𝟐𝒏
𝒌

and runs in O(nk · t(n)/2) time

Proof Idea:

On input w, M2 runs M1 on w for m = 10 nk/2 random 
independent trials, records the m answers of M1 on w, 
returns most popular answer (accept or reject)

Error Reduction Lemma

Define indicator 𝑿𝒊 = 1 iff M1 outputs correctly in trial 𝒊
Set 𝑿 = σ𝒊𝑿𝒊. Then 𝑬 𝑿 = σ𝒊𝑬 𝑿𝒊 ≥ (1/2+)𝒎

Show: Pr[M2 (w) is wrong] = Pr[𝑿 < 𝒎/𝟐] < 𝟏/𝟐𝜺
𝟐𝒎/𝟏𝟎
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BPP = { L | L is recognized by a probabilistic 
polynomial-time TM with error at most 1/3 }

Why 1/3?

It doesn’t matter what error value we pick, 
as long as the error is smaller than 𝟏/𝟐 − 𝟏/𝒏𝒌 for 
some constant 𝒌

When the error is smaller than 𝟏/𝟐, we can apply 

the error reduction lemma and get 𝟏/𝟐𝒏
𝒄

error

BPP = Bounded Probabilistic P
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CHECK = { (M1,M2,N) | M1, M2 and N are
n by n matrices and M1 ∙ M2 = N }

If M1 and M2 are n x n matrices, computing M1 ∙ M2

takes O(n3) time normally, 
and O(n2.372) time using very sophisticated methods.

Here is an O(n2)-time randomized algorithm for CHECK:

Claim: If M1 ∙ M2 = N, then Pr [M1 ∙ M2r = Nr ] = 1
If M1 ∙ M2 ≠ N, then Pr [M1 ∙ M2r = Nr ]  1/2

Pick a 0-1 bit vector r at random, test if M1 ∙ M2r = Nr

Checking Matrix Multiplication

If we pick 20 random vectors and test them all, what is 
the probability of incorrect output?
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CHECK = { (M1,M2,N) | M1, M2 and N are
matrices and M1 ∙ M2 = N }

Claim: If M1 ∙ M2 ≠ N, then Pr [M1 ∙ M2r = Nr ]  1/2

Proof: Define M’ = N – (M1 ∙ M2). M’ is a non-zero matrix.
Some row M’i is non-zero, some entry M’i,j is non-zero.

Want to show: Pr[M’r = 𝟎] ≤ 1/2

We have: Pr[M’r = 𝟎] ≤ Pr[<M’i,r> = 0] 
= Pr[σ𝒌𝑴′𝒊,𝒌 ⋅ 𝒓𝒌 = 0]  (def of inner product)

= Pr[−𝒓𝒋 = (σ𝒌≠𝒋 𝑴′𝒊,𝒌 ⋅ 𝒓𝒌)/𝑴′𝒊,𝒋] ≤ 1/2  

Why ≤ 1/2? After everything else is assigned on RHS, 
there is at most one value of 𝒓𝒋 that satisfies the equation!

Pick a 0-1 bit vector r at random, test if M1 ∙ M2r = Nr

Checking Matrix Multiplication
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ZERO-POLY = { p | p is an arithmetic formula 
that is identically zero}

An arithmetic formula is like a Boolean formula, 
except it has +, –, and * instead of OR, NOT, AND. 

Two examples of formulas in ZERO-POLY:

(x + y)·(x + y) – x·x – y·y – 2·x·y
Abbreviate as:  (x + y)2 – x2 – y2 – 2xy
(x2 + a2)·(y2 + b2) – (x·y – a·b)2 – (x·b + a·y)2 

There is a rich history of polynomial identities in 
mathematics. Useful also in program testing!

Identically zero means: all coefficients are 0
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Testing Univariate Polynomials

Let p(x) be a polynomial in one variable over Z

Simply evaluate p on d+1 distinct values!
Non-zero degree d polynomials have ≤ d roots.
But the zero polynomial has every value as a root.

Suppose p is hidden in a “black box” –
we can only see its inputs and outputs.
Want to determine if p is identically 0

p(x) = a0 + a1x + a2x2+ … + adxd
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If p(x1,…,xn) is a product of m polynomials, each of 
which is a polynomial in t terms, ς𝒎(σ𝒕 𝒔𝒕𝒖𝒇𝒇)
Then expanding the expression into a σ of ς could 
take tm  time!

Big Idea: Evaluate p on random values

Suppose p(x1,…,xn)  is given to us, but as a very 
complicated arithmetic formula.
Can we efficiently determine if p is identically 0?

Testing Multivariate Polynomials

Let p(x1,…,xn) be a polynomial in n variables over Z
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Theorem (Schwartz-Zippel-DeMillo-Lipton)
Let p(x1,x2,…,xn) be a nonzero polynomial, where 
each xi has degree at most d.  Let F ½ Z be finite.

If a1,…, am are selected randomly from F, then:

Pr [ p(a1, …, am) = 0 ]  dn/|F|

Proof (by induction on n):

Base Case (n = 1):

Nonzero polynomials of degree d have most d 
roots, so at most d elements in F can make p zero 

Pr [ p(a1) = 0 ]  d/|F|
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Inductive Step (n > 1): Assume true for n-1 and prove for n

Let p(x1,…,xn) be not identically zero.

Write: p(x1,…,xn) = p0 + xnp1 + xn
2p2 + … + xn

dpd

where xn does not occur in any pi(x1,…,xn-1)

Observe: At least one pi is not identically zero

Suppose p(a1,…,an) = 0. Let q(xn) = p(a1,…,an-1,xn). Two cases:

(1) q ≡ 0. That is, for all j, pj(a1,…,an-1) = 0 (including pi)

(2) q is not identically zero, but q(an) = 0. 
Note q is a univariate degree-d polynomial!

Pr [ (1) or (2) ] ≤ Pr[(1)] + Pr[(2)] ≤ nd/|F|

Pr [ (1) ] ≤ Pr[pi(a1,…,an-1) = 0] ≤ (n-1)d/|F| by induction

Pr [ (2) ] ≤ Pr[q(an) = 0] ≤ d/|F| by univariate case


