6.1400

Lecture 24: Finish Randomized Complexity, Begin Review

Final Exam Information

Who: You **On What: Everything through BPP (today)** With What: One sheet (double-sided) of notes are allowed When: Wed, May 21 1:30PM - 4:30PM Where: **HERE**, 37-212 Why: Because you will ace it How: By studying

Practice final exam coming out soon!

The Plan For The Next Two Lectures

Today: We'll finish randomized complexity, and start reviewing the major topics

Thursday: When the review is done... Ask Me Anything!

Ask questions in person, or post questions anonymously on piazza. I will answer them in class on Tuesday!

VOTE VOTE VOTE

For your *favorite* course on automata and complexity

Please complete the online subject evaluation for 6.1400

Randomized / Probabilistic Complexity

Probabilistic TMs

A probabilistic TM M is a nondeterministic TM where: **Each nondeterministic step** is called a coin flip Each nondeterministic step has only two legal next moves (heads or tails) The probability that M runs on a branch b is: $Pr[b] = 2^{-k}$ where k is the number of coin flips that occur on branch b

Definition. A probabilistic TM M decides a language A with error ε if for all strings w,

 $w \in A \Rightarrow Pr [Maccepts w] \ge 1 - \varepsilon$

 $w \notin A \Rightarrow Pr [M doesn't accept w] \ge 1 - \varepsilon$

Theorem: A language A is in NP if there is a nondeterministic polynomial time TM M such that for all strings w:

 $w \in A \Rightarrow Pr[M accepts w] > 0$ $w \notin A \Rightarrow Pr[M accepts w] = 0$

BPP = Bounded Probabilistic P

BPP = { L | L is recognized by a probabilistic polynomial-time TM with error at most 1/3 }

Why 1/3?

It doesn't matter what error value we pick, as long as the error is smaller than 1/2.

When the error is smaller than 1/2, we can make it very small by repeatedly running the TM.

An arithmetic formula is like a Boolean formula, except it has +, –, and * instead of OR, NOT, AND.

ZERO-POLY = { p | p is an arithmetic formula that is *identically* zero}

Identically zero means: all coefficients are 0

Theorem: $ZERO-POLY \in BPP$

Big Idea: Evaluate p on *random values*

Theorem (Schwartz-Zippel-DeMillo-Lipton) Let $p(x_1, x_2, ..., x_n)$ be a *nonzero* polynomial, where each x_i has degree at most d. Let $F \subset Z$ be finite. If $a_1, ..., a_n$ are selected randomly from F, then: $Pr[p(a_1, ..., a_n) = 0] \leq dn/|F|$

ZERO-POLY = { p | p is an arithmetic formula that is *identically* zero} Theorem: $ZERO-POLY \in BPP$ **Proof:** Suppose n = |p|. Then p has $k \le n$ variables, and the *degree* of each variable is at most **n**. Algorithm A: Given arithmetic formula p, For all i = 1,...,k, choose r_i randomly from {1,...,3 n^2 } If $p(r_1, ..., r_k) = 0$ then output zero else output nonzero **Observe A runs in polynomial time.** If $p \equiv 0$, then Pr[A(p) outputs zero] = 1If $p \not\equiv 0$, then by the Schwartz-Zippel lemma,

 $Pr[A(p) \text{ outputs } zero] = Pr_r[p(r) = 0] \le n^2/3n^2 \le 1/3$

Checking Equivalence of Arithmetic Formulas ZERO-POLY = { p | p is an arithmetic formula that is identically zero} Theorem: ZERO-POLY ∈ BPP

EQUIV-POLY = { (p,q) | p and q are arithmetic formulas computing the same polynomial} Corollary: EQUIV-POLY \in BPP **Proof:** (p,q) in EQUIV-POLY \Leftrightarrow p-q in ZERO-POLY Therefore EQUIV-POLY \leq_P ZERO-POLY and we get a BPP algorithm for EQUIV-POLY. See Sipser 10.2 for an application to testing equivalence of simple programs!

Equivalence of Arithmetic Formulas

EQUIV-POLY = { (p,q) | p and q are arithmetic formulas computing the same polynomial}

Corollary: EQUIV-POLY \in BPP

There is a big contrast with Boolean formulas!

EQUIV = { $(\phi, \psi) \mid \phi$ and ψ are Boolean formulas computing the same function}

We showed EQUIV is in coNP. It's also coNP-complete! TAUTOLOGY \leq_P EQUIV: map ϕ to (ϕ , True)

ZERO-POLY = { p | p is an arithmetic formula that is identically zero}

Theorem: $ZERO-POLY \in BPP$

It is not known how to solve ZERO-POLY efficiently *without* randomness!

Thm [KI'04, AvM'11] IF ZERO-POLY \in P THEN NEW LOWER BOUNDS FOLLOW (not P \neq NP, but still a breakthrough!)

BPP = { L | L is recognized by a probabilistic polynomial-time TM with error at most 1/3 }

$\mathsf{Is} \; \mathsf{BPP} \subseteq \mathsf{NP?}$

Is $BPP \subseteq PSPACE$?

Is NP \subseteq BPP?

IS BPP = EXPTIME?

Definition: A language A is in RP (Randomized P) if there is a nondeterministic polynomial time TM M such that for all strings x:

 $x \notin A \Rightarrow Pr[M(x) \text{ accepts}] = 0$ $x \in A \Rightarrow Pr[M(x) \text{ accepts}] > 2/3$

NONZERO-POLY = { p | p is an arithmetic formula that is not identically zero}

Theorem: NONZERO-POLY \in RP (Our proof of ZERO-POLY in BPP shows this)

$IS RP \subseteq NP?$

$IS RP \subseteq BPP?$

