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Abstract

We present a deterministic, truly subquadratic algorithm for offline (1+ε)-approximate near-
est or farthest neighbor search (in particular, the closest pair or diameter problem) in Hamming
space in any dimension d ≤ nδ, for a sufficiently small constant δ > 0. The running time of the

algorithm is roughly n2−ε1/2+O(δ)

for nearest neighbors, or n2−Ω(
√
ε/ log(1/ε)) for farthest. The

algorithm follows from a simple combination of expander walks, Chebyshev polynomials, and
rectangular matrix multiplication.

We also show how to eliminate errors in the previous Monte Carlo randomized algorithm
of Alman, Chan, and Williams [FOCS’16] for offline approximate nearest or farthest neighbors,

and obtain a Las Vegas randomized algorithm with expected running time n2−Ω(ε1/3/ log(1/ε)).
Finally, we note a simplification of Alman, Chan, and Williams’ method and obtain a slightly

improved Monte Carlo randomized algorithm with running time n2−Ω(ε1/3/ log2/3(1/ε)).
As one application, we obtain improved deterministic and randomized (1+ε)-approximation

algorithms for MAX-SAT.
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1 Introduction

We consider the well-known approximate nearest neighbor search (ANN) problem in high dimen-
sions: preprocess a set B of n points in d-dimensional space so that given a query point r, a
point b ∈ B can be found that is within a factor 1 + ε of the closest distance to r. It is hard to
overstate the importance of the problem, which has a wide range of applications, from databases
to machine learning. We will concentrate on the case of Hamming space {0, 1}d, as known em-
bedding techniques can reduce, for example, the `1 or `2 metric case to the Hamming case, even
deterministically [AIR18, Ind07].

Deterministic offline ANN. Standard techniques for high-dimensional ANN [AIR18], such as
locality-sensitive hashing (LSH) [HIM12, DIIM04, AI06, AINR14, AR15, ALRW17] and dimen-
sionality reduction [JL84, HIM12, KOR00], all rely on Monte Carlo randomization. A fundamental
question is whether these techniques can be efficiently derandomized. Finding Las Vegas random-
ized algorithms with comparable performance is already a nontrivial problem, and has been the
subject of several recent papers [Pag18, Ahl17, Wei19]. Deterministic algorithms seem even more
challenging. A deterministic algorithm with subquadratic preprocessing and sublinear query time
was given by Indyk [Ind00], but only for computing (3 + ε)-approximations.

In this paper, we focus on the offline (or batched) setting, where a set R of n query (“red”)
points is given in advance, along with a set B of n data (“blue”) points. The offline problem
is sufficient for many applications, for example, computing the (monochromatic or bichromatic)
closest pair. At the end of his SODA 2000 paper [Ind00], Indyk explicitly raised the question of
finding a truly subquadratic deterministic (1 + ε)-approximation algorithm for computing closest
(and farthest) pairs.

Our main result is a deterministic algorithm for offline (1 + ε)-approximate nearest neighbor

search in Hamming space, running in n2−ε1/2+O(δ)
time for any dimension d ≤ nδ for a sufficiently

small constant δ > 0. The running time almost matches a previous randomized Monte Carlo
algorithm for approximate closest pair or offline ANN, by G. Valiant [Val12] (although Valiant’s
result was later superseded by Alman, Chan, and Williams [ACW16]).

Our algorithm consists of two parts:

(i) Solving the “main” case where the closest pair distance is not too small, and

(ii) Reducing the general case to the main case.

In part (i), we solve the main case using Chebyshev polynomials and rectangular matrix multipli-
cation, as in previous Monte Carlo algorithms by Valiant and Alman et al. It has already been
observed [ACW16, Remark 3] that such techniques can yield a deterministic algorithm with running

time n
2−Ω(

√
ε/ log( d

ε logn
))

. The fraction d
ε logn can be made small by applying dimensionality reduc-

tion techniques [KOR00] to bring d down to O((1/ε)2 log n); however, dimensionality reduction
requires randomization! For superlogarithmic dimensions, further ideas are needed.

The main new idea we propose is to use expander walks. Random walks in expander graphs
are well-studied in theoretical computer science (e.g., see [HLW06, Vad11]). Our application to
derandomizing ANN is simple in hindsight—simple enough (at least in a warm-up version without
Chebyshev polynomials) to provide a clean “textbook” application of expander walks. It may not
be obvious that the expander walk approach can be combined with Chebyshev polynomials, but a
careful reexamination of known analyses of such walks [AFWZ95] shows that this is indeed possible.
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Part (ii), reducing the general case to the main case (i.e., “densification” to increase the dis-
tance threshold), was already done implicitly, in Indyk’s deterministic (3 + ε)-approximation al-
gorithm [Ind00]. He used a pairwise-independent family of hash functions, together with error-
correcting codes. However, the dependence on ε gets worse with the reduction (we would lose an
entire factor of ε in the exponent). Here we describe an improved reduction using k-wise indepen-
dence for derandomization (so only a factor of εO(δ) is lost).

It should be noted that Karppa et al. [KKKÓC16] has given a deterministic algorithm for a
similar problem they called outlier correlations, which can probably be used to solve part (i), but
they obtained time bounds of the form n2−Ω(ε), which is worse than ours. (Karppa et al. did not
explicitly consider finding closest pairs with 1 + ε approximation factor for arbitrary point sets,
and thus did not address part (ii) at all.) Their method also used expanders, but their description
appears more complicated.

Our techniques are also applicable to (1 + ε)-approximate offline farthest neighbor search, and
in particular, computing the farthest pair, i.e., diameter. The deterministic running time is in fact
slightly better (n2−Ω(

√
ε/ log(1/ε))) here.

Las Vegas offline ANN. If the goal is to just eliminate errors in the output, better results are
possible with randomized Las Vegas algorithms. As mentioned, there were a series of papers on
turning LSH into Las Vegas algorithms by Pagh (SODA 2016) [Pag18], Ahle (FOCS 2017) [Ahl17],
and Wei (SODA 2019) [Wei19], but any (data-oblivious or data-dependent) LSH-based method
requires at least n2−Θ(ε) time [MNP06, OWZ14] to answer n queries.

For offline approximate nearest (or farthest) neighbor search, we show how to obtain a Las Vegas

algorithm with n2−Ω(ε1/3/ log(1/ε)) running time, matching our earlier Monte Carlo result [ACW16].
Not only is the time bound better than LSH for ε sufficiently small, but the approach is also less
involved than the previous Las-Vegas-ification approaches for LSH [Pag18, Ahl17, Wei19]. Essen-
tially, we show that the simple idea of using random partitions instead of random samples, as first
suggested by Indyk [Ind00] (and also used in part in subsequent methods [Pag18, Ahl17, Wei19]),
is compatible with the polynomial method from [ACW16], after some technical modifications.

Monte Carlo offline ANN. Finally, returning to Monte Carlo algorithms, we reexamine Al-
man, Chan, and Williams’ method and observe a small improvement of the running time to

n2−Ω(ε1/3/ log2/3(1/ε)), which is currently the best for ε sufficiently small. The improvement may
be minor, but the approach simplifies one main part of Alman et al.’s probabilistic polynomial
construction, using an idea reminiscent to LSH, interestingly.

An application: MAX-SAT approximation. Our improved polynomial constructions have
other applications beyond approximate nearest or farthest neighbors. For example, one application
is to MAX-SAT, finding an assignment satisfying a maximum number of clauses in a given CNF
formula with n variables and C clauses. We obtain an (1 + ε)-approximation algorithm running
in O∗((2−Ω(

√
ε/ log(1/ε)))n) deterministic time, and O∗((2−Ω(ε1/3/ log2/3(1/ε)))n) randomized

Monte Carlo time, where the O∗ notation hides polynomial factors in n and C. Previously, a
randomized (1 + ε)-approximation algorithm for MAX-k-SAT running in O∗((2 − Ω(ε/k))n) time
was given by Hirsch [Hir03], which was improved by the deterministic algorithms by Escoffier,
Paschos, and Tourniaire [EPT14] running in O∗((2− Ω(ε))n) time, which in turn are improved by
our results here when ε is sufficiently small.
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Our deterministic algorithm for MAX-SAT shows that the problem of approximating MAX-
SAT has a fine-grained reduction (with no increase in variables) to approximating MAX-LIN (the
problem of optimally satisfying XOR constraints); the latter can be easily solved using a red-blue
farthest neighbor algorithm.

2 Preliminaries: ANN via the Polynomial Method

Our algorithms make use of the “polynomial method in algorithm design,” a technique used in many
recent works on all-pairs shortest paths, the orthogonal vectors problem, exact and approximate
nearest neighbor search, and related problems [Wil18, Wil14, AWY15, AW15, CW16, ACW16,
Cha18, Che18, Alm19]. For two sets R,B ⊆ {0, 1}d each of size n, a value t, and ε > 0, consider
the decision version of the approximate closest pair problem: find a pair (r, b) ∈ R × B with
Hamming distance at most (1 + ε)t, or conclude that all pairs have Hamming distance more than

t. We design a multivariate nonnegative polynomial P
(d,s,ε)
≤t : {0, 1}d → R≥0, such that

• if x1 + · · ·+ xd > (1 + ε)t, then P
(d,s,ε)
≤t (x1, . . . , xd) ≤ 1;

• if x1 + · · ·+ xd ≤ t, then P
(d,s,ε)
≤t (x1, . . . , xd) > s.

(In other words, P
(d,s,ε)
≤t is a “polynomial threshold function” representation [ACW16] of an approx-

imate (unweighted) threshold predicate; for example, for t = d/2, it is an approximate majority.)

Let P ′(x1, . . . , xd, y1, . . . , yd) = P
(d,s,ε)
≤t ((x1 − y1)2, . . . , (xd − yd)2). Then for any two sets of

√
s

points X and Y in {0, 1}d, we can solve the approximate closest pair decision problem for X and
Y by computing P ′′(X,Y ) =

∑
x∈X

∑
y∈Y P

′(x, y). If all pairs in X × Y have Hamming distance
more than (1 + ε)t, then P ′′(X,Y ) ≤ s. If some pair has distance at most t, then P ′′(X,Y ) > s.

Suppose P
(d,s,ε)
≤t has m monomials and degree q. Then P ′ has m′ ≤ 3qm monomials, so we can

write P ′ in the form

P ′(x, y) =
m′∑
`=1

c` ·

(
d∏
i=1

x
ai,`
i

)
·

 d∏
j=1

y
bj,`
j

 .

Defining functions f, g : {0, 1}d → Zm′ by f(x)[`] := c` ·
∏d
i=1 x

ai,`
i and g(y)[`] :=

∏d
j=1 y

bj,`
j , we

see that P ′(x, y) = 〈f(x), g(y)〉. Thus by letting f(X) :=
∑

x∈X f(x) and g(Y ) :=
∑

y∈Y g(y), we
have P ′′(X,Y ) = 〈f(X), g(Y )〉. Our algorithm thus proceeds by partitioning the input R (resp. B)
into n/

√
s sets X1, . . . , Xn/

√
s (resp. Y1, . . . , Yn/

√
s) of size

√
s, then computing 〈f(Xi), g(Yj)〉 for

all i, j ∈ [n/
√
s] using fast rectangular matrix multiplication:

Lemma 2.1 (Coppersmith [Cop82]; see also [Wil14]). For all sufficiently large N , multiplication of
an N×N0.172 matrix with an N0.172×N matrix can be done in O(N2 log2N) arithmetic operations
over any field.

Setting s so that 3qm ≤ (n/
√
s)0.172, we obtain a final running time of Õ(n2/s)1 (all intermediate

numbers will have polylogarithmically many bits).
In most applications of the polynomial method, the numberm of monomials is typically bounded

using the degree q of the polynomial: Since the inputs are only 0/1, we may assume P
(d,s,ε)
≤t is a

1Throughout the paper, the Õ notation hides polylogarithmic factors.
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multilinear polynomial (i.e., ai,`, bj,` ∈ {0, 1} for all i, j, `). Hence for q ≤ d/2, the polynomial has

m ≤
∑q

i=0

(
d
i

)
≤ O(d/q)q monomials.2

However, a key message of this paper is that we can sometimes get better algorithms by opti-
mizing the number m of monomials directly, instead of optimizing just the degree.

Once the approximate decision problem has been solved, we can solve the approximate closest
pair problem by binary search (or more simply, linear search over the logarithmically many powers
of 1 + ε). Offline ANN can be solved in a similar way, for example, by not dividing R into groups,
but dividing B into n/s groups of size s (resulting in the multiplication of an n×m′ and m′× (n/s)
matrix, which takes Õ(n2/s) time provided that 3qm ≤ (n/s)0.172). Alternatively, there is a direct
reduction from offline ANN to approximate closest pair [AW15, Theorem 4.4].

When designing randomized algorithms, it suffices to use a probabilistic polynomial that has
small error probability (O(1/s)) on every fixed input. A probabilistic polynomial P : {0, 1}d → R
is a distribution on d-variate polynomials over the integers. We will abuse notation and write P
for both the probabilistic polynomial and a polynomial drawn from the distribution. We say P
has degree at most q if all polynomials in the support of P have degree at most q, and similarly
for the number of monomials. We similarly define a probabilistic pair of polynomials as a joint
distribution on pairs of polynomials.

When designing Las Vegas randomized algorithms in particular, our idea is to impose extra
conditions on the probabilistic polynomial—that if the output value lies in a certain range (e.g.,
[0, 1]), correctness of the answer is guaranteed, but if the output value is outside the range (which
will occur with low probability), the answer may be erroneous. A similar strategy was used in some
probabilistic polynomial constructions over the integers by Beigel et al. [BRS91] and Tarui [Tar93].

3 Deterministic Algorithms

In this section, we present a deterministic algorithm for offline (1+ε)-approximate nearest neighbor

search in Hamming space, with running time near n2−ε1/2+O(δ)
for all dimensions d � nδ for a

sufficiently small δ > 0. As mentioned, it suffices to focus on the approximate decision problem:
decide whether the closest pair distance, or each nearest neighbor distance, is approximately smaller
than a fixed threshold t := α0d.

We first solve the problem for the main case when α0 is not too small (i.e., α0 � εO(δ)).
Afterwards, we describe how to reduce the general case to this main case.

3.1 When α0 is not too small

As explained in Section 2, the key is in the construction of a polynomial for the approximate
unweighted threshold predicate. Specifically, we will prove the following theorem:

Theorem 3.1. Given d, s, and β0, ε ∈ (0, 1), we can construct a nonnegative polynomial

P
(d,s,ε)
≥β0d : {0, 1}d → R≥0 with O(

√
1/ε log s) degree and dsO(

√
1/ε log(1/εβ0)) monomials, in

Õ(dsO(
√

1/ε log(1/εβ0))) deterministic time, such that for every x = (x1, . . . , xd) ∈ {0, 1}d,

• if x1 + · · ·+ xd ≤ β0d, then P
(d,s,ε)
≥β0d (x) ≤ 1;

• if x1 + · · ·+ xd > (1 + ε)β0d, then P
(d,s,ε)
≥β0d (x) > s.

2This follows since, by Stirling’s approximation, for k ≤ n/2, we have
(
n
k

)
≤ (en/k)k.
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Warm-up: Derandomization with 1/ε dependency. To warm up, let us consider proving a
weaker version of Theorem 3.1, with O((1/ε) log s) degree and dsO(1/ε) log(1/εβ0) monomials.

The simplest polynomial satisfying the above properties is

P
(d,s,ε)
≥β0d (x1, . . . , xd) =

1

(β0d)q
(x1 + · · ·+ xd)

q,

of degree q = log1+ε s = O((1/ε) log s). However, the number of monomials is O(
(
d
q

)
) = O(d/q)q =

sO((1/ε) log(d/ log s)), which is too big when d is superlogarithmic. For our nearest neighbor applica-
tion, dimensionality reduction can be applied first to bring d down to O((1/ε)2 log s), making the
extra log(d/ log s) factor tolerable, but this requires randomization, which we are trying to avoid.

To reduce the number of monomials, one simple way is to take a random sample of the
monomials. By a Chernoff bound, it may be checked that a sample of size about (1/β0)O(q) =
sO((1/ε) log(1/β0)) gives good approximation with high probability, and by the union bound, this
holds for all x ∈ {0, 1}d. This approach can thus prove the existence of a polynomial with a small
number of monomials, but an efficient deterministic construction is not obvious. For example, by
viewing a sum of monomials of degree q with equal coefficients as a q-uniform hypergraph, the
problem is essentially about deterministic constructions of pseudo-random or quasi-random hyper-
graphs (in the sense of having bounded “discrepancy”), but known constructions that we can find
in the literature [CG90, HT89] appear too weak for our application.

We observe that derandomization actually follows from a simple application of expander walks!
Specifically, we use the following lemma by Alon, Feige, Wigderson, and Zuckerman [AFWZ95,
Proposition 2.4] (the upper-bound direction was established earlier [AKS87, Kah92] and can be
found in textbooks [MR95, Vad11], but we need both directions in our application).

Lemma 3.2. (Expander Walk Lemma) Let H be a ∆-regular graph on d vertices, and let λ be
the second largest eigenvalue in absolute value of the normalized adjacency matrix. Given a subset
B of βd vertices and a number q, let N(B, q) be the number of walks in H of length q that stays
inside B. Then for any even q,

|B|∆q(β − λ(1− β))q ≤ N(B, q) ≤ |B|∆q(β + λ(1− β))q.

Let H be a ∆-regular graph over vertices {1, . . . , d}, with λ = Θ(1/∆c0) for some constant
c0 > 0; the “ideal” value is c0 = 1/2, and known explicit expander constructions can give such an
H in O(d∆ logO(1) d) time for certain values of c0 [HLW06] (see also [RVW02, Coh16]). Choose
∆ so that λ = εβ0/3 (i.e., ∆ = Θ((1/εβ0)1/c0)). Let q be an even number, to be set later. For

x = (x1, . . . , xd) ∈ {0, 1}d, we define our polynomial P
(d,s,ε)
≥β0d as

P
(d,s,ε)
≥β0d (x) =

1

β0d∆q(β0 + λ)q

∑
length-q walk i0 · · · iq in H

xi0 · · ·xiq .

Analysis. Suppose that x1 + · · · + xd = βd. Letting B = {i : xi = 1}, we see that∑
length-q walk i0 · · · iq in H xi0 · · ·xiq is precisely N(B, q). By Lemma 3.2,

β

β0

(
β − λ
β0 + λ

)q
≤ P

(d,s,ε)
≥β0d (x) ≤ β

β0

(
β + λ

β0 + λ

)q
.
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If β ≤ β0, then P
(d,s,ε)
≥β0d (x) ≤ 1. On the other hand, if β > (1+ε)β0, then P

(d,s,ε)
≥β0d (x) ≥ (1+Ω(ε))q,

which can be made greater than s by setting q = Θ((1/ε) log s). The polynomial P
(d,s,ε)
≥β0d has degree

q + 1, and the number of monomials is O(d∆q) ≤ d(1/εβ0)O(q) = dsO((1/ε) log(1/εβ0)).
Karppa et al. [KKKÓC16] described a similar result using expanders, but their description and

analysis appear more complicated (which makes it difficult to combine with Chebyshev polynomials,
as we will do next). They started with the standard expander mixing lemma (instead of expander
walks) and used repeated approximate squaring, with more complex calculations.

Derandomization with
√

1/ε dependency. To improve the degree from O((1/ε) log s) to
O(
√

1/ε log s), we use Chebyshev polynomials, as in Valiant [Val12] and Alman, Chan, and
Williams [ACW16]. Let Tq denote the degree-q Chebyshev polynomial of the first kind, which
achieves better “gap amplification” than the more naive polynomial xq. Specifically, the main
properties we need are:

• if |x| ≤ 1, then |Tq(x)| ≤ 1;

• if x ≥ 1 + ε, then Tq(x) ≥ 1
2e
q
√
ε.

Chebyshev polynomials have both positive and negative coefficients; naively applying
Lemma 3.2 to each term of the Chebyshev polynomial does not work. We generalize Alon et
al.’s proof of Lemma 3.2 as follows:

Lemma 3.3. (Generalized Expander Walk Lemma) Let H be a ∆-regular graph on d vertices,
and let λ be the second largest eigenvalue in absolute value of the normalized adjacency matrix. Let
Q(y) =

∑q
k=0 aky

k be a univariate degree-q polynomial over R, and let Q̆ be the convex envelope of
Q (i.e., supremum of all convex functions below Q). Given a subset B of βd vertices and a number
q, let N(B, k) be the number of walks in H of length k that stay inside B. Then

min
y≥β−λ(1−β)

Q̆(y) ≤
q∑

k=0

ak
|B|∆k

N(B, k) ≤ max
|y|≤β+λ(1−β)

Q(y).

Proof. By direct modification of Alon et al.’s proof [AFWZ95]. Let L be 1/∆ times the adjacency
matrix of the subgraph of H induced by B. Let γ1 ≥ γ2 ≥ · · · ≥ γ|B| be the eigenvalues of L, and
u1, . . . , u|B| be the corresponding orthonormal eigenvectors. Let u be the all-1’s vector, and write

u =
∑|B|

i=1 ciui. Alon et al.’s proof made use of the following observations:3

N(B, k) = ∆k

|B|∑
i=1

c2
i γ
k
i (1)

|B|∑
i=1

c2
i = |B| (2)

|B|
max
i=1
|γi| ≤ β + λ(1− β) (3)

1

|B|

|B|∑
i=1

c2
i γi ≥ β − λ(1− β). (4)

3(1) corresponds to (2.3) in [AFWZ95], (2) is noted immediately after (2.3), (3) corresponds to Lemma 2.2, and
(4) is shown near the final paragraph in the proof of Proposition 2.4.
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Let

Z =

q∑
k=0

ak
|B|∆k

N(B, k) =
1

|B|

|B|∑
i=1

c2
i

q∑
k=0

akγ
k
i =

1

|B|

|B|∑
i=1

c2
iQ(γi)

(note that these are equalities, and hold regardless of the signs of the ak’s). It follows that

Z ≤ 1

|B|

|B|∑
i=1

c2
i · max
|y|≤β+λ(1−β)

Q(y) = max
|y|≤β+λ(1−β)

Q(y)

Z ≥ 1

|B|

|B|∑
i=1

c2
i Q̆(γi) ≥ Q̆

 1

|B|

|B|∑
i=1

c2
i γi

 ≥ min
y≥β−λ(1−β)

Q̆(y),

by Jensen’s inequality and the convexity of Q̆.

Proof of Theorem 3.1. As before, let H be a ∆-regular graph H over vertices {1, . . . , d}, with
λ = Θ(1/∆c0) for some constant c0 > 0. Choose ∆ so that λ = εβ0/3 (i.e., ∆ = Θ((1/εβ0)1/c0)).
Let q be an even number, to be set later. Write the rescaled degree-q Chebyshev polynomial

Q(y) = 1
2(Tq(

y
β0+λ) + 1) as

∑q
k=0 aky

k. For x = (x1, . . . , xd) ∈ {0, 1}d, our polynomial P
(d,s,ε)
≥β0d is

defined as

P
(d,s,ε)
≥β0d (x) =

q∑
k=0

ak
β0d∆k

∑
length-k walk i0 · · · ik in H

xi0 · · ·xik .

Analysis. Suppose that x1 + · · · + xd = βd. Letting B = {i : xi = 1}, we see that∑
length-k walk i0 · · · ik in H xi0 · · ·xik is precisely N(B, k). By Lemma 3.3,

β

β0
min
y≥β−λ

Q̆(y) ≤ P
(d,s,ε)
≥β0d (x) ≤ β

β0
max
|y|≤β+λ

Q(y).

If β ≤ β0, then P
(d,s,ε)
≥β0d (x) ≤ 1. On the other hand, if β > (1 + ε)β0, then for any y ≥ β − λ,

y

β0 + λ
≥ β − λ

β0 + λ
≥ 1 +

εβ0 − 2λ

β0 + λ
≥ 1 + Ω(ε),

and since the convex envelope T̆q agrees with Tq over [1,∞), we have P
(d,s,ε)
≥β0d (x) ≥ 1

2Tq(1 + Ω(ε)) ≥
eΩ(q

√
ε), which can be made greater than s by setting q = Θ(

√
1/ε log s). The polynomial P

(d,s,ε)
≥β0d

has degree q+1, and the number of monomials is O(d∆q) ≤ d(1/εβ0)O(q) = dsO(
√

1/ε log(1/εβ0)).

We can now solve the ANN problem in the main case via the polynomial method as described

in Section 2, by setting P
(d,s,ε)
≤α0d

(x1, . . . , xd) := P
(d,s,εα0)
≥(1−(1+ε)α0)d(1 − x1, . . . , 1 − xd), and applying

Theorem 3.1 with ε changed to εα0. The degree is q = O(
√

1/εα0 log s), and the number of

monomials is m ≤ dsO(
√

1/εα0 log(1/εα0) (the negation of the variables causes an increase of a factor
of 2q, which is absorbed by the bound), and we can set s = nΘ(

√
εα0/ log(1/εα0)) to ensure that

3qm ≤ (n/s)0.172.

Theorem 3.4. Given d ≤ n0.1 and α0, ε ∈ (0, 1), and given n red and n blue points in {0, 1}d,
the following can be computed in Õ(n2−Ω(

√
εα0/ log(1/εα0))) deterministic time: for every red point q,

we can find a blue point of Hamming distance at most (1 + ε)α0d from q, or conclude that no blue
point has Hamming distance at most α0d from q.

7



3.2 Densification to increase α0

The bound in Theorem 3.4 is not good if the parameter α0 is very small. To fix this issue, we provide
a deterministic reduction from the general case to the case when α0 is not too small. Indyk [Ind00,
Section 3] already (implicitly) described such a reduction, which increases α0 to Ω(ε). His reduction
consisted of two parts: (1) use pairwise-independent hash functions to map to strings over a larger
alphabet, and (2) use error-correcting codes to map back to the binary alphabet. Alternatively,
as noted in Andoni et al.’s survey [AIR18], part (1) can be viewed as an unbalanced expander
construction (which is quite different from our preceding expander walk approach).

Using k-wise independence instead of pairwise independence, we can improve the first step,
increasing α0 to Ω(ε1/(k−1)) for an arbitrarily large constant k. Let dH(·, ·) denote the Hamming
distance.

Lemma 3.5. Given d, an even number k, and α0, ε ∈ (0, 1), we can find a number α′0 = Ω(ε1/(k−1))
and construct a randomized mapping h : {0, 1}d → Σ with |Σ| ≤ 2O(1/α0), from a sample space of
size O(d)k, such that for every fixed p, q ∈ {0, 1}d,

• if dH(p, q) ≤ α0d, then Prh[h(p) 6= h(q)] ≤ α′0;

• if dH(p, q) > (1 + ε)α0d, then Prh[h(p) 6= h(q)] > (1 + Ω(ε))α′0.

Proof. Choose r random indices j1, . . . , jr ∈ [d] that are k-wise independent, for a parameter r to
be set later. By standard constructions for k-wise independent random variables [Jof74, MR95], a
sample space of size O(d)k suffices. For p = (p1, . . . , pd) ∈ {0, 1}∗, we define

h(p) := pj1 · · · pjr ,

with Σ = {0, 1}r.

Analysis. We use the following fact: if E1, . . . , Er are k-wise independent events with Pr(Ei) =
α, then the probability of the event E =

⋃r
i=1Ei lies in 1 − (1 − α)r ± O((αr)k), assuming that

αr < 1/2.
This fact follows from the inclusion-exclusion formula: for even k,

∑
S⊆[r],1≤|S|≤k−1

(−1)|S|−1 Pr

(⋂
i∈S

Ei

)
≤ Pr(E) ≤

∑
S⊆[r],1≤|S|≤k

(−1)|S|−1 Pr

(⋂
i∈S

Ei

)
.

By k-wise independence,

k−1∑
s=1

(
r

s

)
(−1)s−1αs ≤ Pr(E) ≤

k∑
s=1

(
r

s

)
(−1)s−1αs.

Since
∑r

s=1

(
r
s

)
(−1)s−1αs = −

∑r
s=1

(
r
s

)
(−α)s = −((1 − α)r − 1) by the binomial theorem and∑r

s=k

(
r
s

)
αs ≤

∑r
s=k(αr)

s ≤ O((αr)k) (assuming that αr < 1/2), this proves the above fact.
Now, we show that the above function h satisfies the property stated in the lemma. Let Ei

be the event that pji 6= qji . These events are k-wise independent, and the event h(p) 6= h(q) is
precisely

⋃r
i=1Ei. Assume (1 + ε)α0r < 1/2 (which will indeed be true).

• Suppose that dH(p, q) ≤ α0d. Then Pr(Ei) ≤ α0. By the above fact, Pr[h(p) 6= h(q)] ≤
Pr (

⋃r
i=1Ei) ≤ α′0 := 1− (1− α0)r +O((α0r)

k).
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• Suppose that dH(p, q) ≥ (1 + ε)α0d. Then Pr(Ei) ≥ (1 + ε)α0. We can define k-wise
independent events E′′i such that E′′i is contained in Ei and Pr(E′′i ) = (1 + ε)α0. By the
above fact applied to these events E′′i instead, Pr[h(p) 6= h(q)] ≥ Pr (

⋃r
i=1E

′′
i ) ≥ α′′0 :=

1− (1− (1 + ε)α0)r −O((α0r)
k).

Note that α′0 = Θ(α0r). Furthermore, α′′0 = 1 − (1 − α0)r(1 − Ω(εα0))r − O((α0r)
k) = α′0 +

Ω(εα0r) − O((α0r)
k) = (1 + Ω(ε))α′0 − O(α′0)k, which is (1 + Ω(ε))α′0 by setting r to be a small

constant times ε1/(k−1)/α0, so that α′0 is a small constant times ε1/(k−1).

We next use known constructions of ε-balanced error-correcting codes (which follow from known
constructions of ε-biased sets) [NN93]:

Lemma 3.6. (Error-Correcting Codes) Given d, an alphabet Σ, and δ ∈ (0, 1), we can construct
a mapping g : Σ → {0, 1}τ for some τ = O((1/δ)2 log d), such that for every a, b ∈ Σ with a 6= b,
we have dH(g(a), g(b)) ∈ (1± δ)τ/2. The construction takes O((1/δ)O(1) logO(1) |Σ|) time.

Lemma 3.7. (Improved Densification Lemma) Given d, k, and α0, ε ∈ (0, 1), we can find numbers
d′ ≤ O(d)k and α′0 = Ω(ε1/(k−1)) and construct a mapping f : {0, 1}d → {0, 1}d′ which can be
evaluated in O(d)k+O(1) deterministic time, such that for every p, q ∈ {0, 1}d,

• if dH(p, q) ≤ α0d, then dH(f(p), f(q)) ≤ α′0d′;

• if dH(p, q) > (1 + ε)α0d, then dH(f(p), f(q)) > (1 + Ω(ε))α′0d
′.

Proof. Define f(p) to be the concatenation of g(h(p)) over all mappings h in the sample space of
Lemma 3.5, where g is the mapping of Lemma 3.6 with δ := cε for a small enough constant c.

Let D be the number of different hash functions h. If dH(p, q) ≤ α0d, then dH(f(p), f(q)) ≤
α′0D · (1 + δ)τ/2. If dH(p, q) > (1 + ε)α0d, then dH(f(p), f(q)) > (1 + Ω(ε))α′0D · (1 − δ)τ/2. We
set d′ := Dτ/2, and reset α′0 := α′0(1 + δ).

Applying Lemma 3.7 and then Theorem 3.4, we immediately obtain a deterministic algorithm
with running time Õ(n2−Ω(ε(1/2)(1+1/(k−1))/ log(1/ε))), for d ≤ n0.1/k, for the approximate decision
problem for any threshold α0d, and thus for offline ANN. For d < 2o(logn/ log(1/ε)), we may even use
a nonconstant value of k = Θ(log(1/ε)).

Theorem 3.8. Given d and ε ∈ (0, 1), and given n red and n blue points in {0, 1}d, we can find a

(1+ε)-approximate Hamming nearest blue point for every red point, in Õ(n2−ε1/2+O(δ)
) deterministic

time, if d ≤ nδ for δ ≤ 0.05.
The running time reduces to Õ(n2−Ω(

√
ε/ log(1/ε))) if d < 2o(logn/ log(1/ε)).

3.3 Other applications

Approximate offline Hamming farthest neighbor search (and approximate diameter) can be solved

similarly. We can work directly with the polynomial P
(d,s,ε)
≥t instead of P

(d,s,ε)
≤t , and can apply

Theorem 3.4 with β0 := α0 and ε unchanged, to obtain a time bound of Õ(n2−Ω(
√
ε/ log(1/εα0))). It

then suffices to apply Lemma 3.7 with k = 2 to make α0 = Ω(ε).

Theorem 3.9. Given d and ε ∈ (0, 1), and given n red and n blue points in {0, 1}d, we can find

a (1 + ε)-approximate Hamming farthest blue point for every red point, in Õ(n2−Ω(ε1/2/ log(1/ε)))
deterministic time, if d ≤ n0.05.
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The results can be extended to `1. For points in [U ]d, we can map each point (x1, . . . , xd) to
the string 1x10U−x1 · · · 1xd0U−xd in Hamming space {0, 1}Ud, while preserving distances. This may
be inefficient for large U , but the universe size U can be made small. Consider the approximate
decision problem of comparing the nearest neighbor distance for a query point q with a fixed value
r. It is known [Cha98] that with O(d) shifted uniform grids of side length O(dr), a nearest neighbor
can be found in the same cell as q in one of the grids. It suffices to solve the problem inside each
grid cell; in each grid cell, coordinates can be rounded to multiples of εr/d, effectively reducing
the universe size to U = O( dr

εr/d) = O(d2/ε). (For farthest neighbors, we can round coordinates

directly without shifted grids.)
The results can also be extended to `2, using Indyk’s deterministic embedding [Ind07] from `2

to `1. We therefore have the following result.

Theorem 3.10. Given d and ε ∈ (0, 1), and given n red and n blue points in Rd, we can find a

(1 + ε)-approximate `1 or `2 nearest blue point for every red point, in Õ(n2−ε1/2+O(δ)
) deterministic

time, if d ≤ nδ for δ ≤ 0.05.
The running time reduces to Õ(n2−Ω(

√
ε/ log(1/ε))) if d� 2o(logn/ log(1/ε)).

Another application is to (1 + ε)-approximation algorithms for MAX-SAT. Here we proceed by
giving an efficient approximation-preserving reduction from MAX-SAT to MAX-LIN, and arguing
that MAX-LIN approximation algorithms can be derived from approximate farthest pair algorithms.

Theorem 3.11. Given a CNF formula with n variables and C ≤ 2o(n) clauses, and ε ∈ (0, 1),
there is a (1 + ε)-approximation algorithm for MAX-SAT that runs (2−Ω(

√
ε/ log(1/ε)))n · CO(1)

deterministic time.

Proof. Recall in the MAX-LIN problem, we are given a set of linear equations over F2 in n vari-
ables, and wish to find an assignment satisfying a maximum number of equations. First, by a
known reduction in fine-grained complexity [Wil04], we can obtain a (2 − Ω(α))n-time algorithm
for (1+ε)-approximating the MAX-LIN problem directly from an N2−α-time algorithm for (1+ε)-
approximating red-blue farthest pair on N red and N blue points.4 By Theorem 3.9, we can set
α = ε1/2/ log(1/ε).

Now we show how to obtain a (1 + ε)-approximate MAX-SAT algorithm from a (1 + ε/6)-
approximate MAX-LIN algorithm, with essentially the same running time. The standard reduction
from MAX-k-SAT to MAX-k-LIN increases the number of clauses by a factor of Ω(2k), which is
unacceptable for large k. To avoid this blowup, we use ε-biased sets.

For every clause c = (`1 ∨ · · · ∨ `w) of a given MAX-SAT instance instance F over the literals
`1, . . . , `w, we do the following. If w ≤ log(n), then we can reduce c to a collection of MAX-w-LIN
clauses in the standard way (we include all linear equations over the literals l1, . . . , `w that are
consistent with c). This increases the number of clauses by a poly(n) factor, and preserves the
approximation factor (if c is not satisfied, then all new clauses are unsatisfied; if c is satisfied, then
exactly 1/2 of the new clauses are satisfied). From now on, assume w > log(n) and n is sufficiently
large.

4Divide the n variables of the MAX-LIN instance into two halves, enumerate all N = O(2n/2) partial assignments
on both halves, and set up a red-blue farthest pair instance on N red points (from one half) and N blue points
(from the other half) such that each red-blue pair has Hamming distance equal to the number of XOR constraints
satisfied by the corresponding (full) variable assignment. Then, (1 + ε)-approximations to the farthest pair are
(1 + ε)-approximations to the optimum for the MAX-LIN instance.
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For a parameter δ > 0 to be set later, deterministically construct an δ-biased set S =
{v1, . . . , vt} ⊂ {0, 1}w of size t = poly(w, 1/δ) ([NN93]), and replace the clause c with the t XOR
constraints

w∑
i=1

`i · vj [i] = 1 mod 2

for all j = 1, . . . , t (Note the vj [i] are all 0/1 constants, so the XOR constraints are all over the
original literals `j .) Call the obtained MAX-LIN instance F ′.

By the properties of small-biased sets, we have: for every variable assignment A, if A satisfies a
clause in F then it satisfies between 1/2−δ and 1/2+δ of the corresponding XOR constraints in F ′.
(If A does not satisfy the clause, it satisfies none of the corresponding XOR constraints.) Therefore
if A satisfies a ρ-fraction of clauses in F , then the fraction of XOR constraints ρ′ satisfied by A in F ′

is in the interval [ρ(1/2−δ), ρ(1/2+δ)]. Moreover, if A satisfies a ρ′-fraction in F ′, then it satisfies a
ρ-fraction in F , where ρ ∈ [ρ′/(1/2+δ), ρ′/(1/2−δ)]. Let ρmax and ρ′max be the maximum fraction of
constraints satisfiable in F and F ′, respectively, and note that ρmax(1/2−δ) ≤ ρ′max ≤ ρmax(1/2+δ).

Suppose we have an algorithm that (1 + δ)-approximates MAX-LIN: given F ′, it outputs an
assignment A? satisfying a fraction of constraints ρ′ ≥ ρ′max/(1 + δ). Therefore A? also satisfies a
ρ-fraction of clauses in F , where ρ ≥ ρ′max/((1/2 + δ)(1 + δ)). Therefore ρ ≥ ρmax(1/2− δ)/((1/2 +
δ)(1 + δ)); that is, ρ satisfies at least a ρmax(1− 2δ)/((1 + 2δ)(1 + δ)) fraction of clauses in F . For
δ = ε/6, we have

(1− 2δ)/((1 + 2δ)(1 + δ)) ≥ 1/(1 + ε),

for all ε ∈ (0, 3/7), and thus obtain a (1 + ε) approximation. (For larger ε, we can just set ε to be
a smaller constant, which is absorbed in the big-O.)

4 Las Vegas Algorithms

In this section, we present a Las Vegas algorithm for offline (1 + ε)-approximate nearest neighbor

search in Hamming space, running in time Õ(n2−Ω(ε1/3/ log(1/ε))) for dimension d ≤ nδ for a suffi-
ciently small δ > 0. This matches the previous best running time for Monte Carlo algorithms from
past work [ACW16].

The Monte Carlo algorithm from prior work (see also Section 5 below) makes use of a proba-
bilistic polynomial threshold representation of an approximate threshold predicate, which consists
of two main steps: (1) a probabilistic polynomial for an exact threshold predicate on d inputs with
error 1/s and degree O(

√
d log s), and (2) combining it with a Chebyshev polynomial in order to

decrease the degree to O((1/ε)1/3 log(ds)) for computing an ε-approximate threshold predicate in-
stead. In this section, we make one key modification to each step so that our resulting probabilistic
polynomials never give the wrong answer: they either output the correct answer, or else a large
value indicating that an error has occurred.

For the probabilistic polynomial for step (1), we modify the original probabilistic polynomial
construction of [AW15]. The polynomial from the prior work makes use of random samples of
entries from the input vector, and notes that the polynomial will output the correct answer as long as
certain tail bounds on these random samples hold. In Lemma 4.1 we construct a second polynomial
(eTH) for checking whether these tail bounds hold, so that we can tell when the polynomial may
be making a mistake. Next, for step (2), we replace a similar random sample with a partitioning
of the input first suggested by Indyk [Ind00]. By recursively evaluating our polynomial on each
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partition, we are guaranteed that at least one part will give the correct answer, and so we can tell
whether an error may have occurred based on whether all the recursive calls agreed.

We begin with part (1).

Lemma 4.1. Given d, s, t, there is a probabilistic pair of polynomials (TH
(d,s)
≤t , eTH

(d,s)
≤t ), where

TH
(d,s)
≤t , eTH

(d,s)
≤t : {0, 1}d → N both have degree O(

√
t log(s)), such that for every x = (x1, . . . , xd) ∈

{0, 1}d, we have Pr[eTH
(d,s)
≤t (x) = 0] ≥ 1− 1/s and eTH

(d,s)
≤t (x) > 0 otherwise, and

• if x1 + · · ·+ xd > t, then TH
(d,s)
≤t (x) = 0 or eTH

(d,s)
≤t (x) 6= 0, and

• if x1 + · · ·+ xd ≤ t, then TH
(d,s)
≤t (x) = 1 or eTH

(d,s)
≤t (x) 6= 0.

Proof. We proceed by strong induction on t. Let c, k ≥ 1 be two constants to be set later. We
may assume that t ≥ 9c2 log s, for otherwise we can naively use a polynomial of degree t. Let
a = c

√
t log s and define the polynomials:

• C : Z → Z defined as C(z) =
∏a
r=−a(z − r)2, so that C(z) = 0 when |r| ≤ a, and C(z) ≥ 1

otherwise, and

• A : Zd → Z a degree O(a) polynomial such that for x ∈ {0, 1}d,

– if |x| ∈ (t, t+ 2a] then A(x) = 0, and

– if |x| ∈ [t− 2a, t] then A(x) = 1, and

– otherwise A(x) may take any value.

Such a polynomial exists by interpolation (see e.g. [AW15, Lemma 3.1]).

• Two recursively drawn probabilistic pairs of polynomials (TH
(d/k,3s)
≤(t−a)/k, eTH

(d/k,3s)
≤(t−a)/k) and

(TH
(d/k,3s)
≤(t+a)/k, eTH

(d/k,3s)
≤(t+a)/k) for d/k-bit inputs.

On input x ∈ {0, 1}d, let x̃ ∈ {0, 1}d/k be a sample of d/k independent uniformly random entries
of x. Define our polynomials as:

TH
(d,s)
≤t (x) := TH

(d/k,3s)
≤(t−a)/k(x̃) +A(x) ·

(
1− TH

(d/k,3s)
≤(t−a)/k(x̃)

)
· TH

(d/k,3s)
≤(t+a)/k(x̃),

eTH
(d,s)
≤t (x) := eTH

(d/k,3s)
≤(t+a)/k(x̃) + eTH

(d/k,3s)
≤(t−a)/k(x̃) + C(|x| − k · |x̃|).

Correctness. A Chernoff bound shows that if c is big enough relative to k, then Pr[|x|−k · |x̃| /∈
[−a, a]] ≤ 1/(3s). Hence, by a union bound over the three terms defining eTH

(d,s)
≤t , we have

Pr[eTH
(d,s)
≤t (x) 6= 0] ≤ 1/s. Assuming eTH

(d,s)
≤t (x) = 0, meaning TH

(d/k,3s)
≤(t−a)/k(x̃) and TH

(d/k,3s)
≤(t+a)/k(x̃)

both give the correct answer, and |x| − k · |x̃| ∈ [−a, a], then:

• Case 1: |x| > t+ 2a. Thus, |x̃| > (t+ a)/k so TH
(d/k,3s)
≤(t+a)/k(x̃) = TH

(d/k,3s)
≤(t−a)/k(x̃) = 0 and hence

TH
(d,s)
≤t (x) = 0.
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• Case 2: |x| ∈ (t, t+ 2a]. Thus, A(x) = 0, and |x̃| > (t−a)/k so TH
(d/k,3s)
≤(t−a)/k(x̃) = 0, and hence

TH
(d,s)
≤t (x) = 0.

• Case 3: |x| ∈ [t− 2a, t]. Thus, A(x) = 1, and |x̃| < (t+a)/k so TH
(d/k,3s)
≤(t+a)/k(x̃) = 1, and hence

TH
(d,s)
≤t (x) = 1.

• Case 4: |x| < t− 2a. Thus, |x̃| < (t− a)/k so TH
(d/k,3s)
≤(t−a)/k(x̃) = 1, and hence TH

(d,s)
≤t (x) = 1.

Degree. The degree D(t) of TH
(d,s)
≤t satisfies the recurrence D(t) = 2D((t + c

√
t log s)/k) +

O(
√
t log s), which solves to D(t) = O(

√
t log s) when k is sufficiently large. The degree of eTH

(d,s)
≤t

is similarly O(
√
t log s).

Lemma 4.2. Given d, s, t, there is a nonnegative probabilistic polynomial T̂H
(d,s)

≤t : {0, 1}d → N
with degree O(

√
t log(s)), such that for every x = (x1, . . . , xd) ∈ {0, 1}d,

• if x1 + · · ·+ xd > t, then T̂H
(d,s)

≤t (x) = 0 with probability at least 1− 1/s;

• if x1 + · · ·+xd ≤ t, then T̂H
(d,s)

≤t (x) ≥ 1 with probability 1, and T̂H
(d,s)

≤t (x) = 1 with probability
at least 1− 1/s.

Proof. Draw (TH
(d,s)
≤t , eTH

(d,s)
≤t ) from Lemma 4.1, then pick

T̂H
(d,s)

≤t (x) :=
(

TH
(d,s)
≤t (x)

)2
+ 2 · eTH

(d,s)
≤t (x).

We now move on to part (2) mentioned at the beginning of the section.

Lemma 4.3. Given d, s, t and ε ∈ (0, 1), there is a nonnegative probabilistic polynomial T̃H
(d,s,ε)

≤t :

{0, 1}d → R≥0 with degree O((1/ε)1/3 log(ds)), such that for every x = (x1, . . . , xd) ∈ {0, 1}d,

• if x1 + · · ·+ xd > (1 + ε)t, then T̃H
(d,s,ε)

≤t (x) ≤ 1 with probability at least 1− 1/s;

• if x1 + · · ·+ xd ≤ t, then T̃H
(d,s,ε)

≤t (x) > s with probability 1.

Proof. We may assume that t ≥ log(ds), for otherwise we can naively use a polynomial of degree
t. Let k be a parameter to be set later. Let s′ = 2ks.

Take a random partition of [d] into k subsets R1, . . . , Rk of size d/k. Let ∆ = c
√
kt log s′ for a

sufficiently large constant c.
Let Q : {0, 1}d → R≥0 be a (deterministic) nonnegative polynomial such that for every x =

(x1, . . . , xd) ∈ {0, 1}d, (i) Q(x) > s′ if x1 + · · · + xd ≤ t, and (ii) Q(x) ≤ 1 if x1 + · · · + xd ∈
[(1 + ε)t, t+ ∆]. As in [ACW16], this can be achieved by a shifted, rescaled Chebyshev polynomial

Q(x) = 1
2(Tq(

(t+∆)−(x1+···+xd)
(t+∆)−(1+ε)t ) + 1), with an even degree q = Θ(

√
∆/(εt) log(s′)).

For x = (x1, . . . , xd) ∈ {0, 1}d, define

H(x) =

k∑
i=1

T̂H
(d/k,s′)

≤t/k ({xj : j ∈ Ri})

T̃H
(d,s,ε)

≤t (x) = 1
kQ(x)H(x).
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Correctness.

• Case 1:
∑d

j=1 xj ≤ t. Then Q(x) ≥ s′. Also,
∑

j∈Ri xj ≤ t/k for some i ∈ [k]. So, H(x) ≥ 1

and T̃H
(d,s,ε)

≤t (x) ≥ s′/k > s with probability 1.

• Case 2:
∑d

j=1 xj ∈ ((1 + ε)t, t+ ∆]. Then Q(x) ≤ 1, and H(x) ≤ k with probability at least

1− k/s′ > 1− 1/s. Thus, T̃H
(d,s,ε)

≤t (x) ≤ 1 with probability at least 1− 1/s.

• Case 3:
∑d

j=1 xj > t+ ∆. By the Chernoff bound, for each i ∈ [k], we have
∑

j∈Ri xj > t/k

with probability at least 1 − 1/s′. Thus, H(x) = 0 and T̃H
(d,s,ε)

≤t (x) = 0 with probability at
least 1− 2k/s′ = 1− 1/s.

The degree of T̃H
(d,s,ε)

≤t is

O

√(t/k) log(s) +

√√
kt log(ds)

εt
log(ds)

 .

Set k = ε2/3t/ log(ds).

We next repeat a similar approach of partitioning the input as in Lemma 4.3, with the aim of
decreasing the number of monomials in the resulting polynomial rather than the degree.

Lemma 4.4. Given d, s, t and ε ∈ (0, 1), for t = α0d, there is a probabilistic polynomial P
(d,s,ε)
≤t with

degree O((1/ε)1/3 log(ds)) and (ds)O((1/ε)1/3 log(1/εα0)) monomials, satisfying the same properties as
in the previous lemma.

Proof. Let k = bt/((2c/ε)2 log(2ds))c for a sufficiently large constant c. Let ε′ = ε/2 and s′ = 2ks.
Take a random partition of [d] into k subsets R1, . . . , Rk of size d/k.
For x = (x1, . . . , xd) ∈ {0, 1}d, define

P
(d,s,ε)
≤t (x) =

1

k

k∑
i=1

T̃H
(d/k,s′,ε′)

≤t/k ({xj : j ∈ Ri}).

Correctness.

• Case 1:
∑d

j=1 xj ≤ t. Then
∑

j∈Ri xj ≤ t/k for some i ∈ [k]. Thus, P
(d,s,ε)
≤t (x) ≥ s′/k > s

with probability 1.

• Case 2:
∑d

j=1 xj > (1+ε)t. By the Chernoff bound, for each i, we have
∑

j∈Ri xj > (1+ε)t/k−
c
√

(t/k) log s′ > (1 + ε′)t/k with probability at least 1 − 1/s′. Thus, P
(d,s,ε)
≤t (x) ≤ k/k = 1

with probability at least 1− k/s′ − 1/s′ > 1− 1/s.

The degree of P
(d,s,ε)
≤t is O((1/ε)1/3 log(ds)). The number of monomials is at most k ·( d/k

O((1/ε)1/3 log(ds))

)
≤ k ·

(O((1/α0)(1/ε)2 log s)

O((1/ε)1/3 log(ds))

)
≤ d(1/εα0)O((1/ε)1/3 log(ds)) ≤ (ds)O((1/ε)1/3 log(1/εα0)).

14



We can now apply the polynomial method, as described in Section 2, to obtain a Las Vegas
algorithm for the decision version of the offline approximate closest pair problem, using the poly-
nomial in Lemma 4.4. We compute P ′′(X,Y ) for all pairs of groups (X,Y ). For each (X,Y ) with
P ′′(X,Y ) ≤ s, we know with probability 1 that (X,Y ) has closest pair distance more than t = α0d.
For each (X,Y ) with P ′′(X,Y ) > s, we verify that there is a pair of distance at most (1 + ε)t
by brute force in O(

√
s

2
) = O(s) time, and terminate the algorithm as soon as the first such pair

is found. The algorithm clearly is always correct. For a pair (X,Y ) with closest pair distance
more than (1 + ε)t, the probability that the brute force search is run is at most O(1/s), so the

expected cost of the brute force search is O((1/s) · s) = O(1). We set s = nΘ(ε1/3/ log(εα0)), so that
3qs ≤ (n/

√
s)0.172. Offline ANN can be solved similarly.

Finally, we apply the deterministic Lemma 3.5 with k = 2 to make α0 = Ω(ε). We then obtain
our main theorem on Las Vegas algorithms.

Theorem 4.5. Given d and ε ∈ (0, 1), and given n red and n blue points in {0, 1}d, we can find a

(1 + ε)-approximate Hamming nearest blue point for every red point, in Õ(n2−Ω(ε1/3/ log(1/ε))) time
by a Las Vegas randomized algorithm, if d ≤ n0.05.

Offline approximate farthest neighbor search is similar, although one has to directly modify
most of the above lemmas, to reverse the direction of the inequalities. As in Section 3.3, the results
extend to the `1 or `2 metric.

Our Las Vegas polynomial construction for threshold predicates have other applications, for ex-
ample, to obtaining Las Vegas satisfiability algorithms for depth-2 threshold circuits; see [ACW16].

5 Monte Carlo Algorithms

In this section, we give a slight improvement over Alman, Chan, and Williams’ Monte Carlo al-
gorithm [ACW16] for offline approximate nearest neighbor search, from n2−Ω(ε1/3/ log(1/ε)) running

time to n2−Ω(ε1/3/ log2/3(1/ε)). The improvement is small, but the approach is interesting in that it
simplifies Alman et al.’s polynomial construction, and also brings in some connection to locality-
sensitive hashing. The approach is not useful for Las Vegas algorithms, however. Following the
same philosophy as our deterministic polynomial construction, the improvement comes not from
improving the degree but from reducing the number of monomials.

Alman, Chan, and Williams’ polynomial construction for the unweighted threshold predicate
is a combination of two parts: (i) a probabilistic polynomial obtained by random sampling (using
Chernoff bounds in the analysis), polynomial interpolation, and recursion, and (ii) the Chebyshev
polynomial. We replace the first part with the following lemma with a simple direct proof:

Lemma 5.1. Given d and β0, ε ∈ (0, 1) with β0 = Θ(1), there is a nonnegative probabilistic
polynomial R : {0, 1}d → N with degree O((1/δ) log s) and sO(1/δ) monomials, such that for every
fixed x = (x1, . . . , xd) ∈ {0, 1}d,

• if x1 + · · ·+ xd ≤ (1− δ)β0d, then R(x) = 0 with probability 1−O(1/s);

• if x1 + · · ·+ xd > β0d, then R(x) ≥ 1 with probability 1−O(1/s);

• if x1 + · · ·+ xd ∈ ((1− δ)β0d, β0d], then R(x) < s2 with probability 1−O(1/s).
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Proof. Define

R(x) =
M∑
i=1

xri1 · · ·xriq ,

where the rij ’s are independently chosen random indices in [d], and q := log1/(1−δ)(s
2), and M :=

(1/β0)q ln s ≤ sO(1/δ).

• If x1 + · · ·+ xd ≤ (1− δ)β0d, then Pr[R(x) > 0] ≤M((1− δ)β0)q ≤ (ln s)/s2.

• If x1 + · · ·+ xd > β0d, then Pr[R(x) = 0] < (1− βq0)M < e−β
q
0M ≤ 1/s.

• If x1 + · · · + xd ∈ ((1 − δ)β0d, β0d], then E[R(x)] ≤ Mβq0 ≤ ln s, so by Markov’s inequality,
Pr[R(x) ≥ s2] ≤ (ln s)/s2. (We could use Chernoff for a better bound, but that would not be
necessary.)

The above idea is similar to the standard LSH method in Hamming space [HIM12], which
uses multiple hash functions each of which is a random projection. Each monomial corresponds
essentially to a random projection, and the number of monomials corresponds to the number of
hash functions used.

We can now obtain the following theorem by combining with Chebyshev polynomials in the
same way as in Alman, Chan, and Williams [ACW16].

Theorem 5.2. Given d, s, and β0, ε ∈ (0, 1) with β0 = Θ(1), there is a nonnegative probabilistic

polynomial P
(d,s,ε)
≥β0d : {0, 1}d → R≥0 with degree O((1/ε)1/3 log s log2/3E) and sO((1/ε)1/3 log2/3 E)

monomials, where E := d/ log s, such that

• if x1 + · · ·+ xd ≤ β0d, then P
(d,s,ε)
≥β0d (x) ≤ 1 with probability 1−O(1/s).

• if x1 + · · ·+ xd > (1 + ε)β0d, then P
(d,s,ε)
≥β0d (x) > s with probability 1−O(1/s).

Proof. Let δ be a parameter to be chosen later. Let Q : {0, 1}d → R to be a (deterministic)
nonnegative polynomial such that for every x = (x1, . . . , xd) ∈ {0, 1}d, (i) Q(x) > s′ if x1 +
· · · + xd > (1 + ε)β0d, and (ii) Q(x) ≤ 1 if x1 + · · · + xd ∈ (β0d − ∆, β0d], where ∆ = δd and
s′ = s3. As in [ACW16], this can be achieved by a shifted, rescaled Chebyshev polynomial Q(x) =
1
2(Tq(

(x1+···+xd)−(β0d−∆)
∆ ) + 1), with an even degree q = Θ(

√
∆/(εβ0d) log s′) = O(

√
δ/ε log s). Let

R be the polynomial from the above lemma. Define

P
(d,s,ε)
≥β0d (x) = 1

s2
R(x)Q(x).

Correctness.

• If x1 + · · · + xd ≤ (1 − δ)β0d, then R(x) = 0 and hence P
(d,s,ε)
≥β0d (x) = 0 with probability

1−O(1/s).

• If x1 + · · ·+xd ∈ ((1−δ)β0d, β0d], then R(x) < s2 with probability 1−O(1/s), and Q(x) ≤ 1.

So, P
(d,s,ε)
≥β0d (x) ≤ 1 with probability 1−O(1/s).
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• If x1 + · · ·+ xd > (1 + ε)β0d, then R(x) ≥ 1 with probability 1−O(1/s), and Q(x) > s′. So,

P
(d,s,ε)
≥β0d (x) > s′/s2 = s with probability 1−O(1/s).

The degree of P
(d,s,ε)
≥β0d is O(

√
δ/ε log s + (1/δ) log s). The number of monomials in P

(d,s,ε)
≥β0d is( d

O(
√
δ/ε log s)

)
· sO(1/δ) ≤ sO(

√
δ/ε logE+1/δ). The result follows by choosing δ = ε1/3/ log2/3E.

Like before, we can set P
(d,s,ε)
≤α0d

(x1, . . . , xd) := P
(d,s,εα0)
≥(1−(1+ε)α0)d(1− x1, . . . , 1− xd), and apply the

above theorem with β0 := 1 − (1 + ε)α0 and ε changed to εα0. Note that by padding with extra
coordinates, we can ensure α0 ≤ 1/2 and thus β0 = Ω(1). As in [ACW16, proof of Theorem 1.5],
with Monte Carlo randomization, we can apply Kushilevitz, Ostrovsky, and Rabani’s dimensionality
reduction technique [KOR00], which makes d = O((1/ε)2 log n), implying E = poly(1/ε); at the
same time, the reduction makes α0 = Θ(1).

Theorem 5.3. Given d and ε ∈ (0, 1), and given n red and n blue points in {0, 1}d, we can find a

(1+ε)-approximate Hamming nearest blue point for every red point, in Õ(dn+n2−Ω(ε1/3/ log2/3(1/ε)))
time by a Monte Carlo randomized algorithm.

Offline approximate farthest neighbor search is similar, and the results extend to the `1 or
`2 metric. We can obtain a Monte Carlo (1 + ε)-approximation algorithm for MAX-SAT with
O∗((2−Ω(ε1/3/ log2/3(1/ε)))n) running time, in the same manner as in the proof of Theorem 3.11.

A similar approach works for exact offline nearest neighbor search in Hamming space in dimen-

sion d = c log n: Alman, Chan, and Williams’ time bound of n2−1/O(
√
c log3/2 c) time to n2−1/O(

√
c log c)

with Monte Carlo randomization.
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