6.1400

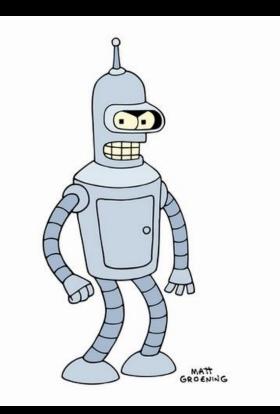
Lecture 3: Nondeterminism and Regular Expressions These slides are on the webpage!

6.1400

Announcements:

- Pset 0 is out, due tomorrow 11:59pm
 - Latex source of hw on Piazza
 - Pset 1 coming out Thursday
- No class next Tuesday (...because next week Monday classes will be on Tuesday)

Deterministic Finite Automata

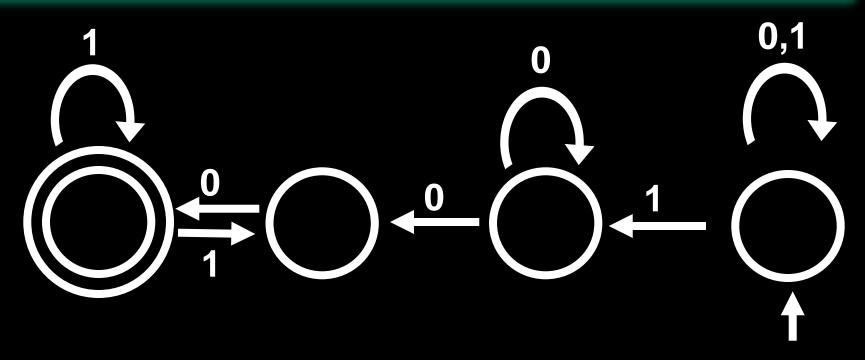


Computation with finite memory Regular Languages = Sets of strings accepted by DFAs

Non-Deterministic Finite Automata

Computation with finite memory and magical guessing

Non-deterministic Finite Antomata (NFA)



This NFA recognizes: {w | w contains 100}

An NFA accepts string x if there is some path reading in x that reaches some accept state from some start state

Every NFA can be perfectly simulated by some DFA!

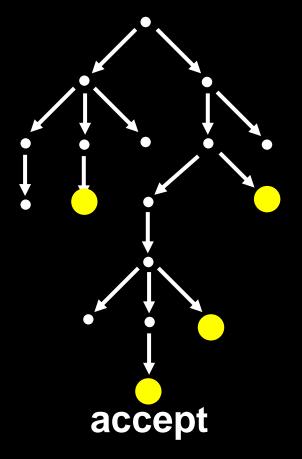
Theorem: For every NFA N, there is a DFA M such that L(M) = L(N)

Corollary: A language A is regular if and only if A is recognized by an NFA

Corollary: A is regular iff A^R is regular left-to-right DFAs \equiv right-to-left DFAs

From NFAs to DFAs

Input: NFA N = (Q, Σ , δ , Q₀, F) Output: DFA M = (Q', Σ , δ' , q₀', F')



To learn if NFA N accepts, we could do the computation of N *in parallel*, maintaining the set of *all* possible states that can be reached

Idea: Set Q' = 2^Q

From NFAs to DFAs: Subset Construction Input: NFA N = (Q, Σ , δ , Q_0 , F) Output: DFA M = (Q', Σ , δ' , q_0' , F') Q' = 2^Q $\delta': \mathbf{Q}' \times \mathbf{\Sigma} \rightarrow \mathbf{Q}'$ For $S \in Q', \sigma \in \Sigma$: $\delta'(S,\sigma) = \bigcup \varepsilon(\delta(q,\sigma)) *$ q∈S $q_0' = \epsilon(Q_0)$ $F' = \{ S \in Q' \mid f \in S \text{ for } some f \in F \}$ For $S \subset Q$, the ϵ -closure of S is $\varepsilon(S) = \{r \in Q \text{ reachable from some } q \in S\}$ by taking zero or more *\varepsilon*-transitions}

Reverse Theorem for Regular Languages

The reverse of a regular language is also a regular language

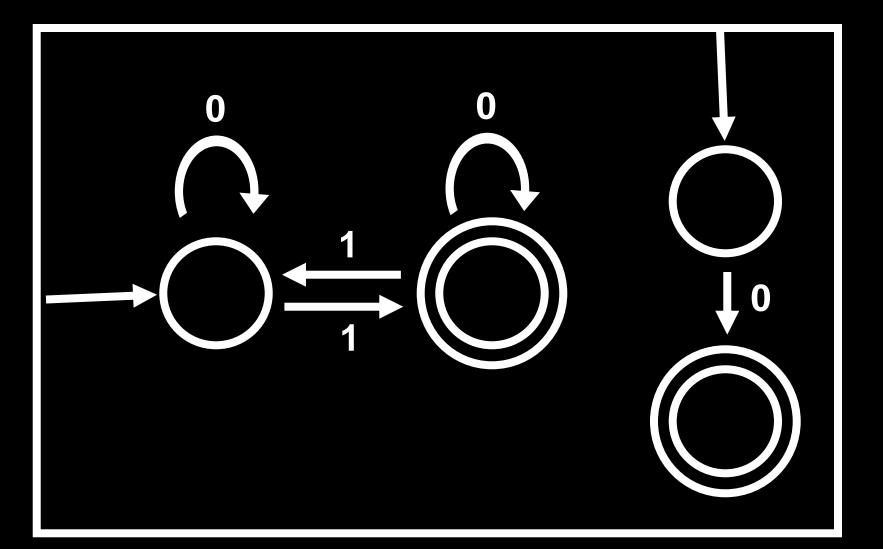
If a language can be recognized by a DFA that reads strings from right to left, then there is an "normal" DFA that accepts the same language

Proof Sketch?

Given a DFA for a language L, "reverse" its arrows, and flip its start and accept states, getting an NFA. Convert that NFA back to a DFA! Using NFAs instead of DFAs can make proofs about regular languages *much* easier!

Remember this on homework/exams!

Union Theorem using NFAs?



Some Operations on Languages

- $\rightarrow \text{Union: } A \cup B = \{ w \mid w \in A \text{ or } w \in B \}$
- $\implies \text{Intersection: } A \cap B = \{ w \mid w \in A \text{ and } w \in B \}$
- $\frown Complement: \neg A = \{ w \in \Sigma^* \mid w \notin A \}$
- $\implies \text{Reverse: } A^{\mathsf{R}} = \{ w_1 \dots w_k \mid w_k \dots w_1 \in \mathsf{A}, w_i \in \mathsf{\Sigma} \}$

Concatenation: $A \cdot B = \{ vw \mid v \in A \text{ and } w \in B \}$

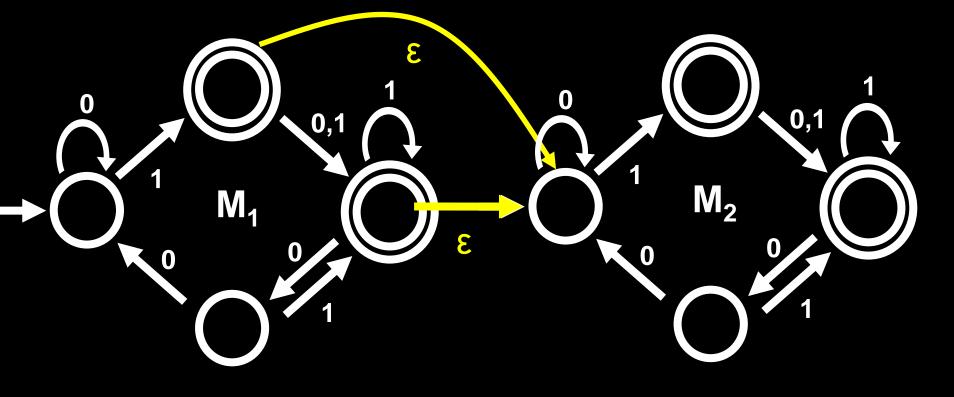
Star: $A^* = \{ s_1 \dots s_k \mid k \ge 0 \text{ and each } s_i \in A \}$ $A^* = \text{set of all strings over alphabet } A$

Regular Languages are closed under concatenation

Concatenation: $A \cdot B = \{vw \mid v \in A \text{ and } w \in B \}$

Given DFAs M₁ for A and M₂ for B, connect

the accept states of M_1 to the start state of M_2

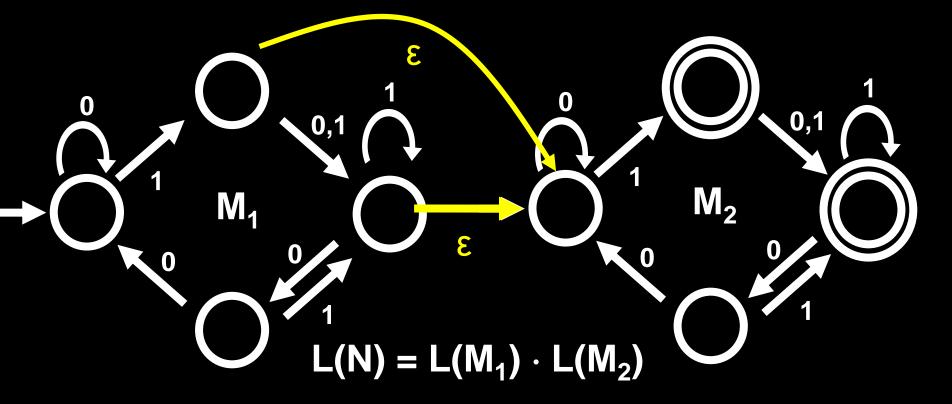


Regular Languages are closed under concatenation

Concatenation: $A \cdot B = \{vw \mid v \in A \text{ and } w \in B \}$

Given DFAs M₁ for A and M₂ for B, connect

the accept states of M_1 to the start state of M_2

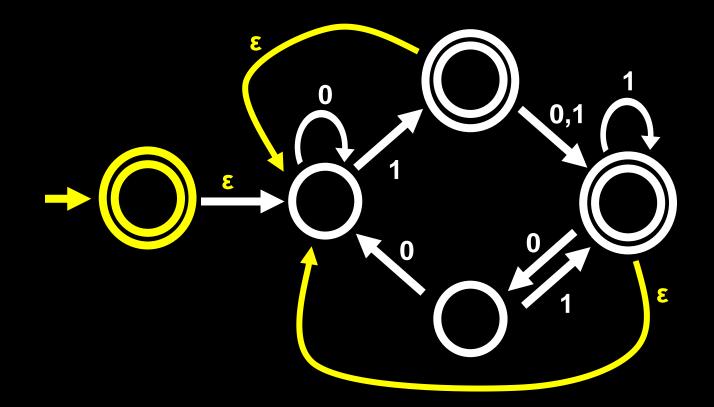


Regular Languages are closed under star

 $A^* = \{ s_1 \dots s_k \mid k \ge 0 \text{ and each } s_i \in A \}$

Let M be a DFA

We construct an NFA N that recognizes L(M)*



Formally, the construction is: Input: DFA M = (Q, Σ , δ , q_1 , F) **Output:** NFA N = (Q', Σ , δ' , {q₀}, F') $\mathbf{Q'} = \mathbf{Q} \cup \{\mathbf{q}_0\}$ $F' = F \cup \{q_0\}$ {δ**(q**,a)} if $q \in Q$ and $a \neq \varepsilon$ ${q_1}$ if $q \in F$ and $a = \varepsilon$ if $q = q_0$ and $a = \varepsilon$ ${q_1}$ δ'**(q,a) =** if $q = q_0$ and $a \neq \epsilon$ \varnothing else otin

Regular Languages are closed under star

How would we *prove* that the NFA construction works?

Want to show: $L(N) = L(M)^*$

1. $L(N) \supseteq L(M)^*$

2. L(N) ⊆ L(M)*

1. $L(N) \supseteq L(M)^*$

Let $\mathbf{w} = \mathbf{w}_1 \cdots \mathbf{w}_k$ be in L(M)* where $\mathbf{w}_1, \dots, \mathbf{w}_k \in L(M)$ We show: N accepts w by induction on k **Base Cases:** \checkmark k = 0 (w = ε) ✓ k = 1 (w ∈ L(M) and L(M) ⊆ L(N)) **Inductive Step:** Let $k \ge 1$ be an integer I.H. N accepts all strings $v = v_1 \cdots v_k \in L(M)^*$, $v_i \in L(M)$ Let $u = u_1 \cdots u_k u_{k+1} \in L(M)^*$, $u_i \in L(M)$ N accepts $u_1 \cdots u_k$ (by I.H.) and M accepts u_{k+1} imply that N also accepts u since N has *e*-transitions from final states to start state of M

2. L(N) ⊆ L(M)*

Let w be accepted by N; we want to show $w \in L(M)^*$ If $w = \varepsilon$, then $w \in L(M)^*$ I.H. If N accepts u and N accepts u, so takes k *ɛ-transitions*, **u** ∈ L(M)* then $u \in L(M)^*$ Let w be accepted By I.H. by N with k+1 final $w = uv \in L(M)^*$ *e*-transitions. start Write w as w=uv, $\in L(M)$ where v is the substring read after the last etransition accept

Regular Languages are closed under all of the following operations: Union: $A \cup B = \{ w \mid w \in A \text{ or } w \in B \}$ Intersection: $A \cap B = \{ w \mid w \in A \text{ and } w \in B \}$ Complement: $\neg A = \{ w \in \Sigma^* \mid w \notin A \}$ **Reverse:** $A^{R} = \{ W_{1} ... W_{k} \mid W_{k} ... W_{1} \in A, W_{i} \in \Sigma \}$ **Concatenation:** $A \cdot B = \{vw \mid v \in A \text{ and } w \in B\}$ Star: $A^* = \{ s_1 \dots s_k \mid k \ge 0 \text{ and each } s_i \in A \}$

Regular Expressions: Computation as Description

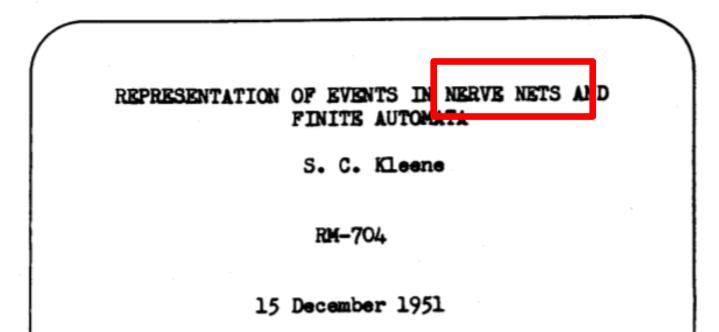
A different way of thinking about computation: What is the complexity of describing the strings in the language?

DFAs find "patterns" in strings; regular expressions give us a way to describe them precisely

During the "nerve net" hype in the 1950s...

U. S. AIR FORCE PROJECT RAND

RESEARCH MEMORANDUM



Inductive Definition of Regexp

Let Σ be an alphabet. We define the regular expressions over Σ inductively:

For all $\sigma \in \Sigma$, σ is a regexp

is a regexp

Ø is a regexp

If R₁ and R₂ are both regexps, then (R₁R₂), (R₁ + R₂), and (R₁)* are regexps

Examples: ε, 0, (1)*, (0+1)*, ((((0)*1)*1) + (10))

Precedence Order:

then • then +

Example: $R_1^*R_2 + R_3 = ((R_1^*) \cdot R_2) + R_3$

Definition: Regexps Represent Languages The regexp $\sigma \in \Sigma$ represents the language $\{\sigma\}$ The regexp **E** represents {E} The regexp \varnothing represents \checkmark If R₁ and R₂ are regular expressions representing L₁ and L₂ then: (R_1R_2) represents $L_1 \cdot L_2$ $(R_1 + R_2)$ represents $L_1 \cup L_2$ $(R_1)^*$ represents L_1^*

Example: (10 + 0*1) represents $\{10\} \cup \{0^{k}1 \mid k \ge 0\}$

Regexps Represent Languages

For every regexp R, define L(R) to be the language that R represents

> A string $w \in \Sigma^*$ is accepted by R (or, w matches R) if $w \in L(R)$

Examples: 0, 010, and 01010 match (01)*0 110101110101100 matches (0+1)*0

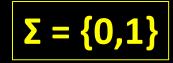
L((0+1)*0) = {w ∈ {0,1}* | w ends in a 0}



Give a regular expression for ...

{ w | w contains 001 }

(0+1)*001(0+1)*



What language does the regexp Ø* represent? {ε}

Give a regular expression for ...

$\{w \mid w \text{ has length} \ge 3 \text{ and its } 3rd \text{ symbol is } 0\}$

(0+1)(0+1)0(0+1)*

Give a regular expression for ...

{ w | w = ε or every odd position in w is a 1 }

$(1(0 + 1))^*(1 + \varepsilon)$

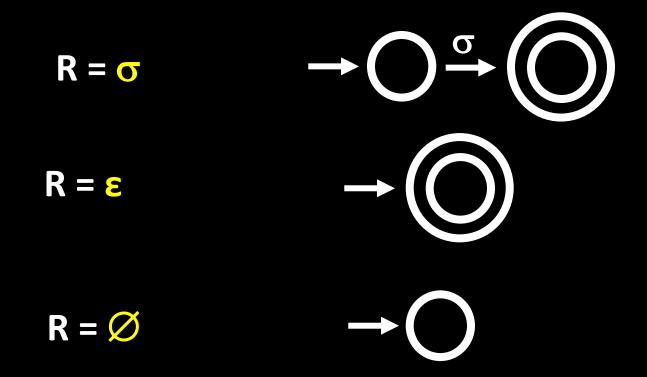
How expressive are regular expressions?

DFAs \equiv **NFAs** \equiv **Regular Expressions!**

L can be represented by some regexp ⇔ L is regular

L can be represented by some regexp ⇒ L is regular

Given any regexp R, we will construct an NFA N such that R represents L(N) Proof by induction on the *length* of the regexp R: Base Cases (R has length 1):



Consider a regexp R of length k > 1

Three possibilities for R:

 $R = R_1 + R_2$ $R = R_1 R_2$ $R = (R_1)^*$

Consider a regexp R of length k > 1

Three possibilities for R:

 $R = R_1 + R_2$ $R = R_1 R_2$ $R = (R_1)^*$

Consider a regexp R of length k > 1

Three possibilities for R:

 $R = R_1 + R_2$ By induction, R_1 and R_2 represent
some regular languages, L_1 and L_2 $R = R_1 R_2$ But $L(R) = L(R_1 + R_2) = L_1 \cup L_2$ $R = (R_1)^*$ So L(R) is regular, by the union theorem!

Consider a regexp R of length k > 1

Three possibilities for R:

 $R = R_1 + R_2$ By induction, R_1 and R_2 represent
some regular languages, L_1 and L_2 $R = R_1 R_2$ But $L(R) = L(R_1 \cdot R_2) = L_1 \cdot L_2$ $R = (R_1)^*$ Thus L(R) is regular because regular
languages are closed under concatenation

Consider a regexp R of length k > 1

Three possibilities for R:

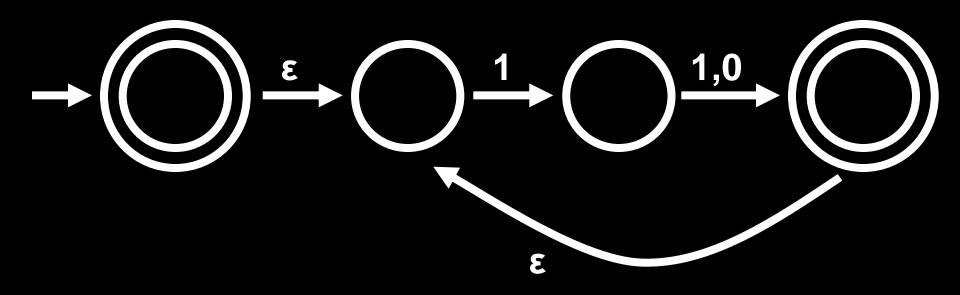
$\mathbf{R} = \mathbf{R}_1 + \mathbf{R}_2$	By induction, R ₁ represents
$\mathbf{R} = \mathbf{R}_1 \mathbf{R}_2$	a regular language L ₁
	But $L(R) = L(R_1^*) = L_1^*$
R = (R ₁)*	Thus L(R) is regular because regular
	languages are closed under star

Consider a regexp R of length k > 1

Three possibilities for R:

$\mathbf{R} = \mathbf{R}_1 + \mathbf{R}_2$	By induction, R ₁ represents
	a regular language L ₁
$\mathbf{R} = \mathbf{R}_1 \mathbf{R}_2$	But $L(R) = L(R_1^*) = L_1^*$
R = (R ₁)*	Thus L(R) is regular because regular
	languages are closed under star
Therefore:	If L is represented by a regexp,
	then L is regular

An Algorithm for Converting Regexps to NFAs! Give an NFA that accepts the language represented by (1(0 + 1))*



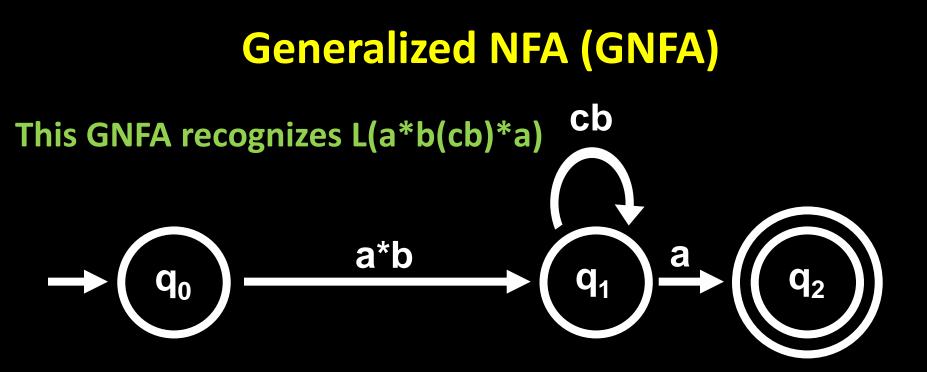
Regular expression: (1(0+1))*

Generalized NFAs (GNFA)

L can be represented by a regexp L is a regular language

Idea: Transform a DFA for L into a regular expression by *removing states* and re-labeling the arcs with *regular expressions*

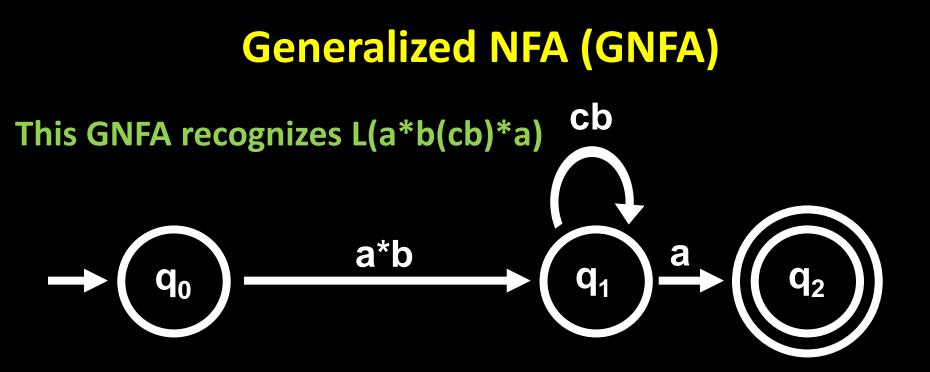
Rather than reading in just 0 or 1 letters from the string on an arc, we can read in *entire substrings*



Accept string $x \Leftrightarrow$ there is *some path* of regexps $R_1, ..., R_k$ from start state to final state such that x matches $R_1 \cdots R_k$

Is aaabcbcba accepted or rejected? accepted

- Is bba accepted or rejected? rejected
- Is bcba accepted or rejected? accepted



Accept string $x \Leftrightarrow$ there is *some path* of regexps $R_1, ..., R_k$ from start state to final state such that x matches $R_1 \cdots R_k$

> Every NFA is also a GNFA. Every regexp can be converted into a GNFA with just two states!