
1

Lecture 23:
Finish PSPACE,

Randomized Complexity

6.1400

2

TQBF = { 𝝓 | 𝝓 is a true quantified
Boolean formula }

Theorem: TQBF is PSPACE-Complete

3

TQBF as a Two-Player Game

Two players, called E and A

Given a fully quantified Boolean formula

E chooses values for variables quantified by

A chooses values for variables quantified by

The game starts at the leftmost quantified variable

E wins if the resulting formula evaluates to true

A wins otherwise

yx [(x y) (x y)]

4

FG = { 𝝓 | 𝝓 is a QBF and Player E has a
winning strategy in the Formula Game on 𝝓 }

Theorem: FG = TQBF,
so FG is also PSPACE-complete

5

The Geography Game

Two players take turns naming cities from
anywhere in the world

Each city chosen must begin with the same letter
that the previous city ended with

Austin → Newark → Kalamazoo → Opelika

Cities cannot be repeated

Whenever someone can no longer name
any more cities, they lose and the other player wins

6

Geography played on a directed graph

Nodes represent cities. Edges represent moves.
An edge (a,b) means: “if the current city is a, then
a player could choose city b next”

But cities cannot be repeated!
Each city can be visited at most once

Whenever a player cannot move to any adjacent city,
they are “stuck”– they lose and the other player wins

Generalized Geography

Like a two-player Hamiltonian path problem!

Given a graph and a node a,
does Player 1 have a winning strategy starting from a?

7

Generalized Geography

b

a e

c

d

f

g

i

h

8

Generalized Geography

b

a e

c

d

f

g

i

h

Who has a winning strategy in this game?

9

Generalized Geography

b

a e

c

d

f

g

i

h

Player 1 has a winning strategy!

10

GG = { (G, a) | Player 1 has a winning strategy
for geography on graph G starting at node a }

Theorem: GG is PSPACE-Complete

Last Time: GG is in PSPACE

11

We show that FG P GG

Convert a quantified formula into (G, a) such that:

Player E has winning strategy in (is true)
if and only if

Player 1 has winning strategy in (G, a)

For simplicity we assume is of the form:

 = x1x2x3…xk [F]

where F is in CNF: an AND of ORs of literals.
(Quantifiers alternate, and first & last move is E’s)

GG is PSPACE-hard

12

a

c

x1

x2

xk

c1

c2

cn

x1

x1x2…xk (x1 xk x2)
 (x1 x2 x2)

 …

x2

x2

x1

xk

x2

T

T F

T F

F

13

a

c

x1

x2

xk

c1

c2

cn

x1

x1x2…xk (x1 xk x2)
 (x1 x2 x2)

 …

x2

x2

x1

xk

x2

T

T F

T F

F

14

a

x1

c1

x1

x1

x1

c

x1 [(x1 x1 x1)]

FT

15

GG = { (G, a) | Player 1 has a winning strategy
for geography on graph G starting at node a }

Theorem: GG is PSPACE-Complete

16

But generalized versions of Chess, Go, Hex,
Checkers, etc. (on n x n boards)

can be shown to be PSPACE-hard

Question:
Is Chess a PSPACE-complete problem?

No, because determining whether a player
has a winning strategy takes CONSTANT
time and space (OK, the constant is large…)

17

Randomized / Probabilistic
Complexity

18

Probabilistic TMs

Each nondeterministic step
is called a coin flip

Each nondeterministic step
has only two legal next
moves (heads or tails)

A probabilistic TM M is a
nondeterministic TM where:

The probability that M runs on a
path p is: Pr [p] = 2-k

where k is the number of coin
flips that occur on path p

1/4

1/4 1/4

1/16

1/32

1/32

1/16

1/16

19

Probabilistic/Randomized Algorithms

Why study randomized algorithms?

1. They can be simpler than
deterministic algorithms

2. They can be more efficient than
deterministic algorithms

3. Can randomness be used to solve problems
provably much faster than
deterministic algorithms?

This is an open question!

20

Pr [M accepts w] =
p is a path on which

M on w accepts

Pr [p]

Theorem: A language A is in NP if there is a
nondeterministic polynomial time TM M such that
for all strings w:

w ∉ A ⇒ Pr[M accepts w] = 0

w ∈ A ⇒ Pr[M accepts w] > 0

We can characterize NP in terms of probabilities:

21

Theorem: A language A is in NP if there is a
nondeterministic polynomial time TM M such that
for all strings w:

w A ⇒ Pr[M accepts w] = 0

w A ⇒ Pr[M accepts w] > 0

Theorem: A language A is in coNP if there is a
nondeterministic polynomial time TM M such that
for all strings w:

w A ⇒ Pr[M accepts w] > 0

w A ⇒ Pr[M accepts w] = 0

22

Definition. A probabilistic TM M decides a
language A with error if for all strings w,

w A ⇒ Pr [M accepts w] 1 -

w A ⇒ Pr [M doesn’t accept w] 1 -

23

Lemma: Let be a constant, 0 < < 1/2, let k ∈ ℕ.

If M1 has error 1/2- and runs in t(n) time
then there is an equivalent machine M2 such that

M2 has error < 1/𝟐𝒏
𝒌

and runs in O(nk · t(n)/2) time

Proof Idea:

On input w, M2 runs M1 on w for m = 10 nk/2 random
independent trials, records the m answers of M1 on w,
returns most popular answer (accept or reject)

Error Reduction Lemma

Can use Chernoff Bound to show the error is < 𝟏/𝟐𝒏
𝒌

Probability that the Majority answer over 10m/2

trials is different from the 1/2+ prob event is < 𝟏/𝟐𝒎

24

Lemma: Let be a constant, 0 < < 1/2, let k ∈ ℕ.

If M1 has error 1/2- and runs in t(n) time
then there is an equivalent machine M2 such that

M2 has error < 1/𝟐𝒏
𝒌

and runs in O(nk · t(n)/2) time

Proof Idea:

On input w, M2 runs M1 on w for m = 10 nk/2 random
independent trials, records the m answers of M1 on w,
returns most popular answer (accept or reject)

Error Reduction Lemma

Define indicator 𝑿𝒊 = 1 iff M1 outputs correctly in trial 𝒊
Set 𝑿 = σ𝒊𝑿𝒊. Then 𝑬 𝑿 = σ𝒊𝑬 𝑿𝒊 ≥ (1/2+)𝒎

Show: Pr[M2 (w) is wrong] = Pr[𝑿 < 𝒎/𝟐] < 𝟏/𝟐𝜺
𝟐𝒎/𝟏𝟎

25

BPP = { L | L is recognized by a probabilistic
polynomial-time TM with error at most 1/3 }

Why 1/3?

It doesn’t matter what error value we pick,
as long as the error is smaller than 𝟏/𝟐 − 𝟏/𝒏𝒌 for
some constant 𝒌

When the error is smaller than 𝟏/𝟐, we can apply

the error reduction lemma and get 𝟏/𝟐𝒏
𝒄

error

BPP = Bounded Probabilistic P

26

CHECK = { (M1,M2,N) | M1, M2 and N are
n by n matrices and M1 ∙ M2 = N }

If M1 and M2 are n x n matrices, computing M1 ∙ M2

takes O(n3) time normally,
and O(n2.372) time using very sophisticated methods.

Here is an O(n2)-time randomized algorithm for CHECK:

Claim: If M1 ∙ M2 = N, then Pr [M1 ∙ M2r = Nr] = 1
If M1 ∙ M2 ≠ N, then Pr [M1 ∙ M2r = Nr] 1/2

Pick a 0-1 bit vector r at random, test if M1 ∙ M2r = Nr

Checking Matrix Multiplication

If we pick 20 random vectors and test them all, what is
the probability of incorrect output?

27

CHECK = { (M1,M2,N) | M1, M2 and N are
matrices and M1 ∙ M2 = N }

Claim: If M1 ∙ M2 ≠ N, then Pr [M1 ∙ M2r = Nr] 1/2

Proof: Define M’ = N – (M1 ∙ M2). M’ is a non-zero matrix.
Some row M’i is non-zero, some entry M’i,j is non-zero.

Want to show: Pr[M’r = 𝟎] ≤ 1/2

We have: Pr[M’r = 𝟎] ≤ Pr[<M’i,r> = 0]
= Pr[σ𝒌𝑴′𝒊,𝒌 ⋅ 𝒓𝒌 = 0] (def of inner product)

= Pr[−𝒓𝒋 = (σ𝒌≠𝒋 𝑴′𝒊,𝒌 ⋅ 𝒓𝒌)/𝑴′𝒊,𝒋] ≤ 1/2

Why ≤ 1/2? After everything else is assigned on RHS,
there is at most one value of 𝒓𝒋 that satisfies the equation!

Pick a 0-1 bit vector r at random, test if M1 ∙ M2r = Nr

Checking Matrix Multiplication

28

ZERO-POLY = { p | p is an arithmetic formula
that is identically zero}

An arithmetic formula is like a Boolean formula,
except it has +, –, and * instead of OR, NOT, AND.

Two examples of formulas in ZERO-POLY:

(x + y)·(x + y) – x·x – y·y – 2·x·y
Abbreviate as: (x + y)2 – x2 – y2 – 2xy
(x2 + a2)·(y2 + b2) – (x·y – a·b)2 – (x·b + a·y)2

There is a rich history of polynomial identities in
mathematics. Useful also in program testing!

Identically zero means: all coefficients are 0

29

Testing Univariate Polynomials

Let p(x) be a polynomial in one variable over Z

Simply evaluate p on d+1 distinct values!
Non-zero degree d polynomials have ≤ d roots.
But the zero polynomial has every value as a root.

Suppose p is hidden in a “black box” –
we can only see its inputs and outputs.
Want to determine if p is identically 0

p(x) = a0 + a1x + a2x2+ … + adxd

30

If p(x1,…,xn) is a product of m polynomials, each of
which is a polynomial in t terms, ς𝒎(σ𝒕 𝒔𝒕𝒖𝒇𝒇)
Then expanding the expression into a σ of ς could
take tm time!

Big Idea: Evaluate p on random values

Suppose p(x1,…,xn) is given to us, but as a very
complicated arithmetic formula.
Can we efficiently determine if p is identically 0?

Testing Multivariate Polynomials

Let p(x1,…,xn) be a polynomial in n variables over Z

31

Theorem (Schwartz-Zippel-DeMillo-Lipton)
Let p(x1,x2,…,xn) be a nonzero polynomial, where
each xi has degree at most d. Let F ½ Z be finite.

If a1,…, am are selected randomly from F, then:

Pr [p(a1, …, am) = 0] dn/|F|

Proof (by induction on n):

Base Case (n = 1):

Nonzero polynomials of degree d have most d
roots, so at most d elements in F can make p zero

Pr [p(a1) = 0] d/|F|

32

Inductive Step (n > 1): Assume true for n-1 and prove for n

Let p(x1,…,xn) be not identically zero.

Write: p(x1,…,xn) = p0 + xnp1 + xn
2p2 + … + xn

dpd

where xn does not occur in any pi(x1,…,xn-1)

Observe: At least one pi is not identically zero

Suppose p(a1,…,an) = 0. Let q(xn) = p(a1,…,an-1,xn). Two cases:

(1) q ≡ 0. That is, for all j, pj(a1,…,an-1) = 0 (including pi)

(2) q is not identically zero, but q(an) = 0.
Note q is a univariate degree-d polynomial!

Pr [(1) or (2)] ≤ Pr[(1)] + Pr[(2)] ≤ nd/|F|

Pr [(1)] ≤ Pr[pi(a1,…,an-1) = 0] ≤ (n-1)d/|F| by induction

Pr [(2)] ≤ Pr[q(an) = 0] ≤ d/|F| by univariate case

