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Abstract. The title of this paper highlights an emerging duality between two basic
topics in algorithms and complexity theory.

Algorithms for circuits refers to the design of algorithms which can analyze finite
logical circuits or Boolean functions as input, checking a simple property about the com-
plexity of the underlying function. For instance, an algorithm determining if a given
logical circuit C has an input that makes C output true would solve the NP-complete
Circuit-SAT problem. Such an algorithm is unlikely to run in polynomial time, but could
possibly be more efficient than exhaustively trying all possible inputs to the circuit.

Circuits for algorithms refers to the modeling of “complex” uniform algorithms with
“simple” Boolean circuit families, or proving that such modeling is impossible. For ex-
ample, can every exponential-time algorithm be simulated using Boolean circuit families
of only polynomial size? It is widely conjectured that the answer is no, but the present
mathematical tools available are still too crude to resolve this kind of separation problem.

This paper surveys these two generic subjects and the connections that have been
developed between them, focusing on connections between non-trivial circuit-analysis
algorithms and proofs of circuit complexity lower bounds.
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1. Introduction

Budding theoretical computer scientists are generally taught several dictums at an
early age. One such dictum is that the algorithm designers and the complexity
theorists (whoever they may be) are charged with opposing tasks. The algorithm
designer discovers interesting methods for solving certain problems; along the way,
she may also propose new notions of what is interesting, to better understand the
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scope and power of algorithms. The complexity theorist is supposed to prove lower
bounds, showing that sufficiently interesting methods for solving certain problems
do not exist. Barring that, he develops a structural framework that explains the
consequences of such impossibility results, as well as consequences of possessing
such interesting methods.

Another dictum is that algorithm design and analysis is, on the whole, an easier
venture than proving lower bounds. In algorithm design, one only has to find a
single efficient algorithm that will solve the problem at hand, but a lower bound
must reason about all possible efficient algorithms, including bizarrely behaving
ones, and argue that none solve the problem at hand. This dictum is also re-
flected in the literature: every year, many interesting algorithms are discovered,
analyzed, and published, compared to the tiny number of lower bounds proved.1

Furthermore, there are rigorously mathematical reasons for believing that lower
bounds are hard to prove. The most compelling of these are the three “barriers” of
Relativization [BGS75], Natural Proofs [RR97], and Algebrization [AW09]. These
“no-go” theorems demonstrate that the known lower bound proof methods are
simply too coarse to prove even weak lower bounds, much weaker than P 6= NP.
Subsequently, complexity theory has been clouded with great pessimism about
resolving some of its central open problems.

While the problems of algorithm design and proving lower bounds may arise
from looking at opposing tasks, the two tasks do have deep similarities when
viewed in the appropriate way.2 This survey will concentrate on some of the most
counterintuitive similarities: from the design of certain algorithms (the supposedly
“easier” task), one can derive new lower bounds (the supposedly “harder” task).
That is, there are senses in which algorithm design is at least as hard as proving
lower bounds, contrary to dictums. These connections present an excellent mathe-
matical “arbitrage” opportunity for complexity theorists: to potentially prove hard
lower bounds via supposedly easier algorithm design. (Moreover, there is money
to be made: this approach has recently led to new lower bounds.)

Several connections take the following form:

The existence of an “efficient” algorithm T that can analyze all struc-
tured circuits C implies the existence of an “efficient” function f that
is not computable by all structured circuit families.

Therefore, while algorithms and lower bounds are opposites by definition, there
are situations where algorithm design for a problem X can be translated into “lower
bound design” for another problem Y . The key is that there are two computational
models under consideration here: the algorithm model or the usual “Turing” style
model of algorithms, and the circuit model or the non-uniform circuit family model,
which we shall define shortly. Careful design of algorithms for analyzing instances
of the circuit model are used to construct functions computable (in one sense) in

1Of course, there can be other reasons for this disparity, such as funding.
2Similarities are already present in the proof(s) that the Halting Problem is undecidable: such

results rely on the construction of a universal Turing machine that can run arbitrary Turing
machine code given as input. This is a textbook application of how an algorithm can be used to
prove an impossibility theorem.



Algorithms for Circuits and Circuits for Algorithms 3

the algorithm model that are uncomputable (in another sense) in the circuit model.
There is a kind of duality lurking beneath which is not well-understood.

The focus of this article is on two generic topics in algorithms and complexity,
and connections between them:

• Circuits for Algorithms refers to the modeling of powerful uniform algo-
rithms with non-uniform circuit families, or proving that such modeling is
impossible. For instance, the celebrated EXP versus P/poly question asks
if exponential-time algorithms can be simulated using non-uniform circuit
families of polynomial size. Complexity theorists believe that the answer is
no, but they presently have no idea how to prove such a circuit lower bound.

• Algorithms for Circuits refers to the design of algorithms which can analyze
finite logical circuits or Boolean functions as input, checking some property
about the complexity of the underlying function. To illustrate, the problem
Circuit-SAT asks if a given logical circuit has an input that forces the circuit
to output true. Circuit-SAT is NP-complete and believed to be intractable;
nevertheless, even “mildly intractable” algorithms for this problem would
be useful in both theory and practice. It is an outstanding open question
whether one can asymptotically improve over the “brute force” algorithm
for Circuit-SAT which simply evaluates the circuit on all possible inputs.
Recent surprising developments have shown that even tiny improvements
over exhaustive search would significantly impact Circuits for Algorithms—
in fact, new circuit lower bounds have been deduced from such algorithms.

The rest of the paper is organized as follows. The next section provides a bit
of relevant background. Section 3 surveys circuits for algorithms, and Section 4
surveys algorithms for circuits. Section 5 discusses known connections between the
two, and prospects for future progress. Section 6 briefly concludes.

2. Preliminaries

Recall {0, 1}n is the set of all n-bit binary strings, and {0, 1}? =
⋃
n∈N{0, 1}n.

A quick recollection of machine-based complexity Any reasonable algo-
rithmic model with a coherent method for counting steps (such as Turing machines
and their transition functions) will suffice for our discussion. For an algorithm A,
we let A(x) denote the output of A on the input x. A language L is a subset of
{0, 1}?; in the following, the variable L always denotes a language. We typically
think of L as an indicator function from {0, 1}? to {0, 1}, in the natural way.

Let t : N → N. An algorithm A runs in time t(n) if, on all x ∈ {0, 1}n, A(x)
halts within t(|x|) steps. Decidability of L in time t(n) means that there is an
algorithm A running in time t(n) such that A(x) = L(x) for all x.

L is verifiable in time t(n) if there exists an algorithm A such that, on all
x ∈ {0, 1}n, x ∈ L if and only if there is a yx ∈ {0, 1}t(|x|) such that A(x, yx) runs
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in time O(t(|x|)) and A(x, yx) = 1. Intuitively, the string yx serves as a proof that
x ∈ L, and this proof can be verified in time O(t(|x|)).

An algorithm A runs in space t(n) if, on all x ∈ {0, 1}n, the total workspace
used by A(x) is at most t(|x|) cells (or registers, or bits, depending on the model).
Decidability of a language in space t(n) is defined in the obvious way.

Some complexity classes relevant to our discussion are:
• P: the class of languages decidable in O(p(n)) time for some p ∈ Z[x].
• NP: languages verifiable in O(p(n)) steps for some p ∈ Z[x].
• PSPACE: languages decidable in space O(p(n)) for some p ∈ Z[x].
• EXP: languages decidable in O(2p(n)) time for some p ∈ Z[x].
• NEXP: languages verifiable in O(2p(n)) time for some p ∈ Z[x].
• EXPSPACE: languages decidable in space O(2p(n)) for some p ∈ Z[x].
Let C be one of the above classes. An algorithm A with oracle access to C

has a powerful extra instruction: there is a language L ∈ C such that A can call
L(y) in one time step, on any input y of its choosing. (Intuitively, A can efficiently
“consult the oracle” in class C for answers.) This is an interesting notion when C
is a hard complexity class, say in NP or in PSPACE, and L is chosen to be a hard
language in C.

Circuit complexity A function f : {0, 1}n → {0, 1} is called Boolean. We let
x1, . . . , xn denote the n variables to a Boolean function f . Circuit complexity
is chiefly concerned with the difficulty of building up Boolean functions out of
“simpler” functions, such as those of the form g : {0, 1}2 → {0, 1}. Examples of
interesting Boolean functions include:
• ORk(x1, . . . , xk), ANDk(x1, . . . , xk), with their usual logical meanings,
• MODmk(x1, . . . , xk) for a fixed integer m > 1, which outputs 1 if and only

if
∑
i xi is divisible by m.

• MAJk(x1, . . . , xk) = 1 if and only if
∑
i xi ≥ dk/2e.

A basis set B is a set of Boolean functions. Two popular choices for B are B2,
the set of all functions g : {0, 1}2 → {0, 1}, and U2, the set B2 without MOD2 and
the negation of MOD2. A Boolean circuit of size s with n inputs x1, . . . , xn over
basis B is a sequence of n+s functions C = (f1, . . . , fn+s), with fi : {0, 1}n → {0, 1}
for all i, such that:

• for all i = 1, . . . , n, fi(x1, . . . , xn) = xi,

• for all j = n + 1, . . . , n + s, there is a function g : {0, 1}k → {0, 1} from B
and indices i1, . . . , ik < j such that

fj(x1, . . . , xn) = g(fi1(x1, . . . , xn), . . . , fik(x1, . . . , xn)).

The fi are the gates of the circuit; f1, . . . , fn are the input gates, fn+1, . . . , fn+s−1

are the internal gates, and fn+s is the output gate. The circuit C can naturally
be thought of as a function as well: on an input string x = (x1, . . . , xn) ∈ {0, 1}n,
C(x) denotes fn+s(x).

Thinking of the connections between the gates as a directed acyclic graph in
the natural way, with the input gates as n source nodes 1, . . . , n, and the jth gate
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with indices i1, . . . , ik < j as a node j with incoming arcs from nodes i1, . . . , ik,
the depth of C is the longest path from an input gate to the output gate. As a
convention, gates with fan-in 1 are not counted in the depth measure. That is,
gates of the form g(x) = x or g(x) = ¬x are not counted towards the length of a
path from input to output.

Given a basis set B and f : {0, 1}n → {0, 1}, what is the minimal size s of
a Boolean circuit over B with output gate fn+s = f? This quantity is the B-
circuit complexity of f , and is denoted by CB(f). The minimal depth of a circuit
computing f is also of interest for parallel computing, and is denoted by DB(f).

3. Circuits for Algorithms

The circuit model is excellent for understanding the difficulty and efficiency of
computing finite functions. For every f : {0, 1}n → {0, 1} and basis set, the circuit
complexity of f is a fixed integer which could be high or low, relative to n.

Boolean circuits should be contrasted with the typical uniform algorithm mod-
els used in computability and complexity theory, based on finite objects such as
Turing machines. In that setting, one is presented with functions (languages)
defined over infinitely many strings, i.e., of the form

L : {0, 1}? → {0, 1}, (1)

and a primary goal is to find a fixed program or machine M such that, for every
input x ∈ {0, 1}?, running M on input x always produces the output L(x) in
some finite (or efficient) number of steps. This sort of computational model can
trivially compute all finite functions (outputting 1 on only finitely many inputs)
in constant time, by hard-coding the answers to each of the finitely many inputs
in the program’s code.

There is a logical way to extend the Boolean circuit model to also compute
functions of type (1): we simply provide infinitely many circuits.

Definition 3.1. Let s : N → N, d : N → N, and L : {0, 1}? → {0, 1}. L has
size-s(n) depth-d(n) circuits if there is an infinite family {Cn | n ∈ N} of Boolean
circuits over B2 such that, for every n, Cn has n inputs, size at most s(n), depth
at most d(n), and for all x ∈ {0, 1}n, Cn(x) = L(x).

This is an infinite (so-called non-uniform) computational model: for each input
length n, there is a different “program” Cn for computing the 2n inputs of that
length, and the size of this program can grow with n.

Note that every language L has circuits of size O(n2n), following the obser-
vation that every f : {0, 1}n → {0, 1} is specified by a 2n-bit vector, called the
truth table of f . This construction can be improved to 2n/n+o(2n/n) size [Sha49,
Lup59], and a simple counting argument shows that this improved size bound is
tight for general functions. The class of functions of type (1) computable with
“feasibly-sized” circuits is often called P/poly:
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Definition 3.2. Let s : N→ N and L : {0, 1}? → {0, 1}. Define SIZE(s(n)) to be
the class of functions L such that L has size-s(n) circuits, and P/poly to be the
class of functions L such that there is a k ≥ 1 satisfying L ∈ SIZE(nk + k).

Studying P/poly requires us to contemplate explicit trade-offs between the sizes
of programs for computing functions and the sizes of inputs to those programs.
Proving that a language is not in P/poly is a very strong result, implying that
even finite segments of the language require “large” computations, relative to the
sizes of inputs in the segment. From such results one can, in principle, derive
concrete numerical statements about the limits of solving a problem. A proof
that L /∈ P/poly could potentially be used to establish that solving L on 1000-bit
inputs requires 10100 size computations. This would be a true claim concerning
the intractability of L in the known physical universe.3

Immediately one wonders how the two computational models of algorithms and
circuits relate. The basic Circuits for Algorithms question is:

What “normal” algorithms (efficient or not) can be simulated in P/poly?

More precisely, take a complexity class C defined with respect to the usual
uniform algorithm model (P, NP, PSPACE, EXP, NEXP, and so on). Which of
these classes are contained in P/poly? For example, if EXP were contained in
P/poly, then all uniform algorithms running in exponential time can be simulated
by polynomial-size computations in the non-uniform circuit model. It is believed
that in general, circuit families cannot really solve NP-hard problems significantly
more efficiently than algorithms can, and that NP 6⊂ P/poly. Complexity theory
is very far from proving this; for one, it would imply P 6= NP.

To gain a little insight into the difficulty, we may first ask if P/poly is con-
tained in any of the above classes. The answer to that question is no. Let
{M1,M2,M3, . . .} be a computable enumeration of Turing machines. Consider
the function L(x) defined to output 1 if and only if M|x| halts on 1|x|. For every
n, either L outputs 1 on all n-bit strings, or L outputs 0 on all such strings. It is
easy to infer from this that L ∈ P/poly. However, L is also undecidable, as there
is an easy reduction from the Halting Problem to L. The class P/poly, defined in
terms of an infinite computational model, has unexpected power.

In general, the tools of computability theory are essentially powerless for under-
standing P/poly, and complexity theory has not yet discovered enough new tools.
Indeed, this provides another reason to study circuit complexity: we’re forced to
develop new lower bound proof methods that go beyond old methods like diago-
nalization, which is known not to be sufficient by itself due to the Relativization
barrier [BGS75]. These new methods may be useful in the long run for resolving
other problems such as P vs NP. While nontrivial results are known (which we
now survey), they are meager in comparison to what is conjectured.

3In fact, statements of this form have been extracted from circuit complexity lower bounds.
See Stockmeyer-Meyer [SM02].
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3.1. Classes with efficient circuits. It is relatively easy to see that
P ⊂ P/poly: polynomial-time algorithms can be “unrolled” for polynomially
many steps, and simulated step-by-step using polynomial-size circuits. Further-
more, randomized polynomial-time algorithms have polynomial-size circuit fami-
lies, i.e., BPP ⊂ P/poly [Adl78], by judiciously hard-coding good random seeds in
polynomial-size circuits.

Besides what we have already sketched, there are few other nontrivial results
known. Kolmogorov made an intriguing conjecture:

Conjecture 3.3 (A. N. Kolmogorov, according to Levin [Lip94]). For every L ∈ P,
there is a k such that L has kn size circuits.4

The conjecture would be surprising, if true. For languages in P requiring n100100

time, it appears unlikely that the complexity of such problems would magically
shrink to O(n) size, merely because a different circuit can be designed for each
input length. Kolmogorov’s conjecture implies P 6= NP [Lip94].

While it is generally believed that Conjecture 3.3 isn’t true, a resolution looks
very difficult. To see why, we sketch here the lack of progress on circuit lower
bounds for languages in P. For a language L : {0, 1}? → {0, 1}, define Ln :
{0, 1}n → {0, 1} to be the n-bit restriction of L: Ln agrees with L on all x ∈ {0, 1}n.
The best known circuit lower bounds for functions in P are only small linear bounds:

Theorem 3.4 ([Blu84]). There is an L ∈ P with CB2(Ln) ≥ 3n− o(n) for all n.

Theorem 3.5 ([LR01, IM02]). There is an L ∈ P with CU2
(Ln) ≥ 5n − o(n) for

all n.

Hence it is possible that every L ∈ P has circuits of size 5.1n. Even if the L is
allowed to be in NP, no better circuit lower bounds are known. It is open whether
every L ∈ TIME[2O(n)]NP (functions in 2O(n) time with access to an NP oracle) has
5.1n size circuits. In Section 5 we will see a possible approach to this question.

It was recently shown that, if Kolmogorov’s conjecture is true, then such O(n)-
size circuits must be intractable to construct algorithmically [SW13].5

3.2. Classes without efficient circuits. Let us now survey which func-
tions are known to not be in P/poly.

Ehrenfeucht [Ehr75] studied the decision problem for sentences in the first order
theory of N with addition, multiplication, and exponentiation, where all quantified
variables are bounded by constants. (The problem is clearly decidable since all
variables are bounded.) He showed that this problem requires (1+δ)n-size circuits
for some δ > 0, assuming a reasonable encoding of sentences as binary strings.
Meyer (1972, cf. [SM02]) and Sholomov [Sho75] proved that the same problem

4Apparently the conjecture was based on the affirmative answer by Kolmogorov and Arnol’d of
Hilbert’s 13th problem [Kol56, Arn57], which asks if every continuous function on three variables
can be expressed as a composition of finitely many continuous functions on two variables.

5More formally, there is a language L computable in nc time for some c ≥ 1, such that for
every d ≥ 1 and every algorithm A running in nd time, there are infinitely many n such that
A(1n) does not output an O(n) size circuit Cn computing L on n-bit inputs.
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is decidable by a Turing machine using exponential (2O(n)) space—in complexity
notation, EXPSPACE 6⊂ SIZE((1 + δ)n). This result can be scaled down to show
the same circuit size lower bound for a language in Σ3EXP.6

Kannan [Kan82] proved that NEXPNP 6⊂ P/poly. In fact his proof shows that
NEXPNP 6⊂ SIZE(f(n)), for every f : N→ N satisfying f(f(n)) ≤ 2n (these are the
half-exponential functions). It is open whether NEXPNP ⊂ SIZE(2εn) for all ε > 0.

The P/poly lower bound of Kannan has been mildly improved over the years,
to the presumably smaller (but still gigantic) complexity class MAEXP [BFT98].
However, it is open whether NEXP (or even EXPNP) is contained in P/poly. It
looks impossible that all problems verifiable in exponential time could be computed
using only polynomial-size circuits, but the infinite nature of the circuit model has
confounded all proof attempts. Section 5 outlines a new approach to this problem.

3.3. Restricted circuits. There are several natural ways to restrict the cir-
cuit model beyond just circuit size, and still allow for complex circuit computations.
In particular, restricting the depth leads to an array of possibilities.

Let A be the basis of unbounded fan-in AND and OR gates with NOT, i.e.,

A = {NOT} ∪
⋃
n∈N
{ORn,ANDn}.

For an integer m ≥ 2, let Mm be the basis of unbounded fan-in MODm, AND,
and OR gates with NOT:

Mm = {NOT} ∪
⋃
n∈N
{ORn,ANDn,MODmn}.

Let T be the basis of unbounded fan-in MAJ gates with NOT:

T = {NOT} ∪
⋃
n∈N
{MAJn}.

The following complexity classes are all subclasses of P/poly that have been widely
studied. Let k ≥ 0 be an integer.
• NCk: Languages computable with polynomial size, O(logk n) depth circuits

over the basis U2.7

• ACk: Languages computable with a polynomial size and O(logk n) depth
circuit family {Cn} over A. That is, there is a fixed integer d ≥ 1 such that
every Cn has depth d logk n.8

• ACk[m]: Languages computable with polynomial size, O(logk n) depth cir-
cuits over Mm.

6Σ3EXP = NEXPNPNP
is nondeterministic exponential time with oracle access to NPNP (and

NPNP equals nondeterministic polynomial time with oracle access to NP). This class is contained
in EXPSPACE, and the containment is probably proper.

7The acronym NC stands for “Nick’s Class,” named after Nick Pippenger.
8AC stands for “Alternating Circuits,” alternating between AND and OR. As a reminder,

NOT gates are not counted in the depth bounds of AC, ACC, and TC circuits.
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• ACCk: The union over all m ≥ 2 of ACk[m].9

• TCk: Languages computable with polynomial size, O(logk n) depth circuits
over the basis T .10

A thorough survey of these classes cannot be provided here; instead, let us focus
attention on the most relevant aspects for the present story. The most well-studied
of these classes are AC0, ACC0, TC0, and NC1, and it is known that

AC0 ( AC0[p] ( ACC0 ⊆ TC0 ⊆ NC1 ⊆ P/poly,

when p is a prime power.

NC1 is well-motivated in several ways: for instance, it is also the class of lan-
guages computable with infinite families of polynomial-size Boolean formulas, or
circuits where all internal gates have outdegree one. For formulas, interesting lower
bounds are known: the best known formula size lower bound for a function in P
is n3−o(1) over U2, by H̊astad [H̊as98]. TC0 is well-motivated from the study of
neural networks: the MAJ function is a primitive model of a neuron, and the
constant depth criterion reflects the massive parallelism of the human brain. Less
primitive models of the neuron, such as linear threshold functions, end up defining
the same class TC0. (A linear threshold function is a Boolean function f defined
by a linear form

∑n
i=1 wixi for some wi ∈ Z, and a threshold value t ∈ Z. For all

(x1, . . . , xn) ∈ {0, 1}n, f(x1, . . . , xn) = 1 if and only if
∑
i wixi ≥ t.)

The MODm operations may look strange, but they arose naturally out of a
specific program to develop circuit complexity in a “bottom up” way, starting
with very restricted circuits and a hope of gradually relaxing the restrictions over
time. First, AC0 was studied as a “maximally parallel” but still non-trivial class,
and it was shown that MOD2 6∈ AC0 [Ajt83, FSS81]. This made it reasonable
to ask what is computable when the MOD2 function is provided among the basis
functions in AC0, leading to the definition of AC0[2]. Then it was proved that for
distinct primes p and q, MODq 6∈ AC0[q] [Raz87, Smo87], hence MOD3 6∈ AC0[2].
One then wonders what is computable when MOD3 and MOD2 are both allowed
in the basis. It is not hard to see that including MOD6 in the basis functions is
equivalent to including MOD3 and MOD2. Attention turned to AC0[6]. (There
were many other separate threads of research, such as lower bounds on fixed-depth
versions of TC0 [HMP+93], which space prevents us from covering here.)

At this point, the trail was lost. It is still open whether every language in
P/poly (and in EXP) has depth-three circuit families over M6. It has been shown
only recently that NEXP is not contained in ACC0, via a generic connection between
algorithms-for-circuits and circuits-for-algorithms [Wil10, Wil11] (see Section 5).
Yet it is open whether NEXP is contained in TC0, even for TC0 circuits of depth
three.

9ACC stands for “Alternating Circuits with Counting.”
10TC stands for “Threshold Circuits.”
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4. Algorithms For Circuits

In the most common form of circuit analysis problem, one takes a circuit as input,
and decides a property of the function computed by the circuit. Let a property P
be a function from the set of all Boolean functions {f : {0, 1}n → {0, 1} | n ≥ 0}
to the set {0, 1}.

Generic Circuit Analysis
Input: A logical circuit C
Output: A property P (f) of the function f computed by C

The canonical example of such a problem is the Circuit Satisfiability problem
(a.k.a. Circuit-SAT), which we shall survey in detail.

Circuit-SAT
Input: A logical circuit C
Output: Does the function f computed by C output 1 on some input?

This is basically equivalent to checking if C implements a trivial function that
is constant on all inputs—a function of minimum circuit complexity. Hence the
Circuit-SAT problem may viewed as providing nontrivial insight into the circuit
complexity of the function implemented by a given circuit.

As Circuit-SAT is NP-complete, it is unlikely that there is an polynomial-time
algorithm for it. An algorithm which exhaustively searches over all possible inputs
to C requires Ω(2n ·|C|) time steps, where n is the number of inputs to C, and |C| is
the size of the circuit. Is there a slightly faster algorithm, running in (for example)
1.99n · |C|2 time? Presently, there is no known algorithm for solving the problem
on generic circuits of size s and n inputs that is asymptotically faster than the
time cost of exhaustive search. Fine-grained questions of this variety are basic to
two emerging areas of research: parameterized algorithms [DF99, FG06] and exact
algorithms [FK10]. For many NP-hard problems, asymptotically faster algorithms
over exhaustive search do exist, and researchers actively study the extent to which
exhaustive search can be beaten. (We shall see in Section 5 that even slightly
faster Circuit-SAT algorithms can sometimes have a major impact.)

4.1. Restrictions of Circuit-SAT. As seen in Section 3, many circuit
restrictions have been studied; here we survey the known algorithms for the sat-
isfiability problem under these different restrictions. In this section, we think of
AC0, ACC, TC0, NC1, and P/poly not as classes of languages, but as classes of
circuit families: collections of infinite circuit families satisfying the appropriate
restrictions. For each class C, a satisfiability problem can be defined:
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C-SAT
Input: A circuit C from a family in class C
Output: Is there an input on which C evaluates to true?

Just as with general Circuit-SAT, the C-SAT problem remains NP-complete
even for AC0-SAT [Coo71], yet for simple enough C, C-SAT algorithms running
faster than exhaustive search are known.

k-SAT. The k-SAT problem is to determine satisfiability of a very simple circuit
type: an AND of ORs of k literals (which can be input variables and/or their
negations). This is also called conjunctive normal form (CNF). Without loss of
generality, the AND gate may be assumed to have O(nk) fan-in, as there are only
O(nk) possible ORs of k literals. The k-SAT problem is also NP-complete [Coo71]
for all k ≥ 3. Nevertheless, 3-SAT can be solved in 1.331n time using a determin-
istic algorithm [MTY11], or 1.308n time [Her11] using a randomized algorithm.
These running times form the tail end of a long line of published algorithms, with
each subsequent algorithm decreasing the base of the exponent by a little bit. (See
the survey of Dantsin and Hirsch [DH09].)

How much faster can 3-SAT be solved? The Exponential Time Hypothesis of
Impagliazzo and Paturi [IP01] asserts that this line of work must “converge” to
some base of exponent greater than 1:

Exponential Time Hypothesis (ETH): There is a δ > 0 such that
3-SAT on n variables cannot be solved in O((1 + δ)n) time.

Impagliazzo, Paturi, and Zane [IPZ01] showed that ETH is not just a hypothesis
about one NP-complete problem: by using clever subexponential time reductions,
ETH implies that many other NP-hard problems require (1 + δ)n time to solve for
some δ > 0. Many other consequences of ETH have been found [LMS11].

The k-SAT problem for arbitrary k has also been extensively studied. The best
known k-SAT algorithms all run in 2n−n/(ck) time, for a fixed constant c [PPZ97,
Sch02, PPSZ98, DH09]. So for k > 3, the savings in running time over 2n slowly
disappears as k increases. The Strong Exponential Time Hypothesis [IP01, CIP09]
asserts that this phenomenon is inherent in all SAT algorithms:

Strong Exponential Time Hypothesis (SETH): For every δ < 1 there
is a k such that k-SAT on n variables cannot be solved in 2δn time.

For example, SETH implies that even 2.99999n is not enough time for solving
k-SAT over all constants k. (It is known that SETH implies ETH.)

AC0-SAT There has been less work on this problem, but recent years have seen
progress [CIP09, BIS12, IMP12]. The fastest known AC0-SAT algorithm is that
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of Impagliazzo, Matthews, and Paturi [IMP12], who give an O(2n−Ω(n/(log s)d−1))
time algorithm on circuits with n inputs, s gates, and depth d.

ACC0-SAT The author [Wil11] gave an algorithm running in O(2n−n
ε

) time for
ACC0 circuits of 2n

ε

size, for some ε ∈ (0, 1) which is a function of the depth d of
the given circuit and the modulus m used in the MODm gates. This algorithm was
recently extended to handle the larger circuit class ACC0 ◦ THR, which is ACC0
augmented with an additional layer of arbitrary linear threshold gates near the
inputs [Wil14].

TC0-SAT For depth-two TC0 circuits, Impagliazzo, Paturi, and Schneider [IPS13]
showed that satisfiability with n inputs and cn wires (i.e., edges) can be determined
in 2δn time for some δ < 1 that depends on c. No nontrivial algorithms are known
for satisfiability of depth-three TC0 (and circuit lower bounds aren’t known, either).

Formula-SAT Santhanam [San10] proved that satisfiability of cn size formulas
over U2 can be determined in 2δn, for some δ < 1 depending on c. His algorithm
was extended to the basis B2 by Seto and Tamaki [ST12], and to larger size for-
mulas over U2 by Chen et al. [CKK+14]. Applying recent concentration results of
Komargodski, Raz and Tal [KRT13], the algorithm of Chen et al. can solve SAT

for formulas over U2 of size n3−o(1) in randomized 2n−n
Ω(1)

time with zero error.
(Recall that the best known formula lower bound is n3−o(1) size as well; these
Formula-SAT algorithms exploit similar ideas as in the lower bound methods.)

4.2. Approximate Circuit Analysis. A different form of circuit analy-
sis is that of additive approximate counting ; that is, approximating the fraction of
satisfying assignments to a given circuit:

Circuit Approximation Probability Problem (CAPP)
Input: A circuit C
Output: The quantity Prx[C(x) = 1], to within ± 1/10.

The constant 1/10 is somewhat arbitrary, and could be any constant in (0, 1/2)
(usually this constant is a parameter in the algorithm). As with C-SAT, the prob-
lem C-CAPP can be defined for any circuit class C. Approximate counting has
been extensively studied due to its connections to derandomization. CAPP is eas-
ily computable with randomness by sampling (for instance) 100 x’s uniformly at
randomn, and evaluating C on them. We want to know purely deterministic algo-
rithms. The structure of this subsection will parallel that of the coverage of C-SAT.
We cannot hope to cover all work in this article, and can only provide highlights.11

Several algorithms we shall mention give a stronger property than just ap-
proximately counting. Prior to viewing the circuit, these algorithms efficiently
construct a small collection A of strings (assignments), such that for all circuits C
of the appropriate size and depth from a circuit class C, the fraction of satisfying

11We should also note that many algorithms from the previous subsection not only solve C-
SAT, but can exactly count the number of satisfying assignments (or can be modified to do so),
implying a C-CAPP algorithm.
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assignments of C over A is a close approximation to the total fraction of satisfying
assignments of C. Such algorithms are called pseudorandom generators and are
inherently tied to lower bounds. Indeed, lower bounds against a circuit class C are
generally a prerequisite for pseudorandom generators for C, because the efficient
process which produces such a collection A cannot be modeled within C.

The case of depth-two AC0 (i.e., of an AND of ORs of literals, or an OR of
AND of literals) is especially interesting. Luby and Velickovic [LV96] showed that

this case of CAPP is computable in nexp(O(
√

log logn)) time. Gopalan, Meka, and
Reingold [GMR13] improved this to about nO(log logn) time. It appears that here,
a deterministic polynomial-time algorithm for CAPP may be within reach.

Ajtai and Wigderson [AW85] showed that AC0-CAPP is solvable in 2n
ε

time
for every ε > 0, providing a pseudorandom generator. A pseudorandom generator

of Nisan [Nis91] yields an AC0-CAPP algorithm running in nlogO(d) s time, where
s is the size and d is the depth. There has been much work since then; most
recently, Trevisan and Xue [TX13] construct tighter pseudorandom generators for

AC0, showing that AC0-CAPP can be computed in nÕ(logd−1 s) time.

For the class ACC0, exact counting of satisfying assignments can be done in
about the same (best known) running time as computing satisfiability [Wil14].

To our knowledge, no nontrivial CAPP algorithm for depth-two TC0 circuits is
known. However, here is a good place to mention two other threads of work relating
to low-depth circuits. The problem of approximately counting the number of zeroes
in {0, 1}n of a low-degree polynomial over a finite field is equivalent to computing
CAPP on a MODp of AND gates of fan-in d. This problem can be solved essentially
optimally for fixed d, in deterministic time Od(n

d) [LVW93, BV10, Lov09, Vio09].
A polynomial threshold function of degree d (PTF) has the form f : {−1, 1}n →
{−1, 1} and is representable by the sign of a multivariate degree-d polynomial over
the integers. (Such functions can be construed as Boolean; the convention is that
−1, 1 correspond to true and false, respectively.) Approximating the number of
zeroes to a degree-d PTF can be modeled by solving CAPP on a linear threshold
gate of MOD2 gates of fan-in d. It is known that for every fixed d, approximate
counting for degree-d PTFs can be done in polynomial time [MZ13].

For Boolean formulas, Impagliazzo, Meka, Zuckerman [IMZ12] give a pseudo-

random generator yielding a 2s
1/3+o(1)

time algorithm for Formula-CAPP on size-s
formulas over U2. For formulas of size s over B2 and branching programs of size

s, their generator can be used to approximately count in 2s
1/2+o(1)

time.

No nontrivial results for CAPP are known for unrestricted Boolean circuits.

4.3. Truth Table Analysis. So far, we have only considered circuit anal-
ysis problems where the input to be analyzed is a circuit. Another class of circuit
analysis problems take a Boolean function on n variables as input, specified as a
2n-bit string, and the goal is to compute some property of “good” circuits which
compute the function f .
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Generic Truth Table Analysis
Input: A function f : {0, 1}n → {0, 1}
Output: Property P (f) of circuits computing f

A natural example is that of minimizing a circuit given its truth table:

Circuit-Min [Yab59, KC00]
Input: A function f : {0, 1}n → {0, 1} and k ∈ Z+

Output: Is CB2
(f) ≤ k?

In other words, we want to decide if the circuit complexity of f is at most k. As
with Circuit-SAT and CAPP, we can also define the C-Min problem for restricted
circuit classes C. The problem is easily seen to be in NP. It is strongly believed
that Circuit-Min is intractable: if it were in P, then there would be no pseudoran-
dom functions, contradicting conventional wisdom in cryptography. Informally, a
pseudorandom function is a function f implementable with polynomial-size circuits
that “behaves like” a random function, to all efficient processes with input/output
access to f . Since a random function g has high circuit complexity with high prob-
ability, and f has low circuit complexity, an efficient algorithm for Circuit-Min
could be used to tell f and g apart with non-negligible success probability, after
querying them at nO(1) points. As a result, restricted versions of Circuit-Min such
as NC1-Min and TC0-Min are also intractable under cryptographic assumptions,
as those classes are believed to support such functions.12

Perhaps Circuit-Min is NP-hard. Proving that is a difficult open problem. To
obtain a polynomial-time reduction from (say) 3-SAT to Circuit-Min, unsatisfiable
formulas have to be efficiently mapped into functions without small circuits; how-
ever, recall that we do not know explicit functions with high circuit complexity.
Kabanets and Cai [KC00] show that if the NP-hardness of Circuit-Min could be
proved under a natural notion of reduction, then long-open circuit lower bounds
like EXP 6⊂ P/poly would follow.

One version of Circuit-Min is known to be NP-complete: DNF-Min, the prob-
lem of minimizing a DNF formula (an OR of ANDs of literals) given its truth ta-
ble [Mas79, AHM+08]. (Intuitively, DNF-Min can be proved hard because strong
lower bounds are known for computing Boolean functions with DNFs.) However,
one can efficiently find an approximately minimum-sized DNF [AHM+08].

A newly-introduced and related analysis problem is that of compression:

12Here is a good point to briefly mention a connection between Circuit-Min and complexity
barriers. Razborov and Rudich [RR97] showed that practically all known circuit lower bound
proof techniques (i.e., proving there are no efficient circuits-for-algorithms) yield weak efficient
algorithms for Circuit-Min, weak enough to break any candidate pseudorandom function. Hence
it’s likely that such “natural proofs” cannot prove even TC0 lower bounds. In summary, every
“natural proof” that there are no efficient circuits for some algorithms also yields an interesting
algorithm for efficient circuits!
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Compression of C [CKK+14]
Input: A function f : {0, 1}n → {0, 1} computable with a circuit from C
Output: A (possibly unrestricted) circuit C computing f with size � 2n/n

Chen et al. [CKK+14] show that the techniques used in existing circuit lower
bound proofs can be “mined” to obtain somewhat efficient compression algorithms
for AC0, small Boolean formulas, and small branching programs. They pose as an
open problem whether ACC0 admits such a compression algorithm.

Learning circuits There is one more important form of circuit analysis that can
be viewed as restricted access to the truth table of a function: that of learning a
function f : {0, 1}n → {0, 1} which is initially hidden, but is known or assumed to
be implementable in some restricted circuit class C. In this survey we focus on the
problem of exact learning of C with membership and equivalence queries [Ang87],
where a learning algorithm does not see f in its entirety, but has the ability to:
• query f on an arbitrary x ∈ {0, 1}n (a membership query), and
• pose a hypothesis circuit H on n bits, asking if H and f compute the same

function (an equivalence query). If H 6= f , the algorithm is provided with a
counterexample point x on which H(x) 6= f(x).

Pseudorandom functions, mentioned earlier, naturally connect with learning. A
pseudorandom function has small circuits yet “looks like a random function” when
it is queried a small number of times—this kind of function is naturally difficult to
learn. Hence learning of Boolean functions computable in TC0 and NC1 is believed
to be intractable. Other examples can be found in the references [Val84, KV94].

5. Connections

In the Circuits for Algorithms space, one designs simple circuits to simulate com-
plex algorithms, or proves that no simple circuits exist for this task. In Algorithms
for Circuits, the goal is to design faster circuit-analysis algorithms. It is reasonable
to hypothesize that these tasks may inform each other. A provably nontrivial al-
gorithm for analyzing all circuits from a class should exhibit, at its core, nontrivial
understanding about the limitations of that circuit class. Conversely, if a simple
function cannot be computed by small circuits, then algorithms may be able to
use this function to analyze small circuits faster than exhaustive search.

For restricted classes of circuits, one can sometimes adapt known techniques
for proving lower bounds to derive faster SAT algorithms (or CAPP algorithms)
for those circuits. For instance, the progress on Formula-SAT algorithms and on
pseudorandom generators for Boolean formulas, both mentioned in Section 4, came
out of tighter analyses of the random restriction method originally used for proving
formula lower bounds [Sub61, H̊as98].

In the following, we restrict attention to more generic connections (i.e., formal
implications) between efficient circuit-analysis algorithms and circuit lower bounds.
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5.1. Circuit lower bounds and derandomization/CAPP. Per-
haps the earliest explicit study of how algorithms and lower bounds connect can be
found in the formal theory of cryptographic pseudorandomness, initiated by Blum
and Micali [BM84] and Yao [Yao82]. The existence of cryptographic pseudorandom
generators were shown to imply subexponential time deterministic simulations of
randomized polynomial time algorithms. Nisan and Wigderson [NW94] defined
a relaxed notion of pseudorandom generator explicitly for the purposes of deran-
domizing randomized algorithms (instead of for cryptography) and proved connec-
tions between circuit lower bounds and the existence of pseudorandom generators.
Subsequent work [BFNW93, IW97, KvM02, IKW02] improved these connections.
These papers give an effective equivalence between (for example) functions in 2O(n)

time requiring “high” circuit complexity, and the existence of pseudorandom gener-
ators computable in 2O(n) time that are effective against “low complexity” circuits.

For an example, Babai et al. [BFNW93] showed that EXP 6⊂ P/poly implies
that randomized polynomial-time algorithms can be simulated deterministically in
subexponential time, on infinitely many input lengths. Formally speaking:

Theorem 5.1 ([BFNW93]). EXP 6⊂ P/poly implies BPP ⊆ ioSUBEXP.

This connection was sharpened by Impagliazzo and Wigderson:

Theorem 5.2 ([IW97]). If there is a δ > 0 and a function computable in 2O(n)

time requiring circuits of size at least (1 + δ)n for almost all input lengths n, then
P = BPP.

That is, from exponential-size lower bounds, one can simulate every randomized
polynomial-time algorithm in deterministic polynomial time. Impagliazzo, Ka-
banets, and Wigderson [IKW02] showed that even a seemingly weak lower bound
like NEXP 6⊂ P/poly would imply a derandomization result: namely, there is a
simulation of Merlin-Arthur games (a probabilistic version of NP) computable in
nondeterministic subexponential time. In the opposite direction, they showed how
a subexponential time algorithm for CAPP implies lower bounds:

Theorem 5.3 ([IKW02]). If CAPP can be computed in 2n
o(1)

time for all circuits
of size n, then NEXP 6⊂ P/poly.

Recall the best known algorithm for CAPP is exhaustive search, taking Ω(2n)
time; an improvement to 2n

ε

for every ε > 0 would be an incredible achievement.
However, the hypothesis of Theorem 5.3 can be weakened significantly: essentially
any nontrivial improvement over 2n time for CAPP implies the lower bound.

Theorem 5.4 ([Wil10]). Suppose for every k, CAPP on circuits of size nk and n
inputs can be computed in O(2n/nk) time. Then NEXP 6⊂ P/poly.

Furthermore, computing CAPP for a restricted circuit class C faster than ex-
haustive search would imply that NEXP 6⊂ C [Wil10, SW13]. Theorem 5.4 requires
that C satisfy certain closure properties (all classes covered in this survey satisfy
them). Ben-Sasson and Viola [BSV14] have recently sharpened the connection be-
tween CAPP algorithms and circuit lower bounds, by carefully modifying a known
construction of probabilistically checkable proofs.
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5.2. Circuit lower bounds from SAT algorithms. We now survey
the impact of Circuit-SAT algorithms on the topic of Circuits for Algorithms. First,
if we have “perfect” circuit analysis, i.e., Circuit-SAT is solvable in polynomial time,
then there is a function in EXP that does not have small circuits. This result is
quite old in complexity-theory years:

Theorem 5.5 (Meyer [KL82]). If P = NP then EXP 6⊂ P/poly.

This is an interesting implication, but it may be of limited utility since we do
not believe the hypothesis. Nevertheless, Theorem 5.5 is a good starting point for
thinking about how circuit analysis can relate to circuit lower bounds. A proof can
be quickly sketched: assuming P = NP, we obtain many other equalities between

complexity classes, including NPNPNP

= P and Σ3EXP = NEXPNPNP

= EXP. As
stated in Section 3, Σ3EXP contains a language requiring circuits of maximum
complexity (by directly “diagonalizing” against all circuits up to the maximum
size). Therefore EXP now contains such a language as well.

This simple argument shows how a feasibility hypothesis like P = NP implies a
reduction in the algorithmic complexity of hard functions. It is tantalizing to won-
der if a lower bound could proved by contradiction, in this way: from a feasibility
hypothesis, deduce that the complexity of another provably hard function reduces
so drastically that it becomes contradictorily easy. Sure enough, recent progress
by the author on ACC0 lower bounds (described below) takes this approach.

Studying the proof more carefully, Theorem 5.5 can be improved in a few ways.
Considering the contrapositive of the proof sketch, we find that if every function in
2O(n) time has less than the maximum possible circuit complexity (1 + o(1))2n/n,
then P 6= NP. In other words, if non-uniform circuits can gain even a small
advantage over exponential-time algorithms in simulation, then P 6= NP would
follow. Another improvement of Theorem 5.5 comes from observing we do not
exactly need polynomial time Circuit-SAT algorithms: weaker guarantees such as

n(logn)k time would suffice to conclude EXP 6⊂ P/poly. Assuming ETH, this sort
of running time is still beyond what is expected.

Combining these results with our earlier remarks on derandomization, we see
that either EXP doesn’t have large circuits and hence P 6= NP, or EXP requires
large circuits and every randomized algorithm would have an interesting determin-
istic simulation, by Theorem 5.2. No matter how EXP vs P/poly is resolved, the
consequences will be very interesting.

Modern times Theorem 5.5 and its offshoots only work for Circuit-SAT algo-
rithms running in subexponential time. An indication that techniques for weak
SAT algorithms may still be useful for circuit lower bounds appears in the work
of Paturi, Pudlak, and Zane [PPZ97]. They gave a structure lemma on k-SAT in-
stances, and applied it to prove not only that k-SAT has an 2n−n/k time algorithm,
but also lower bounds for depth-three AC0 circuits.

In recent years, the author showed that very weak improvements over exhaus-
tive search for C-SAT would imply circuit lower bounds for NEXP:
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Theorem 5.6 ([Wil10, Wil11]). There is a c > 0 such that, if C-SAT can be
solved on circuits with n inputs and nk size in O(2n/nc) time for every k, then
NEXP 6⊂ C.

While the conclusion is weaker than Theorem 5.5, the hypothesis (for all classes
C we have considered) is extremely weak compared to P = NP; indeed, it even
looks plausible. The above theorem was combined with the ACC0-SAT algorithm
mentioned in Section 4.1 to conclude:

Theorem 5.7 ([Wil11]). NEXP 6⊂ ACC0.

Since Theorem 5.7 was proved, it has been concretely extended twice. The first
extension slightly lowers the complexity of NEXP, down to complexity classes such
as NEXP/1∩coNEXP/1 [Wil13]. (In fact a generic connection is proved between C-
SAT algorithms and C circuit lower bounds for NEXP/1∩coNEXP/1, with a slightly

stronger hypothesis: we have to assume SAT algorithms for nlogk n size circuits.)
The second extension strengthens ACC0 up to the class ACC0 ◦ THR, or ACC0
circuits augmented with a layer of linear threshold gates near the inputs [Wil14].

Theorem 5.6 holds for all circuit classes C of Section 2, but one may need (for
example) a SAT algorithm for 2d-depth circuits to obtain a d-depth circuit lower
bound. The project of tightening parameters to make C-SAT algorithms directly
correspond to the same C circuit lower bounds has seen much progress [SW13,
JMV13, Oli13, BSV14]. Now (for example) it is known that SAT algorithms for
depth d+ 1 or d+ 2 (depending on the gate basis) imply depth-d lower bounds.

Perhaps Circuit-SAT looks too daunting to improve upon. Are there other
connections between SAT algorithms and circuit lower bounds? Yes. From faster
3-SAT algorithms, superlinear size lower bounds follow:

Theorem 5.8 ([Wil10]). Suppose the Exponential Time Hypothesis (ETH) is false:
that is, 3-SAT is in 2εn time for every ε > 0. Then there is a language L ∈
TIME[2O(n)]NP such that, for every c ≥ 1, L does not have cn-size circuits.

ETH was discussed in Section 4.1, and the conclusion of Theorem 5.8 was
discussed as open in Section 3.1. Refuting the Strong Exponential Time Hypothesis
(SETH) from Section 4.1 also implies (weaker) circuit lower bounds:

Theorem 5.9 ([JMV13]). Suppose SETH is false: that is, there is a δ < 1 such
that k-SAT is in O(2δn) time for all k. Then there is a language L ∈ TIME[2O(n)]NP

such that, for every c ≥ 1, L does not have cn-size Valiant-series-parallel circuits.

Intuition for the connections One intuition is that a faster circuit-analysis
algorithm (say, for C-SAT) demonstrates a specific weakness in representing com-
putations with circuits from C. A circuit family from C is not like a collection
of black boxes which can easily hide satisfying inputs. (If we could only query
the circuit as a black box, viewing only its input/output behavior, we could not
solve C-SAT in o(2n) time.) Another intuition is that the existence of a faster
circuit-analysis algorithm for C demonstrates a strength of algorithms that run in
less-than-2n time: they can analyze nontrivial properties of a given circuit. Hence
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from assuming a less-than-2n time C-SAT algorithm, we should be capable of in-
ferring that “less-than-2n time algorithms are strong” and “C-circuits are weak.”

These observations hint at a proof that, assuming a C-SAT algorithm, there is
a language in NEXP without polynomial-size C circuits. The actual proof does not
resemble these hints; it is a proof by contradiction. We assert that both a faster
algorithm for analyzing C exists, and that NEXP ⊂ C. Together these two assump-
tions imply a too-good-to-be-true algorithm: a way to simulate every language
solvable in nondeterministic O(2n) time with only o(2n) time. This simulation
contradicts the nondeterministic time hierarchy theorem [Ž8́3], which implies that
there are problems solvable in 2n time nondeterministically which cannot be solved
in O(2n/n) time nondeterministically. Informally, the faster nondeterministic sim-
ulation works by using NEXP ⊂ C to nondeterministically guess C circuits that help
perform an arbitrary 2O(n) time computation, and using the faster circuit-analysis
algorithm to verify that these C circuits do the job correctly.

5.3. Other connections.

Circuit lower bounds from learning. Intuitively, an efficient algorithm for
learning circuits would have to harness some deep properties about the circuit class
under consideration; perhaps these properties would also be enough to prove circuit
lower bounds. Fortnow and Klivans proved a theorem modeling this intuition. Let
C be a restricted circuit class, such as those defined in Section 3.3. In the following,
say that C is exactly learnable if there is an algorithm for learning every hidden
function from C using membership and equivalence queries (cf. Section 4.3).

Theorem 5.10 ([FK09]). If all n-bit functions from C are exactly learnable in

deterministic 2n
o(1)

time, then EXPNP 6⊂ C.

Theorem 5.11 ([FK09]). If all n-bit functions from C are exactly learnable in
randomized polynomial time, then randomized exponential time (BPEXP) is not
contained in C.

Recently, these connections between learning circuits and circuit lower bounds
have been somewhat strengthened:

Theorem 5.12 ([KKO13]). If C is exactly learnable in 2n
o(1)

time, then there is

a language in TIME[2n
o(1)

] that is not in C.

Theorem 5.13 ([KKO13]). If C is exactly learnable in polynomial time, then there
is a language in TIME[nω(1)] that is not in C.

These proofs use a clever diagonalization argument, where the learning algo-
rithm is used to construct an efficiently computable function f that plays the role
of a contrarian teacher for the learning algorithm. When the learner asks a mem-
bership query x, f tells the learner true if f has not already committed to a value
for x (otherwise, f reports f(x)). When an equivalence query is asked, f tells
the learner “not equivalent” and outputs the first string y for which it has not



20 Ryan Williams

already committed to an output value (thereby committing to a value for y). As f
is constructed to never be equivalent to any hypothesis proposed by the learning
algorithm, f cannot have circuits in C.

Equivalences between circuit analysis and circuit lower bounds Earlier
it was mentioned that there are rough equivalences between pseudorandom genera-
tors and circuit lower bounds. Pseudorandom generators can be viewed as “circuit
analysis” algorithms, in the context of computing CAPP. Impagliazzo, Kabanets,
and Wigderson [IKW02] proved an explicit equivalence:

Theorem 5.14 ([IKW02]). NEXP 6⊂ P/poly if and only if for all ε > 0, CAPP is
in ioNTIME[2n

ε

]/nε.

Without going into the notation, this theorem states that NEXP circuit lower
bounds are equivalent to the existence of “non-trivial” subexponential time algo-
rithms for CAPP. The author recently proved a related equivalence between the
NEXP 6⊂ C problem (for various circuit classes C) and circuit-analysis algorithms.
Call an algorithm A non-trivial for C-Min if
• A(f) runs in 2O(n) time on a given f : {0, 1}n → {0, 1}, and
• for all constants k and for infinitely many input lengths n, there is a f :
{0, 1}n → {0, 1} such that A(f) outputs 1, and for all f : {0, 1}n → {0, 1}
computable with an (nk + k)-size circuit from C, A(f) outputs 0.

That is, for infinitely many n, algorithm A outputs 1 on at least one Boolean
function on n bits, and 0 on all functions with small circuit complexity.

Theorem 5.15 ([Wil13]). NEXP 6⊂ C if and only if there is an algorithm A which
is non-trivial for C-Min.

Connections in an algebraic setting In this survey, we considered Boolean
functions and circuits computing them. However, connections between circuit-
analysis algorithms and circuit lower bounds also hold in an algebraic framework,
where Boolean functions are replaced by polynomials over a ring R, and Boolean
circuits are replaced by algebraic circuits, which defined analogously to Boolean
circuits, but we allow side constants from the ring as extra inputs to an algebraic
circuit, and the gates are either additions or multiplications over the ring. Typ-
ically, R is taken to be a finite field, or Z. Each algebraic circuit C(x1, . . . , xn)
computes some polynomial p(x1, . . . , xn) over R.

The canonical circuit-analysis problem in this setting is:

Polynomial Identity Testing (PIT): Given an algebraic circuit C, does
C compute the identically zero polynomial?

Using subtraction, it is easy to see this problem is equivalent to determining if
two algebraic circuits C and C ′ compute the same polynomial.

It’s natural to think of PIT as a type of satisfiability problem. However, PIT
is probably not NP-hard: the problem is easily solvable in randomized polynomial
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time by substituting random elements (possibly over an extension field) [DL78,
Zip79, Sch80]. A very interesting open problem is to determine whether ran-
domness is necessary for efficiently solving PIT. Kabanets and Impagliazzo [KI04]
proved that an efficient deterministic algorithm for PIT would imply algebraic cir-
cuit lower bounds: either NEXP 6⊂ P/poly, or the permanent of a matrix requires
superpolynomial-size algebraic circuits.

6. Conclusion

This article has shown how a host of open problems in algorithms have direct
bearing on some of the central problems in complexity theory. It is quite likely
that there exist deeper interactions between Algorithms for Circuits and Circuits
for Algorithms which await our discovery. Hopefully, the reader has been persuaded
to think a little more about how algorithms and lower bounds relate to each other.
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L’Enseignement Mathématique, 28(2):191–209, 1982.

[Kol56] A. N. Kolmogorov. On the representation of continuous functions of several
variables by superposition of continuous functions of a smaller number of
variables. Dokl. Akad. Nauk SSSR, 108:179–182, 1956.

[KRT13] Ilan Komargodski, Ran Raz, and Avishay Tal. Improved average-case lower
bounds for DeMorgan formulas. In FOCS, pages 588–597, 2013.

[KV94] Michael J. Kearns and Leslie G. Valiant. Cryptographic limitations on learn-
ing boolean formulae and finite automata. JACM, 41(1):67–95, 1994.

[KvM02] Adam Klivans and Dieter van Melkebeek. Graph nonisomorphism has subex-
ponential size proofs unless the polynomial hierarchy collapses. SIAM J.
Comput., 31(5):1501–1526, 2002.



24 Ryan Williams

[Lip94] Richard Lipton. Some consequences of our failure to prove non-linear lower
bounds on explicit functions. In Structure in Complexity Theory Conference,
pages 79–87, 1994.

[LMS11] Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Lower bounds based
on the exponential time hypothesis. Bulletin of the EATCS, 105:41–72, 2011.

[Lov09] Shachar Lovett. Unconditional pseudorandom generators for low degree poly-
nomials. Theory of Computing, 5(1):69–82, 2009.

[LR01] Oded Lachish and Ran Raz. Explicit lower bound of 4.5n - o(n) for boolena
circuits. In STOC, pages 399–408, 2001.

[Lup59] O. B. Lupanov. A method of circuit synthesis. Izvestiya VUZ, Radiofizika,
1(1):120–140, 1959.

[LV96] Michael Luby and Boban Velickovic. On deterministic approximation of DNF.
Algorithmica, 16(4/5):415–433, 1996.

[LVW93] Michael Luby, Boban Velickovic, and Avi Wigderson. Deterministic approx-
imate counting of depth-2 circuits. In Proceedings of the 2nd ISTCS, pages
18–24, 1993.

[Mas79] W. J. Masek. Some NP-complete set covering problems. Manuscript, 1979.

[MTY11] Kazuhisa Makino, Suguru Tamaki, and Masaki Yamamoto. Derandomizing
hssw algorithm for 3-sat. In COCOON, pages 1–12. 2011.

[MZ13] Raghu Meka and David Zuckerman. Pseudorandom generators for polynomial
threshold functions. SIAM J. Comput., 42(3):1275–1301, 2013.

[Nis91] Noam Nisan. Pseudorandom bits for constant depth circuits. Combinatorica,
11(1):63–70, 1991.

[NW94] Noam Nisan and Avi Wigderson. Hardness vs randomness. J. Comput. Syst.
Sci., 49(2):149–167, 1994.

[Oli13] Igor Oliveira. Algorithms versus circuit lower bounds. Technical Report
TR13-117, ECCC, September 2013.

[PPSZ98] Ramamohan Paturi, Pavel Pudlák, Michael E. Saks, and Francis Zane. An
improved exponential-time algorithm for k-sat. JACM, 52(3):337–364, 2005.
(See also FOCS’98).

[PPZ97] Ramamohan Paturi, Pavel Pudlák, and Francis Zane. Satisfiability coding
lemma. Chicago J. Theor. Comput. Sci., 1999, 1999. See also FOCS’97.

[Raz87] Alexander A. Razborov. Lower bounds on the size of bounded-depth networks
over the complete basis with logical addition. Mathematical Notes of the
Academy of Sciences of the USSR, 41(4):333–338, 1987.

[RR97] Alexander Razborov and Steven Rudich. Natural proofs. J. Comput. Syst.
Sci., 55(1):24–35, 1997.

[San10] Rahul Santhanam. Fighting perebor: New and improved algorithms for for-
mula and qbf satisfiability. In FOCS, pages 183–192, 2010.

[Sch80] Jacob Schwartz. Fast probabilistic algorithms for verification of polynomial
identities. JACM, 27(4):701–717, 1980.
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