
Weak Lower Bounds on Resource-Bounded Compression Imply
Strong Separations of Complexity Classes∗

Dylan M. McKay

dmmckay@mit.edu

MIT CSAIL

Cody D. Murray
†

codymurraycs@gmail.com

R. Ryan Williams
‡

rrw@mit.edu

MIT CSAIL

ABSTRACT
The Minimum Circuit Size Problem (MCSP) asks to determine the

minimum size of a circuit computing a given truth table. MCSP

is a natural and powerful string compression problem whose NP-
hardness remains open. Recently, Oliveira and Santhanam [FOCS

2018] and Oliveira, Pich, and Santhanam [ECCC 2018] demon-

strated a “hardness magnification” phenomenon for MCSP in re-

stricted settings. Letting MCSP[s(n)] be the problem of deciding if

a truth table of length 2
n
has circuit complexity at most s(n), they

proved that small (fixed-polynomial) average case circuit/formula

lower bounds for MCSP[2
√
n], or lower bounds for approximating

MCSP[2o(n)], would imply major separations such as NP 1 BPP
and NP 1 P/poly.

We strengthen these results in several directions, obtaining mag-

nification results from worst-case lower bounds on exactly com-

puting the search version of generalizations of MCSP[s(n)], which
also extend to time-bounded Kolmogorov complexity. In particular,

we show that search-MCSP[s(n)] (where we must output a s(n)-
size circuit when it exists) admits extremely efficient AC0

circuits

and streaming algorithms using Σ3SAT oracle gates of small fan-in

(related to the size s(n) we want to test).

ForA : {0, 1}⋆ → {0, 1}, let search-MCSP
A[s(n)] be the problem:

Given a truth table T of size N = 2
n , output a Boolean circuit for T

of size at most s(n) with AND, OR, NOT, and A-oracle gates (or report
that no such circuit exists). Some consequences of our results are:

• For reasonable s(n) ≥ n and A ∈ PH, if search-MCSP
A[s(n)]

does not have a 1-pass deterministic poly(s(n))-space streaming

algorithm with poly(s(n)) update time, then P , NP.
For example, proving that it is impossible to synthesize SAT-

oracle circuits of size 2
n/log⋆ n

with a streaming algorithm on truth

tables of length N = 2
n
using N ε

update time and N ε
space on

length-N inputs (for some ε > 0) would already separate P and NP.

∗
Supported by NSF CAREER 1741615.

†
Portions of this work were completed while the author was a PhD student at MIT,

and as a Research Fellow at the Simons Institute, UC Berkeley.

‡
Portions of this work were completed while visiting the Simons Institute and UC

Berkeley EECS department.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

STOC ’19, June 23–26, 2019, Phoenix, AZ, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-6705-9/19/06. . . $15.00

https://doi.org/10.1145/3313276.3316396

Note that some extremely simple functions, such as EQUALITY of

two strings, already satisfy such lower bounds.

• If search-MCSP[nc] lacks Õ(N)-size, Õ(1)-depth circuits for a

c ≥ 1, then NP 1 P/poly.
• If search-MCSP[s(n)] doesn’t have circuits of N ·poly(s(n)) size

and O(logN) depth, then NP 1 NC1
. It is known that MCSP[2

√
n]

does not have formulas of N 1.99
size [Hirahara and Santhanam,

CCC 2017].

• If there is an ε > 0 such that for all c ≥ 1, search-MCSP[2n/c]

does not have N 1+ε
-size O(1/ε)-depth ACC0

circuits, then NP 1
ACC0

. Thus the amplification results of Allender andKoucký [JACM

2010] can extend to problems in NP and beyond.

Furthermore, if we substitute ⊕P, PP, PSPACE, or EXP-complete

problems for the oracle A, we obtain separations for those corre-

sponding complexity classes instead of NP. Analogues of the above
results hold for time-bounded Kolmogorov complexity as well.

CCS CONCEPTS
•Theory of computation→Complexity classes;Circuit com-
plexity; Streaming models.

KEYWORDS
hardness magnification, minimum circuit size problem, Kolmogorov

complexity, streaming algorithms

ACM Reference Format:
Dylan M. McKay, Cody D. Murray, and R. RyanWilliams. 2019. Weak Lower

Bounds on Resource-Bounded Compression Imply Strong Separations of

Complexity Classes. In Proceedings of the 51st Annual ACM SIGACT Sympo-
sium on the Theory of Computing (STOC ’19), June 23–26, 2019, Phoenix, AZ,
USA. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/3313276.

3316396

1 INTRODUCTION
In this paper, we show how extremely weak-looking lower bounds

on solving canonical string compression problems would imply

major separations in complexity theory. Let s : N → N satisfy

s(n) ≥ n for all n. We start by considering the following circuit

synthesis problem:

Problem: MCSP[s(n)]
Given: A function f : {0, 1}n → {0, 1}, presented as a truth

table of N = 2
n
bits.

Decide: Does f have a (fan-in two) Boolean circuit of size at

most s(n)?

We can naturally view MCSP as a compression problem: given

a string, find a small circuit whose truth table reproduces the

https://doi.org/10.1145/3313276.3316396
https://doi.org/10.1145/3313276.3316396
https://doi.org/10.1145/3313276.3316396

STOC ’19, June 23–26, 2019, Phoenix, AZ, USA Dylan M. McKay, Cody D. Murray, and R. Ryan Williams

string. MCSP seems to have first been studied in the 1950s [Tra84].

Note MCSP[s(n)] is only non-trivial for sufficiently small s(n), e.g.,
s(n) ≤ 2

n+1/n (otherwise, every input is a YES instance), and for

such non-trivial s(n), MCSP[s(n)] is in NP. Moreover, there is an

algorithm for MCSP[s(n)] running in both s(n)O (s(n)) time and

Õ(s(n) + n) space (enumerating all possible size-s(n) circuits). No
further improvements in the time complexity of MCSP[s(n)] are
known.

In 2001, Kabanets and Cai [KC00] revived the “modern” study of

MCSP in theoretical computer science, observing that the Natural

Proofs barrier [RR97] strongly suggests thatMCSP[nc] is not in P for
sufficiently large c ; otherwise, strong one-way functions do not ex-

ist.
1
Thus it is widely believed that MCSP[poly(n)] is not efficiently

solvable, although it is still open whether the general MCSP prob-

lem is NP-hard, despite much recent work [MW15, AHK17, HP15,

HW16, AH17, HS17, HOS18].
2
MCSP has recently taken on larger

significance for cryptography, since Hirahara recently showed in a

celebrated work [Hir18] that there is a worst-case to average-case

reduction for the approximation version.

Considering the enormous difficulty of proving polynomial-time

lower bounds on problems in NP, we may ask if it is possible to

prove instead that MCSP[poly(n)] cannot be solved in almost-linear

time (e.g. N 1+o(1)
) and sub-polynomial space (e.g. N o(1)

). Over the

years, there has been considerable progress in lower bounds for

the low time-space setting [BJS01, Ajt02, BSSV03, Ajt05, FLvMV05,

Wil08, BW15], so there is hope that such lower bounds could be

proved.

In this work, we show (among many other results) that an

N · poly(logN)-time lower bound on poly(logN)-space determin-
istic streaming algorithms for MCSP[nc] is already as difficult as

separating P fromNP! Note that deterministic streaming algorithms

are very restricted (one cannot even compute whether two given

N -bit strings are equal with o(N) space). Our result is one conse-
quence of a more general theorem proved about a generalization of

MCSP, in which we allow compression by circuits with oracle gates

(as defined in prior work [AHK17, IKV18]). This “boosting” of a

modest time-space lower bound for an NP problem to P , NP can

be seen as a form of hardness magnification, a term recently coined

by Oliveira and Santhanam [OS18]. Intuitively, a hardness magnifi-

cation result is a kind of “slippery slope” theorem, showing how a

very modest-looking lower bound for a believably-hard problem

counterintuitively implies incredibly strong lower bounds (perhaps

for a different hard problem). Other examples of similar phenomena

are known, for n1−ε -approximations to Cliqe [Sri03], low-depth

circuit lower bounds for NC1
[AK10], and sublinear-depth circuit

lower bounds for P [LW12].

1.1 Our Results
To state our theorems, we first need a couple of concepts for “gener-

alized” Boolean circuits. LetA : {0, 1}⋆ → {0, 1}. AnA-oracle circuit
has a gate basis of OR, AND, NOT, and all finite slices of A (the

1
In particular, if MCSP[nc] ∈ P for all c ≥ 1, then there are P-natural properties
useful against P/poly. For a more fine-grained discussion of the relationship, see

Chow [Cho11].

2
Observe that MCSP[nc] can be solved in 2

Õ (nc)
time, which is quasi-polynomial

in the input length N = 2
n
, so it is probably not NP-hard; nevertheless it is widely

believed to not be in P.

function A restricted to inputs of a fixed length). The MCSP
A[s(n)]

problem asks, given f : {0, 1}n → {0, 1} presented as a truth table,

whether f has an A-oracle circuit of at most s(n) gates. Its search
version, search-MCSP

A[s(n)], requires outputting an A-oracle cir-
cuit when it exists. The Σ3SAT

A
problem asks, given an A-oracle

formula F (x ,y, z) as input (a Boolean formula over Boolean vari-

ables with ∧, ∨, ¬ and A-oracle predicates), whether there exists
an assignment to x such that for all assignments to y, there exists
an assignment to z such that F (x ,y, z) outputs true.

Our first main theorem constructs a super-efficient AC circuit

family for MCSP
A
with short oracle calls to Σ3SAT

A
:

Theorem 1.1 (Section 3). Let s(n) ≥ n and let ℓ(n) ≥ s(n)2 for all
n, where both are time constructible. LetA : {0, 1}⋆ → {0, 1} be an ar-
bitrary oracle. There is a uniform AC circuit family forMCSPA[s(n)]
on 2

n-bit inputs of Õ(2n · s(n)2) size and O(n/log ℓ(n)) depth with
Σ3SATA oracle gates, where each oracle gate takes only Õ(ℓ(n)) bits
of input.

Note there are three tunable parameters in Theorem 1.1: the

oracle A, the MCSP parameter s(n), and a larger parameter ℓ(n)
which affects the circuit depth and the fan-in of the oracle gates.

By setting them appropriately, we can derive many consequences

regarding hardness magnification for MCSP.

Our second main theorem gives an efficient streaming algo-

rithm for MCSP
A[s(n)], assuming the algorithm has oracle access

to Σ3SAT
A
and can make short queries to the oracle.

Theorem 1.2 (Section 4). Let s(n) ≥ n for all n, where s(n) is
time constructible. Let A : {0, 1}⋆ → {0, 1} be an arbitrary oracle.
There is a (one-pass) streaming algorithm for search-MCSPA[s(n)] on
2
n -bit inputs running in 2

n · Õ(s(n)) time with Õ(s(n)2) update time
and Õ(s(n)) space, using an oracle for Σ3SATA with queries of length
Õ(s(n)).

One way to prove Theorem 1.2 would be to show that the circuit

family derived in Theorem 1.1 can be evaluated in a time and space-

efficient way. We instead give a direct proof (an explicit streaming

algorithm).

Weak Streaming Lower Bounds for Compression Imply P , NP.
Applying the assumption P = NP to the oracle calls in Theorem 1.2,

we obtain a magnification from modest streaming algorithm lower

bounds all the way to P , NP:

Theorem 1.3 (Section 5). If there is some time-constructible
s(n) ≥ n and an A ∈ PH such that search-MCSPA[s(n)] is not solv-
able by a poly(s(n))-space streaming algorithmwith poly(s(n)) update
time, then P , NP.

(Note that we do not require streaming algorithms to read a

fresh bit in each step; the algorithm may work for some time be-

fore requesting the next bit of the stream.) For example, if one

can show that we cannot compress N -bit strings to SAT-oracle cir-

cuits of size N o(1)
by streaming algorithms running in N 1+ε

total

time and N ε
space for all ε > 0, then P , NP. Note there is no

information-theoretic barrier to such a streaming algorithm, only

a computational one: in N ε
space, one could easily hold a circuit

of size N o(1)
. Let us stress that the hypothesis of Theorem 1.3 is

widely believed to hold: if it were false, then MCSP is trivially in P

Weak Lower Bounds on Resource-Bounded Compression... STOC ’19, June 23–26, 2019, Phoenix, AZ, USA

(and much more), implying that strong one-way functions do not

exist and extremely strong compression is possible efficiently.

Comparing Theorem 1.3 With [OS18].
Oliveira and Santhanam [OS18] show that if approximately solv-

ing MCSP[2
√
n] (the decision version of MCSP, with no oracle) to

within anO(n) factor requiresΩ(N)-time by randomized algorithms

with two-sided error, then BPP ⊈ NP (equivalent to RP , NP). In
particular, their approximation version of MCSP only requires that

a candidate algorithm distinguish truth tables with circuit complex-

ity at most s(n), from truth tables which need a constant fraction
of entries modified in order to have circuit complexity at most s(n).
Proving a lower bound against such a weak guarantee seems intu-

itively much more difficult than proving a worst-case lower bound

against MCSP. (They only need an Ω(N)-time lower bound, because

— as in Srinivasan [Sri03] — a random sample of the input preserves

the answer to the approximation problem with high probability;

this does not hold for the worst-case version.) While their conse-

quence is stronger (RP , NP rather than P , NP), the hypothesis
of Theorem 1.3 only requires a slightly super-linear time worst-case

lower bound for the search version of MCSP against deterministic

streaming algorithms using sub-linear space.

Weak Circuit Lower Bounds for Compression Imply Super Polyno-
mial Circuit Lower Bounds. Applying Theorem 1.1 with different

parameter settings, we show how modest TC0
lower bounds for

MCSP
SAT

implyNP 1 TC0
, modest log-depth circuit lower bounds

imply NP 1 NC1
, and larger-depth circuit lower bounds imply

NP 1 P/poly.

Theorem 1.4 (Section 5). Let s(n) ≥ n, and let A ∈ PH.
• If there is an ε > 0 such that for all c ≥ 1, search-MCSPA[2εn/c]
on inputs of length N = 2

n does not have N 1+ε -size O(1/ε)-
depth TC0 circuits, then NP 1 TC0.3

• If search-MCSPA[s(n)] on inputs of length N = 2
n does not

have circuits of N · poly(s(n)) size and O(logN) depth, then
NP 1 NC1.
• If search-MCSPA[s(n)] on inputs of length N = 2

n does not
have circuits of N · poly(s(n)) size and poly(s(n)) depth, then
NP 1 P/poly.

For example, if we find an c ≥ 1 and A in the polynomial-time

hierarchy such that compression of N -bit strings to (logN)c -sizeA-
oracle circuits cannot be performed byN ·poly(logN)-sizeO(logN)-
depth circuits, then we can conclude NP does not have polynomial-

size formulas. If the depth lower bound can be improved to arbitrary

polylogs, then already NP is not in P/poly.
ComparisonWith [OS18] and [OPS18].Oliveira and Santhanam
show that N · poly(logN)-size formula lower bounds for solv-

ing MCSP[nc] (decision version, with no oracle) in an approx-
imate or average-case setting would imply NP 1 NC1

. While

their required formula lower bound is more modest, the “decision

version”, “average-case”, “approximate”, and “no oracle” restric-

tions would presumably make proving a lower bound considerably

more difficult. Oliveira, Pich, and Santhanam [OPS18] show that

lower bounds on O(n)-approximation to MCSP[2εn] (for all ε > 0)

with N 1+δ
-size circuits imply NP 1 P/poly, whereas our results

3
Note that TC0

could be substituted with any other constant-depth circuit family, such

as AC0[6].

show NP 1 P/poly follows from N 1+δ
-size N δ

-depth circuit lower

bounds on exactly solving MCSP[2εn]. However, note that proving

even lower bounds for O(N)-size O(logN)-depth circuits remains

an open challenge in complexity theory, even for functions with

NΩ(1)
outputs.

Comparison With [AK10]. It is also interesting to compare the

TC0
results of Theorem 1.4 with the work of Allender and Koucký

on amplifying lower bounds for low-depth circuit classes [AK10].

They showed that for some naturalNC1
problems such as Boolean

Formula Evaluation, proving that there are no N 1+ε
-size O(1/ε)-

depth TC0
circuits for those problems imply a full separation:

NC1 1 TC0
. The first bullet of Theorem 1.4 manages to prove

an analogous result for some problems in PH! Allender and Koucký
also show unconditionally that for sufficiently large d , SAT does not

have n1+1/(3d)-size d-depth uniform TC0
circuits. The proof of The-

orem 1.4 implies that slightly stronger results for MCSP
SAT [2o(n)]

would separateNP and uniform TC0
. (In fact, analogous statements

hold for compression problems in ⊕P, PPP, PSPACE, and EXP; see
Theorems 1.5 and 1.6 below.)

Super-Polynomial Lower Bounds for Larger Complexity Classes. In
general, MCSP

A
gets “harder” as the oracles A get more expressive.

By choosing more powerful oracles A in the statement of Theo-

rem 1.1, we obtain magnification for problems in EXP, PSPACE,
PPP, and ⊕P as well. Allender-Buhrman-Koucký-van Melkebeek-

Ronneburger [ABK
+
06] showed that MCSP

QBF
is PSPACE com-

plete under randomized poly-time Turing reductions: for all δ > 0,

every PSPACE language can be decided in randomized polyno-

mial time with oracle calls to MCSP
QBF [2δn].4 They also showed

MCSP
EXP

is EXP-complete under P/poly and NP Turing reduc-

tions. Impagliazzo, Kabanets, and Volkovich [IKV18] gave oracles

A ∈ ⊕P and B ∈ PP such that MCSP
A
is ⊕P-complete and MCSP

B

is PP-complete under randomized poly-time Turing reductions. For

these complexity classes C, Theorem 1.1 implies that modest lower

bounds for MCSP
A
with A ∈ C already proves P , C and C. Here

are two formalizations of this general statement.

Theorem 1.5 (Magnifying Streaming Lower Bounds for

Harder MCSP Versions, Section 5). Let C be one of NP, PP, ⊕P,
or PSPACE. Suppose there is a constructible s(n) and oracle A ∈ C
such that for all c ≥ 1, search-MCSPA[s(n)] on inputs of length 2

n

has no s(n)c -space streaming algorithm with update time s(n)c . Then
P , C.

Theorem 1.6 (Magnifying Low-Depth Circuit Lower Bounds

for Harder MCSP, Section 5). Let C be one of NP, PP, ⊕P, or
PSPACE. Suppose there is some s(n) and oracle A ∈ C such that for
all c ≥ 1, search-MCSPA[s(n)] on inputs of length 2

n has no circuits
of depthO(n) and 2n ·s(n)c size. Then C does not have polynomial-size
formulas (i.e., C 1 NC1).

For instance, proving MCSP
EXP [n10] does not have quasi-linear

size circuits of logarithmic depth would imply EXP 1 NC1
.

Kt and KT Complexity. Our techniques can also be applied to

time-bounded analogues of Kologorov complexity:

4
Their result was not explicitly stated in this way, but it follows easily from padding.

STOC ’19, June 23–26, 2019, Phoenix, AZ, USA Dylan M. McKay, Cody D. Murray, and R. Ryan Williams

Problem: MKtP[p(N)] [Lev84]
Given: A string x ∈ {0, 1}N .

Decide: Is there a Turing machine M of description length c
that prints x in at most t steps, where c + log

2
(t) ≤ p(N)?

Problem: MKTP[p(N)] [All01]
Given: A string x ∈ {0, 1}N .

Decide: Is there a Turing machine M of description length c
that, given i , prints the i-th bit of x in at most t steps, where
c + t ≤ p(N)?

While MKTP[p(N)] is an NP problem like MCSP (in fact, the KT

complexity of a truth table, which minimizes the measure in the

MKTP definition above, is always within polynomial factors of the

minimum circuit complexity [All01]), MKtP[p(N)] is a more diffi-

cult problem (due to the logarithm of running time). Furthermore,

MKtP has analogous properties to MCSP
EXP

: for large enough

p(N), MKtP[p(N)] is complete for EXP under NP and P/poly Tur-

ing reductions [ABK
+
06]. Thus MKTP and MKtP are closely related

to MCSP and MCSP
EXP

, respectively. We observe that the proof

strategy of Theorems 1.1 and 1.2 extend to MKTP and MKtP in an

analogous way (Theorems 3.2 and 4.2 for MKTP, Theorems 3.3 and

4.2 for MKtP), leading to the following consequences:

Theorem 1.7 (Conseqences forMKTPandMKtP). Letp(N) ≥
log(N) be time constructible.

• If MKTP[p(N)] is not solvable by a poly(p(N))-space stream-
ing algorithm with poly(p(N)) update time, then P , NP.
• If there is an ε > 0 such that for all c ≥ 1, MKTP[N ε/c] does
not have N 1+ε -size O(1/ε)-depth TC0 circuits, then NP 1
TC0.
• If MKTP[p(N)] does not have N · poly(p(N))-size O(log(N))-
depth circuits, then NP 1 NC1.
• If MKTP[p(N)] does not have N · poly(p(N))-size poly(p(N))-
depth circuits, then NP 1 P/poly.
• If MKtP[p(N)] does not have N · poly(p(N))-size poly(p(N))-
depth circuits, then EXP 1 P/poly.
• If MKtP[p(N)] does not have N · poly(p(N))-size O(log(N))-
depth circuits, then EXP 1 NC1.
• If there is an ε > 0 such that for all c ≥ 1, MKtP[N ε/c] does not
have N 1+ε -size O(1/ε)-depth TC0 circuits, then EXP 1 TC0.

As might be expected, the above claims also hold for the cor-

responding search versions, search-MKTP and search-MKtP, and

relativized versions withMKTP
A
andMKtP

A
hold with appropriate

modifications.

ComparisonWith [OS18] and [OPS18]. Both references [OS18]
and [OPS18] show that lower bounds on approximating MKtP

would imply lower bounds against EXP. Consider the problem

Gap-MKtP[α(N), β(N)] where we are promised that the Kt com-

plexity of a given string of lengthN is either at most α(N) or at least
β(N), and we have to distinguish the two cases. The first reference

shows that if there is a δ > 0 and an N 1+δ
-size lower bound on

Gap-MKtP[N ε ,N ε + 5 log(N)] for all ε > 0, then EXP 1 P/poly.
The second reference generalizes this connection to other circuit

classes C ⊂ P/poly, showing that an N 1+δ
-size lower bound on

C-circuits for Gap-MKtP[N ε ,N ε + c log(N)] for all ε > 0 would

imply EXP 1 C. Theorem 1.7 strengthens several of the prior mag-

nification results in multiple ways. In particular, we show lower

bounds on the exact MKtP problem (with no gap) against N 1+ε
-

size N ε
-depth circuits are already sufficient for EXP 1 P/poly.

Finally, [OPS18] also show other interesting connections of MKtP

to other classes, e.g., B2 and U2 formula lower bounds and AND-

THR-THR-XOR circuit lower bounds, which we do not discuss here.

Our techniques do not seem to apply to these cases.

1.2 Intuition
To give a feeling for our results, let us describe the proof of The-

orem 1.3 at a high level: how minor streaming lower bounds on

compression by circuits would imply P , NP. We proceed by prov-

ing the contrapositive: assuming P = NP, we construct an extremely

efficient streaming algorithm that can compress 2
n
-bit strings with

small s(n)-size circuits, where s(n) ≥ n.
It would suffice to design a good streaming algorithm that always

maintains a circuit of size s(n) that “agrees” with all bits it has seen

so far, or reports when no such circuit exists. Our first idea is to

identify an intermediate problem that we call Circuit-Min-Merge,

which is not too complex, but can help maintain such a circuit over

time. For simplicity, here let’s say that Circuit-Min-Merge takes as

input two s(n)-size circuits C1 and C2, along with disjoint intervals

I1, I2 ⊆ [1, 2
n] (specified in O(n) bits), and produces a circuit C ′ of

size s(n) which agrees with C1 on all inputs xi where i ∈ I1, and
agrees with C2 on all inputs x j where j ∈ I2. (If there is no such C ′,
Circuit-Min-Merge reports that.) Now we observe:

• Circuit-Min-Merge is computable in the polynomial-time

hierarchy. In particular, the problem of printing bits from the

description of a fixed C ′ can be placed in Σ3P, by guessing a

C ′ of size at most s(n), checking for all inputs in I1 and I2 that
C ′ is consistent with C1 and C2 (respectively), and checking

for allC ′′ < C (with respect to some ordering) thatC ′′ is not
consistent with C1 and C2. Our assumption P = NP implies

that Circuit-Min-Merge has a poly(s(n)) time algorithm on

inputs of length Õ(s(n)).
• Armed with a poly(s(n))-time algorithm for Circuit-Min-

Merge, we can quickly maintain a circuit of size s(n) consis-
tent with the input read: inductively suppose that we have a

circuitC that is consistent with all previous bits read. For the

next block B of s(n) consecutive bits of the input, we can con-

struct a trivial DNF F of size n · s(n) that is consistent with
the inputs in B, and run Circuit-Min-Merge in poly(s(n))
time on C and F to produce a new circuit that is consistent

with all input read so far, including B. This uses poly(s(n))
update time per bit read, and poly(s(n)) space.

We conclude that if P = NP, then for all (reasonable) functions

s(n), we can compress strings to size-s(n) circuits with a streaming

algorithm using poly(s(n)) update time and poly(s(n)) space.
The above approach can be generalized in many ways. For one,

we can easily extend it to MCSP with oracle gates, by defining a

stronger Circuit-Min-Merge problem that can handle such gates.

(For example, the SAT-oracle version of Circuit-Min-Merge is in

Σ4P, thus P = NP also implies efficient streaming algorithms for

Weak Lower Bounds on Resource-Bounded Compression... STOC ’19, June 23–26, 2019, Phoenix, AZ, USA

compression with SAT-oracle circuits.) For another, the ideas can

be extended to time-bounded Kolmogorov complexity (both KT

and Kt complexity), by defining appropriate analogues of Circuit-

Min-Merge which allow us to consistently maintain a short Turing

machine description of our input over time.

Extending the above outline to restricted circuit classes (rather

than streaming algorithms) is more involved. To show that (for

example) NP ⊂ TC0
implies small TC0

circuits for compression by

s(n)-size circuits, we need to make a few modifications we briefly

describe at a high level (but require care to work). First, we allow

Circuit-Min-Merge to take in an unbounded number of circuits on

disjoint intervals, and its task is to “merge” all of them into one

small circuit. Second, we build an O(1)-depth “tree” of Circuit-Min-

Merge oracle gates, where each oracle gate in poly(s(n)) inputs
(and outputs of “child” gates feed into the inputs of “parent” gates),

whose leaves span the entire 2
n
-length input, and where the output

gate (the root of this tree) either prints a small circuit for the input

or reports that none exists. Finally, applying the assumption NP ⊂
TC0

, we argue that inserting poly(s(n))-size TC0
circuits for Circuit-

Min-Merge in this tree (in place of the oracle calls) would yield

2
n · poly(s(n)) size TC0

circuits for size-s(n) MCSP on inputs of

length 2
n
.

1.3 What Do These Results Mean?
As is the case with other “amplification” and “magnification” re-

sults [Sri03, AK10, LW12, MP17, OS18], the results described in

this paper have a strong “slippery slope” property: rather innocent-

looking lower bounds on solving compression problems contained

in a class C are in fact as hard as proving very strong complexity

lower bounds for C.

It seems obligatory to ask:What are we to make of such the-
orems? Should we seriously consider these results as suggesting

an approach towards major lower bounds such as EXP 1 TC0
and

even P , NP? Or, if we accept the somewhat popular style of ar-

gument that “if A implies B, and B is hard to prove, then A is hard

to prove”, should we believe we have found a new kind of barrier

for proving innocent lower bounds? In all honesty, we are not sure.

However, two comments seem significant.

(1) The aforementioned magnification and amplification results

collected so far constitute a remarkable intuition-breaking

phenomenon that demands closer attention. In the case of

[OS18, OPS18] and this paper, the magnification results high-

light the peculiar “weirdness” of MCSP, MKtP, and MKTP,

showing how extremely weak-looking lower bounds for

these problems turn out to already be as difficult as separat-

ing polynomially-strong complexity classes. In this regard,

we believe such theorems to be noteworthy contributions to-

wards a better understanding of these fundamental compres-

sion problems, and a better understanding of how close/far

we are from proving major separations in complexity theory.

(2) It seems strange to call an implied consequence B a “bar-

rier” to establishing A, when everyone expects B to be true

(as is the case for all lower bound consequences in this pa-

per). Certainly this is not the sort of barrier that arises with

relativization [BGS75], natural proofs [RR97], and algebriza-

tion [AW09], where we either have unconditionally true

claims (a relativizing/algebrizing proof cannot resolve P vs

NP) or implied consequences we do not believe to be true

(a natural proof of NP 1 P/poly implies there are no strong

one-way functions). It is intriguing to wonder whether other

impediments to complexity lower bounds (or algorithms)

follow from the algorithms and circuits constructed in this

paper. (Recall that our main results are not implications per

se, but rather unconditional constructions of fast algorithms

and circuits with short calls to Σ3SAT .)

2 PRELIMINARIES
We assume basic familiarity with computational complexity the-

ory [AB09], especially circuit complexity and classes such as AC0
,

ACC0
, TC0

, and NC1
. We assume these circuit classes are non-

uniform unless otherwise specified. In this paper, an AC circuit
family is any circuit family over the basis of NOT, unbounded

fan-in OR, and unbounded fan-in AND.

Streaming Algorithms. We use a standard model for streaming

algorithms. A space-s(n) streaming algorithm with update (and re-

porting) time u(n) on an input x ∈ {0, 1}n has a working storage of

s(n) bits. At any point, the algorithm can either choose to perform

one operation (from a standard palette of RAM operations) onO(1)
bits in storage, or it can choose to read the next bit xi from the

input (starting with x1). The total time between two next-bit reads

is at most u(n), and the final output is reported in O(u(n)) time.

2.1 An Important Intermediate Problem
In Theorem 1.1 (in Section 3), we utilize an intermediate problemwe

call Circuit-Min-Merge
A
, and show that Circuit-Min-Merge

A
can

be solved efficiently using Σ3SAT
A
oracle gates. (A similar problem

will be defined for Theorem 1.2, in Section 4.)

Problem: Circuit-Min-Merge
A[s(n)]

Given: Descriptions of A-oracle circuits C1, . . . ,Ct with n in-

puts and one output, a list of integers (a1,b1), . . . , (at ,bt) ∈
[2n] × [2n] such that ai < bi ≤ ai+1 for all i .
Output: Either the string 1 ⟨C ′⟩ where C ′ is the lexigraphi-
cally first minimum-size A-oracle circuit of size at most s(n)
such that for all x ∈ {0, 1}n and all i , if ai ≤ x < bi then
C ′(x) = Ci (x), or the all-0 string of length 100s(n) log(s(n))
when there is no such circuit.

(In the above, 100 is a placeholder for a sufficiently large constant

c for encoding size s(n) circuits in cs(n) log
2
(s(n)) size; certainly 100

suffices.) Note that any bit of the output string 1 ⟨C ′⟩ can be com-

puted by a ΣA
3
machine in Õ(m) time for inputs of length m, by

guessing and checking the (unique) circuit C ′ in the output specifi-

cation, then verifying that every circuit C ′′ that comes before C ′

(with respect to the natural ordering) fails the specification. By a

standard reduction (described further in the proof of Theorem 1.1),

we can compute Circuit-Min-Merge
A[s(n)] with 100s(n) log(n) par-

allel queries to Σ3SAT
A
(where each query computes a bit of the

output). Because the queries can be done in parallel, we can then

compute Circuit-Min-Merge
A[s(n)] with either a low depth circuit

STOC ’19, June 23–26, 2019, Phoenix, AZ, USA Dylan M. McKay, Cody D. Murray, and R. Ryan Williams

with Σ3SAT
A
oracle gates, or Σ3SAT

A
oracle queries in a streaming

algorithm.

3 EFFICIENT ORACLE CIRCUIT FAMILY FOR
MCSP

In this section, we give an efficient circuit family for MCSP
A[s(n)]

with low fan-in Σ3SAT
A
gates.

Reminder of Theorem 1.1. Let s(n) ≥ n and let ℓ(n) ≥ s(n)2 for
all n, where both are time constructible. Let A : {0, 1}⋆ → {0, 1}

be an arbitrary oracle. There is a uniform AC circuit family for
MCSPA[s(n)] on 2n -bit inputs of Õ(2n ·s(n)2) size andO(n/log ℓ(n))
depth with Σ3SATA oracle gates, where each oracle gate takes only
Õ(ℓ(n)) bits of input.

To prove Theorem 1.1, we first show that there are small low-

depth circuits using Circuit-Min-Merge
A
oracle gates. (See the Pre-

liminaries in Section 2.1 for the definition of Circuit-Min-Merge
A
.)

Lemma 3.1. Let s(n) ≥ n and let ℓ(n) ≥ s(n)2 for all n, where
both are time constructible. There is a uniform AC circuit family for
MCSPA[s(n)] of Õ(2n · s(n)/ℓ(n)) size andO(n/log ℓ(n)) depth with
Circuit-Min-MergeA[s(n)] oracle gates, where each oracle gate takes
only ℓ(n) bits of input.

Proof. Suppose s(n) ≥ n and ℓ(n) ≥ s(n)2 for all n, and both are

time constructible. For the sake of clarity, we use the letter “G” to
describe Circuit-Min-Merge

A
gates used in the construction of our

final circuit C2
n , and the letter “D” to describe bit-descriptions of

circuits. To simplify our description, we assume (without loss of

generality) that there is no “integer roundoff”, i.e., quantities like

logd (2
n) are integers.

Construction. LetT be an input of 2
n
bits. Tomake the circuitC2

n ,

we start by taking 2
n descriptions of n-input constant-size circuits

D0

0
,D0

1
, . . . ,D0

2
n−1

such that D0

x (y) = T (x) for all x ,y ∈ {0, 1}n ,
each circuit encoding one bit of the input truth table T . Since these
are constant-size circuits, the length of each descriptions Di is at

most s(n) for almost all input lengths n.
Let d = ℓ(n)/(100s(n) log s(n)). Our circuit C2

n will include a

d-ary tree of Circuit-Min-Merge
A
gates Gi

j of fan-in ℓ(n). At each

layer, we divide the previous layer of circuits into blocks of d cir-

cuits; for each block ofd circuits, we use oneCircuit-Min-Merge
A[s(n)]

gate to combine the block into one output circuit.

To demonstrate, start with the bottom layer. Taking the constant-

size circuits D0

j as input, we build a layer of 2
n/d circuits

G1

0
, . . . ,G1

(2n/d)−1,

whereG1

j = Circuit-Min-Merge
A[s(n)](D0

j ·d , . . .D
0

(j+1)·d , (j ·d, j ·d+

1), . . . , ((j +1) ·d −1, (j +1) ·d)). That is, eachG1

j takes a contiguous

block of d descriptions from the bottom layer, and outputs one

circuit of size at most s(n) consistent with thesed circuits (or reports

that no such circuit exists).

We repeat this process on the descriptions output by the circuits
G1

j : at each new layer, we divide the previous layer of circuits

into blocks of d circuits, using one Circuit-Min-Merge
A[s(n)] gate

for each block. That is, for i ∈ {1, . . . , logd (2
n)} at layer i , the

Circuit-Min-Merge
A[s(n)] gate Gi

j takes as input circuit descrip-

tions Di−1
j ·d , . . . ,D

i−1
(j+1)d−1 along with the ordered pairs

(jdi , jdi+di−1), (jdi+di−1, jdi+2di−1), . . . , ((j+1)di−di−1, (j+1)di)

and outputs the description of a new circuit Di
j .

Finally, to get a circuit for MCSP, the output of the circuit C2
n is

the AND of the first output bit of each Gi
j in the circuit. To get a

circuit for search-MCSP, we can AND the output gate of C2
n with

each bit of G
logd (2

n)

0
. This circuit either prints the all-zeroes string

when no circuit exists, or prints a size s(n) circuit for the entire
input.

Correctness. To prove that Cn computes MCSP
A[s(n)] on 2

n
-

bit inputs, we will first prove by induction that, assuming small

circuits exist for the input truth table T , the circuit Di
j output

by gate Gi
j matches the input on bits jdi through (j + 1)di − 1.

By construction, the O(1)-size circuit D0

j matches T on bit j for

every j. For i > 0, suppose that all circuits Di−1
j match T on

bits jdi−1 through (j + 1)di−1 − 1. The circuit Di
j is the output

of Gi
j = Circuit-Min-Merge

A[s(n)] on circuits Di−1
j ·d , . . . ,D

i−1
(j+1)d−1

with ordered pairs

(jdi , jdi+di−1), (jdi+di−1, jdi+2di−1), . . . , ((j+1)di−di−1, (j+1)di).

This means that Di
j matches Di−1

jd on bits jdi through jdi +di−1 − 1,

and since Di−1
jd matches T on bits (jd)di−1 = jdi through (jd +

1)di−1 − 1 = jdi + di−1 − 1, we get that Di
j matches T on these bits

as well. Similarly, the bits on which Di
j are forced to match a Di−1

∗

circuit are exactly those bits on which the Di−1
∗ circuit matches T ,

which means that the final circuit Di
j matches T on all bits covered

by Di−1
jd through Di−1

(j+1)d−1, which is jdi through (j + 1)di − 1,

completing the induction.

So for all i, j , the output ofGi
j is then the description of a circuit

Di
j of size at most s(n) whose truth table matches the desired truth

tableT on bits j ·di through (j + 1) ·di − 1 (or 0100s(n) log s(n) if such
a circuit does not exist).

The final AND gate takes the first output bit of each of these Gi
j

gates. We claim that all of these bits are 1 if and only if the input

truth table T has a circuit of size at most s(n). To prove this, we

need only show

(1) Each gateGi
j andG

′
outputs 1 as its first bit ifT has a circuit

of size at most s(n).
(2) Some Gi

j or G
′
outputs 0 as its first bit if T does not have a

circuit of size at most s(n).

Suppose T has an A-oracle circuit of size at most s(n). Then this

oracle circuit serves as a witness for every Circuit-Min-Merge
A

computation in the circuit; by construction, gateGi
j outputs a circuit

consistent withT on bits jdi through (j+1)di if such a circuit exists.
However, the s(n) size circuit which computes T will obviously be

consistent with T on these bits (as well as every other bit of T),
which means that the minimum circuit must have at most s(n) gates.
The minimum circuit may in fact be smaller (which is likely the

case for the constant circuits D0

j), but can never be larger than s(n).

Weak Lower Bounds on Resource-Bounded Compression... STOC ’19, June 23–26, 2019, Phoenix, AZ, USA

So if all circuits Gi
j at layer i output a circuit D

i
j which is of size at

most s(n), then every circuitGi+1
j at layer i + 1 will output a circuit

Di+1
j which is of size at most s(n). By induction, for all i, j, Gi

j will

output a valid circuit, with 1 as its first bit, which means that the

AND gate at the top will output 1 as well.

Now suppose that T has no A-oracle circuit of size s(n). Then
there should be some place in the circuit where Circuit-Min-Merge

A

fails to combine the intervals into a single small circuit. Start at

the top Circuit-Min-Merge
A
gate G

logd (2
n)

0
. If all d inputs to this

gate are valid circuits, then the output of this circuit must still be

0
100s(n) log s(n)

, since the output must be a size s(n) circuit which
matches T on all input bits, and we assumed that such a circuit

does not exist. On the other hand, if one of the inputs to the gate

is not a valid circuit then we can move to layer logd (2
n) − 1 and

repeat this argument. Each time, either all inputs are valid circuits

and the output is 0
100s(n) log s(n)

(the circuit does not exist for this

interval), or we can recurse on one of the invalid inputs. Since there

are constant-size circuits at the bottom, there must be some gate

which outputs 0
100s(n) log s(n)

with valid circuits as input, which

will force the AND to output 0 as well.

Recall the circuit Cn is a d-ary tree of Circuit-Min-Merge
A
cir-

cuits with a single AND gate at the top. This gives a total depth

of logd (2
n) + 1 = n/log

2
(d) + 1 = n/(log ℓ(n) − log s(n)) + 1 =

O(n/log ℓ(n)), and a size bound of O(2n/d) gates, which is a little

suboptimal. To get the optimal bound, we increase the number of cir-

cuits fed into the Circuit-Min-Merge
A
circuits at the bottom layer to

O(ℓ(n)/n), andmaintain a fan-in of ℓ(n) to eachCircuit-Min-Merge
A

oracle gate. With this, the size of the circuit can be reduced to

O(2n · n/ℓ(n)) ≤ Õ(2n/ℓ(n)). □

For example, for any ε > 0, if s(n) is at most O(2(1−ε)n/2), then

we can let ℓ(n) = 2
(1−ε)n

and our circuit will have constant depth.

Finally, we explain why Theorem 1.1 follows (with the decision

problem Σ3SAT
A
in place of Circuit-Min-Merge

A
). First, recall that

Circuit-Min-Merge
A
is a function problem, outputting Õ(s(n)) bits,

where each output bit is computable by a Σ3 machine (making Σ3-
style alternations) in Õ(n) time. By standard completeness results

(see for example, in [FLvMV05]) there is a simple AC0
reduction of

size Õ(ℓ(n) · s(n)) from the Circuit-Min-Merge
A
problem to Õ(s(n))

copies of Σ3SAT
A
: we can directly map Circuit-Min-Merge

A
in-

stances with ℓ(n) > s(n)2 inputs and Õ(s(n)) outputs to Õ(s(n)) in-
stances of Σ3SAT

A
where each instance has length Õ(ℓ(n)). Hence

each Circuit-Min-Merge
A
oracle gate can be replaced by Õ(ℓ(n) ·

s(n)) extra gates plus Õ(s(n)) Σ3SAT
A
gates of fan-in Õ(ℓ(n)). The

size bound of Theorem 1.1 follows, and the replacement does not

affect the depth of our AC circuit by more than a constant factor.

3.1 Other Compression Problems
Other compression problems similar to MCSP are amenable to the

same kind of circuit construction as Theorem 1.1. The most obvious

example is MKTP
A[s(n)], which has an oracle circuit construction

that is nearly identical to that of Theorem 1.1 using instead oracle

calls to the following intermediate problem which can (as before)

be reduced to Σ3SAT
A
.

Problem: KT-Min-Merge
A[p(N)]

Given: Descriptions of A-oracle machines M1, . . . ,Ms
with ⌈log(n)⌉ inputs and one output, a list of integers

(a1,b1), . . . , (as ,bs) ∈ [N] × [N] such that ai < bi ≤ ai+1
for all i .
Output: Either a string 1 ⟨M ′⟩ where M ′ is the lexigraph-

ically first A-oracle Machine M ′ of minimum KT complex-

ity such that for all x ∈ [n] and all i , if ai ≤ x < bi then
M ′(x) = Mi (x) or a string of length p(N) containing only the

character 0 when there is no such machine.

Using this, we get a theorem parallel to Theorem 1.1, replacing

MCSP
A
with MKTP

A
.

Theorem 3.2. Let p(N) ≥ log(N) and let ℓ(N) ≥ p(N)2 for
all N , where both are time constructible. Let A : {0, 1}⋆ → {0, 1}

be an arbitrary oracle. There is a uniform AC circuit family for
MKTPA[p(N)] of Õ(N · p(N)2) size and O(log(N)/log ℓ(log(N)))
depth with Σ3SATA oracle gates, where each oracle gate takes only
ℓ(log(N)) · poly(log log(N)) bits of input.

We see that there is even an analogous circuit computing the

Kolmogorov complexity of a string, though this case is much less

interesting as we already know that the corresponding oracle gates

will be for languages which are not computable. Another more

interesting example is MKtP
A
, which is constructed again as above

but using oracles for the following intermediate problem.

Problem: Kt-Min-Merge[p(N)]
Given:A-oracle machinesM1, . . . ,Ms with N inputs and one

output, a list of integers (a1,b1), . . . , (as ,bs) ∈ [N] × [N] such
that ai < bi ≤ ai+1 for all i .
Output: Either a string 1 ⟨M ′⟩ where M ′ is the lexigraph-

ically first A-oracle machine M ′ of minimum Kt complex-

ity such that for all x ∈ [N] and all i , if ai ≤ x < bi then
M ′(x) = Mi (x) or a string of length p(N) containing only the

character 0 when there is no such machine.

Observing that Kt-Min-Merge can naively be computed in time

2
O (s(n))

, we again find an analogous circuit for MKtP.

Theorem 3.3. Let p(N) ≥ log(N) and let ℓ(N) ≥ p(N)2 for all
N , where both are time constructible. Let A : {0, 1}⋆ → {0, 1} be an
arbitrary oracle. There is a language B ∈ TIME[2O (p(N))]A such that
there is a uniformAC circuit family forMKtPA[p(N)] of Õ(N ·p(N)2)
size and O(log(N)/log ℓ(log(N))) depth with B oracle gates, where
each oracle gate takes only ℓ(log(N)) · poly(log log(N)) bits of input.

Note that the parameters of the circuits have to be changed in a

straightforward way as an instance of MCSP
A
has an input length

of 2
n
, while the input lengths to our other compression problems

is simply N .

4 STREAMING ALGORITHM FOR MCSP
We now turn to the streaming algorithm for search-MCSP.

Reminder of Theorem 1.2. Let s(n) ≥ n for all n, where s(n) is
time constructible. Let A : {0, 1}⋆ → {0, 1} be an arbitrary oracle.

STOC ’19, June 23–26, 2019, Phoenix, AZ, USA Dylan M. McKay, Cody D. Murray, and R. Ryan Williams

There is a (one-pass) streaming algorithm for search-MCSPA[s(n)] on
2
n -bit inputs running in 2

n · Õ(s(n)) time with Õ(s(n)2) update time
and Õ(s(n)) space, using an oracle for Σ3SATA with queries of length
Õ(s(n)).

Here we present an oracle reduction from theMCSPA[s(n)] prob-
lem to a problem related to Circuit-Min-Merge

A[s(n)].
Let x1, . . . ,x2n be the list of n-bit strings in lexicographical order.

Problem: Stream-Merge
A[s(n)]

Given: A t-bit description of an A-oracle circuit C with n in-

puts and one outputwhere t = 100s(n) log s(n), anxi ∈ {0, 1}
n
,

and a t-bit string y = y1 · · ·yt .
Output: Either the string 1 ⟨C ′⟩ where C ′ is the lexigraphi-
cally first minimum-size A-oracle circuit of size at most s(n)
such that for all strings x < xi we have C

′(x) = C(x), and for

all j = 1, . . . , t , C ′(xi+j−1) = yj , or the all-0 string of length t
when there is no such circuit C ′.

In other words, Stream-Merge takes a circuitC as input, an input

xi , and t extra bits of a truth table, and tries to output a small circuit

that agrees withC on all inputs less than xi , and agrees with the t ex-
tra bits on the t inputs xi , . . . ,xi+t−1. As with Circuit-Min-Merge

A

in Section 2.1 and Theorem 1.1, Stream-Merge
A[s(n)] can be effi-

ciently reduced to Σ3SAT
A
queries of length Õ(s(n)).

Proof. Algorithm 1 presents the description of the streaming

algorithm. Let t = 100s(n) log s(n). We start by building a circuit

C0 of size at most s(n) that is consistent with the first t bits of
the given truth table T , using O(s(n) log s(n))-length queries to the

Stream-Merge
A
oracle. We repeat this process for each successive

block of t bits of the input, attempting to generate a new circuit

Ci+1 which is consistent with both Ci and the new block of the

input. If at any step we fail to generate a circuit Ci , we report that
there is no circuit of size s(n). Otherwise, at the end we print a

circuit C
2
n/t whose truth table is the input.

Algorithm 1 The Streaming Algorithm

Given: a truth table T of size 2
n = N .

Let C be a trivial circuit for the constant function 0 on n bits.

for i ← 1, . . . , 2n/t do
Let y1, . . . ,yt be the next t bits of T .
C ← Circuit-Min-Merge

A[s(n)](C,x(i−1)·t+1,y1 · · ·yt).
if C is not a valid circuit, then report that there is noA-oracle

circuit of size s(n).

Report C as an A-oracle circuit of size at most s(n) computing T .

The proof that this algorithm computesMCSPA is similar to the

proof of correctness for the circuit of Theorem 1.1. The correctness

of Algorithm 1 follows by induction. If T has an A-oracle circuit C
of size s(n), thenC can serve as a witness for every Stream-Merge

A

query in the algorithm: in iteration i of the algorithm, if Ci−1 is a
circuit of size s(n) consistent with T on the first (i − 1) · t bits, then
the Stream-Merge

A
call outputs a circuit Ci consistent with T on

the first i · t bits, if such a circuit exists. A circuit C of s(n)-size for
T will be consistent withT on these bits for any i , which means the

minimum circuit Ci+1 output by Stream-Merge
A
has size at most

s(n). By induction, if T has an A-oracle circuit of size at most s(n),
then Algorithm 1 will produce this circuit and report that there is

such a circuit.

On the other hand, if there is no such circuit for T , then there

is some i = 1, . . . , 2n/t such that there is a size-s(n) circuit con-
sistent with T on its first (i − 1) · t bits, but there is no size-s(n)
circuit consistent with T on its first i · t bits. (Such a circuit exists

trivially for i = 1, but by assumption no such circuit exists for

i = 2
n/t .) Let i ′ be the first such index. For all iterations before this

i ′, Stream-Merge
A
successfully outputs a circuit of size s(n), but

in iteration i ′ Stream-Merge
A
fails to find such a circuit, and thus

outputs 0
100s(n) log s(n)

. The algorithm will notice this output is not

a valid circuit, and report there is no A oracle circuit of size s(n).
It remains to show that Algorithm 1 uses small time and space.

In each iteration of the for-loop, we read t more bits ofT , query the
Stream-Merge

A
oracle, and check that the t bits of query answer

encodes a valid circuit. Each of these tasks can be done in O(t)
time. Therefore each iteration can be done in O(t) time and space.

Over 2
n/t iterations, the overall resource consumption is O(2n)

time and O(t) ≤ O(s(n) log s(n)) space, when we have access to a

Stream-Merge
A
oracle.

When we only have access to a Σ3SAT
A
oracle instead, each

Stream-Merge
A
call of length t can be converted into O(t) sequen-

tial calls of length Õ(t) to Σ3SAT
A
, computable in Õ(t) time each.

Thus when we have a Σ3SAT
A
oracle, the running time is 2

n · Õ(t),
the worst-case update time is Õ(t2) (between the reading of a bit

from T in one iteration to the next, we have to make O(t) calls of
length Õ(t)), and the space usage is Õ(t). □

Note the proof of Theorem 1.2 yields the following somewhat

tighter result: a linear-time streaming algorithm with an appropri-

ate oracle B.

Theorem 4.1. Let s(n) ≥ n for all n, where s(n) is time con-
structible. Let A : {0, 1}⋆ → {0, 1} be an arbitrary oracle. Let t(n) =
200s(n) log s(n). There is an oracle Bn : {0, 1}t (n) → {0, 1}t (n) whose
output bits are computable in PH, and a (one-pass) streaming algo-
rithm for search-MCSPA[s(n)] on 2n -bit inputs running inO(2n) time
and O(t(n)) space, using an oracle for Bn with queries of length t(n).

4.1 Other Compression Problems
Theorem 1.2 readily applies to compression problems other than

MCSP. For example, to model MKTP, we simply have to modify

the definition of Stream-Merge in Theorem 1.2 so that, rather than

taking as input a size-s(n) circuitC representing the initial segment

of a string, we take in a Turing machine M with KT complexity

at most p(N) (as in KT-Min-Merge in Theorem 3.2). Thus we can

conclude Theorem 4.2:

Theorem 4.2. Let p(N) ≥ log(N) for all n, where p(N) is time
constructible. Let A : {0, 1}⋆ → {0, 1} be an arbitrary oracle. There
is a streaming algorithm for MKTPA[p(N)] running in O(N · p(N))
time and O(p(N)) space, using an oracle for Σ3SATA with queries of
length at most O(p(N)).

Similarly, if we modify the definition of Stream-Merge so that

the size-s(n) circuit C is replaced by a Turing machineM with Kt

Weak Lower Bounds on Resource-Bounded Compression... STOC ’19, June 23–26, 2019, Phoenix, AZ, USA

complexity at most p(N) (as in Kt-Min-Merge in Theorem 3.3), we

obtain a similar streaming algorithm for MKtP
A[p(N)].

Theorem 4.3. Let p(N) ≥ log(N) for all N , where p(N) is time
constructible. Let A : {0, 1}⋆ → {0, 1} be an arbitrary oracle. There
is a streaming algorithm for MKtPA[p(N)] running in O(N · p(N))
time and O(p(N)) space, using an oracle for TIME[2O (p(N))]A with
queries of length at most O(p(N)).

As in the case of the oracle circuit (Theorem 3.3), the parameters

of Algorithm 1 have to be changed in a straightforward way to

accommodate the fact that we have described the instances of

MCSP
A
as length 2

n
strings, while we are describing instances of

other compression problems as length n strings.

5 CONSEQUENCES
We now present some consequences of the oracle streaming algo-

rithm of Section 4 and the oracle circuits constructed in Section 3.

Reminder of Theorem 1.3. Let s(n) ≥ n be time constructible. If
there is an A ∈ PH such that search-MCSPA[s(n)] is not solvable by
a poly(s(n))-space streaming algorithm with poly(s(n)) update time,
then P , NP.

Proof. We show that if P = NP, then such a streaming algorithm

for MCSP
A[s(n)] exists for all A ∈ PH.

Suppose P = NP. Then the entire polynomial hierarchy collapses

to P, which means that for any possible A ∈ PH, Σ3SATA (and by

extension Circuit-Min-Merge
A
) can be solved in polynomial time.

Taking our streaming algorithm from Theorem 1.2, every query to

Circuit-Min-Merge
A[s(n)] can be replaced by some poly(s(n)) time

computation (all queries have length O(s(n) log s(n))). As a result,
we obtain (for any A ∈ PH) a poly(s(n))-space streaming algorithm

that takes poly(s(n)) update time, completing the proof. □

Reminder of Theorem 1.4. Let s(n) ≥ n, and let A ∈ PH.
• If there is an ε > 0 such that for all c ≥ 1, search-MCSPA[2εn/c]
on inputs of length N = 2

n does not have N 1+ε -size O(1/ε)-
depth TC0 circuits, then NP 1 TC0.5

• If search-MCSPA[s(n)] on inputs of length N = 2
n does not

have circuits of N · poly(s(n)) size and O(logN) depth, then
NP 1 NC1.
• If search-MCSPA[s(n)] on inputs of length N = 2

n does not
have circuits of N · poly(s(n)) size and poly(s(n)) depth, then
NP 1 P/poly.

Proof. Again, we prove these results by contrapositive. Since all

the above circuit classes are closed under complement, if NP ⊂ C
then the entire polynomial hierarchy collapses to C, including the

Circuit-Min-Merge
A[s(n)] problem. As a result, each copy of the

Circuit-Min-Merge gate in the circuit constructed in Lemma 3.1

can be replaced with a C-circuit of poly(ℓ(n)) size (where ℓ(n) is
the length of the queries to Circuit-Min-Merge). The proper s(n) or
ℓ(n)will then yield a circuit of the desired size and depth computing

MCSP
A[s(n)].

5
Note that TC0

could be substituted with any other constant-depth circuit family, such

as AC0[6].

• Let C = TC0
. For s(n) = N ε/c

and ℓ(n) = N 2ε/c
, Lemma 3.1

gives a circuit of size O(N 1+ε/c) and depth O(logN /logN 2ε/c) =

O(c/ε); replacing the oracle gates with poly(N 2ε/c) sizeTC0
circuits

gives a circuit of size O(N · poly(N ε/c)) and depth O(c/ε). Since
this circuit exists for every c ≥ 1, set c large enough to obtain a

TC0
circuit of N 1+ε

-size and O(1/ε)-depth.
• For C = NC1

and ℓ(n) = s(n)3, Lemma 3.1 gives an O(N)-size
circuit of depth O(logN /log s(n)). Replacing the oracle gates with

poly(s(n)) size NC1
circuits gives a circuit of size N · poly(s(n)) and

depth O((logN /log s(n)) · log s(n)) = O(logN).
• Let C = P/poly. For ℓ(n) = s(n)3, Lemma 3.1 again gives

a circuit of size O(N) and depth O(logN /log s(n)). Replacing the

oracle gates with poly(s(n)) size circuits gives a circuit of size N ·
poly(s(n)) and depth O((logN /log s(n)) · poly(s(n))) = poly(s(n)).

This completes the proof. □

Nowwe turn to proving the hardnessmagnification consequences

for (harder) oracle versions of MCSP.

Reminder of Theorem 1.5. [Magnifying Streaming Lower Bounds
for Harder MCSP Versions] Let C be in {NP, PP, ⊕P, PSPACE}. Sup-
pose there is a constructible s(n) and oracle A ∈ C such that for all
c ≥ 1, search-MCSPA[s(n)] on inputs of length 2n has no s(n)c -space
streaming algorithm with update time s(n)c . Then P , C.

Proof. Suppose P = C. To prove the contrapositive, we wish

to show that for all constructible functions s(n) and oracles A ∈ C,
there exists a c ≥ 1 such that MCSP

A[s(n)] has an s(n)c -space
streaming algorithm with update time s(n)c .

SinceNP ⊆ C, we know that P = NP, so again the polynomial hi-

erarchy collapses to P, and sinceA ∈ P as well Circuit-Min-Merge
A

can be solved in polynomial time. Similar to Theorem 1.3, we can

replace the oracle in the streaming algorithm with a determinis-

tic algorithm running in s(n)c time for some constant c on inputs

of length O(s(n) log s(n)). So Theorem 1.2 gives us an s(n)c -space
streaming algorithm with update time s(n)c . □

Reminder of Theorem 1.6. [Magnifying Low-Depth Circuit Lower
Bounds for Harder MCSP] Let C be in {NP, PP, ⊕P, PSPACE,EXP}.
Suppose there is some s(n) and oracle A ∈ C such that for all c ≥ 1,
search-MCSPA[s(n)] on inputs of length 2

n has no circuits of depth
O(n) and 2n · s(n)c size. Then C does not have polynomial-size for-
mulas (i.e., C 1 NC1).

Proof. Suppose C has polynomial-size formulas. To prove the

contrapositive, we construct MCSPA[s(n)] circuits of depth O(n)
and 2

n · poly(s(n)) size.
Since NP ⊆ C, we can construct polynomial-size formulas for

any problem in PHA
, including Circuit-Min-Merge

A
. Take the or-

acle circuit family constructed in Lemma 3.1 of O(2n · s(n)/ℓ(n))
size and O(n/log ℓ(n)) depth. Replace each Circuit-Min-Merge

A

gate with a poly(ℓ(n)) size formula, which will blow up both the

size and depth, but not by much. There are O(2n) copies of this
Circuit-Min-Merge

A
formula, so the size of the resulting circuit

is about O(2n · poly(ℓ(n)). Each of these formulas will have depth

O(log(ℓ(n))) as well, which will increase the depth of the circuit to

O(n/log ℓ(n) · log ℓ(n)) = O(n). So if we set ℓ(n) = poly(s(n)), we

STOC ’19, June 23–26, 2019, Phoenix, AZ, USA Dylan M. McKay, Cody D. Murray, and R. Ryan Williams

obtain a circuit of depthO(n) and size 2n ·poly(s(n)) size computing

MCSPA[s(n)] on 2
n
-bit inputs, which completes the proof. □

5.1 Other Compression Problems
Most of the above theorems are consequences of the existence of

the circuits and streaming algorithm as given by Theorems 1.1 and

1.2. Because these circuits and streaming algorithms exist for MKTP

and MKtP as per Theorems 3.2, 3.3, 4.2, and 4.3, we can conclude

analogues of many of the same results as above.

Reminder of Theorem 1.7. [Consequences for MKTP and MKtP]
Let p(N) ≥ log(N) be time constructible.
• If MKTP[p(N)] is not solvable by a poly(p(N))-space stream-
ing algorithm with poly(p(N)) update time, then P , NP.
• If there is an ε > 0 such that for all c ≥ 1, MKTP[N ε/c] does
not have N 1+ε -size O(1/ε)-depth TC0 circuits, then NP 1
TC0.
• If MKTP[p(N)] does not have N · poly(p(N))-size O(log(N))-
depth circuits, then NP 1 NC1.
• If MKTP[p(N)] does not have N · poly(p(N))-size poly(p(N))-
depth circuits, then NP 1 P/poly.
• If MKtP[p(N)] does not have N · poly(p(N))-size poly(p(N))-
depth circuits, then EXP 1 P/poly.
• If MKtP[p(N)] does not have N · poly(p(N))-size O(log(N))-
depth circuits, then EXP 1 NC1.
• If there is an ε > 0 such that for all c ≥ 1, MKtP[N ε/c] does not
have N 1+ε -size O(1/ε)-depth TC0 circuits, then EXP 1 TC0.

We omit the proof of Theorem 1.7, as each claim follows easily

from the arguments given above for the analogous claims about

MCSP
A
in Theorems 1.4, 1.5, and 1.6 citing instead Theorems 3.2,

3.3, 4.2, and 4.3 for the existence of efficient oracle circuits and

streaming algorithms for MKTP and MKtP. Relativized versions of

Theorem 1.7 also hold for MKTP
A
and MKtP

A
with an oracle A;

we leave the details to the interested reader.

6 CONCLUSION
We conclude with a few related open problems.

• What is the moral of this story? What lessons do we

draw from these results? As we stated in the introduction, it

does not seem right to call our results a “barrier” to proving

weak time-space lower bounds, because we believe all of the

consequential lower bounds of this paper! Still, there ought to

be more consequences of the fact that certain “weak-looking”

lower bound problems are deceptive, and in fact are much

stronger than they appear.

• Sparse Problems?We have attributed the “hardness magni-

fication” results of this paper to the “weirdness” of problems

like MCSP and MKTP. One wonders whether these results

are due not to some inherent weirdness, but rather the simple

fact that MCSP[s(n)] has only s(n)O (s(n)) YES-instances: that
is, the problem is a sparse language when s(n) is relatively
small. However, as far as we can tell, sparsity does not seem

to be enough to yield such results: the compressibility of YES-

instances also seems crucial. Studying what happens when

sparse problems in NP have small circuits is an interesting

next step.

• BoundedNondeterminismProblems?Another key prop-
erty of MCSP[s(n)] (and related compression problems) is

that the nondeterminism needed to solve the problem is

onlyO(s(n) log s(n)) bits: the number of bits needed to write

down a circuit of size s(n). When s(n) ≤ 2
o(n)

, MCSP[s(n)] is
a problem with sub-linear nondeterminism. It is natural to ask

whether hardness magnification holds for similar problems.

For example, consider the SAT problem with s(n) variables
and 2

n
clauses. Are there interesting consequences of prov-

ing weak time lower bounds for such SAT problems, for

algorithms using poly(s(n)) space?
• Truth tables presented differently? Our main results for

MCSP rely on the input truth table of f being presented in a

canonical way, namely as a 2
n
-bit string

f (x1) · · · f (x2n),

where x1, . . . ,x2n is the list of n-bit strings in lexicograph-

ical order. Our results can also extend to the case of other

efficiently-computable orderings on strings. What about

when the truth table is presented in an arbitrary order, as a

list of pairs

(x1, f (x1)), . . . , (x2n , f (x2n))

where x1, . . . ,x2n is an arbitrary permutation of {0, 1}n?

Can similar hardness magnification results be proved for

this version of the problem? Note that, in this representation,

each Boolean function corresponds to (2n)! distinct strings

of length Θ(n2n), so the underlying language MCSP[s(n)] is
no longer as sparse as it used to be.

Acknowledgements. We thank Josh Alman for helpful proofread-

ing, Igor Carboni Oliveira for useful discussions on the literature

and many careful comments, the STOC reviewers for helpful com-

ments, and the Princeton Theory Lunch crowd for useful feedback

on the results.

REFERENCES
[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern

Approach. Cambridge University Press, 2009.

[ABK
+
06] Eric Allender, Harry Buhrman, Michal Koucký, Dieter van Melkebeek,

and Detlef Ronneburger. Power from random strings. SIAM Journal on
Computing, 35(6):1467–1493, 2006. Preliminary version in FOCS’02.

[AH17] Eric Allender and Shuichi Hirahara. New insights on the (non-)hardness

of circuit minimization and related problems. In MFCS, pages 54:1–54:14,
2017.

[AHK17] Eric Allender, Dhiraj Holden, and Valentine Kabanets. The minimum

oracle circuit size problem. Computational Complexity, 26(2):469–496,
2017. Preliminary version in STACS’15.

[Ajt02] Miklós Ajtai. Determinism versus nondeterminism for linear time rams

with memory restrictions. Journal of Computer and System Sciences,
65(1):2–37, 2002.

[Ajt05] Miklós Ajtai. A non-linear time lower bound for boolean branching

programs. Theory of Computing, 1(8):149–176, 2005.
[AK10] Eric Allender and Michal Koucký. Amplifying lower bounds by means of

self-reducibility. JACM, 57(3), 2010.

[All01] Eric Allender. When worlds collide: Derandomization, lower bounds,

and kolmogorov complexity. In FST TCS 2001: Foundations of Software
Technology and Theoretical Computer Science, 2001.

[AW09] Scott Aaronson and Avi Wigderson. Algebrization: A new barrier in

complexity theory. TOCT, 1(1):2:1–2:54, 2009.
[BGS75] Theodore P. Baker, John Gill, and Robert Solovay. Relativizations of the

P =? NP question. SIAM J. Comput., 4(4):431–442, 1975.
[BJS01] Paul Beame, Thathachar S Jayram, and Michael Saks. Time-space trade-

offs for branching programs. Journal of Computer and System Sciences,
63(4):542–572, 2001.

http://dx.doi.org/10.1109/SFCS.2002.1181992
http://dx.doi.org/10.4230/LIPIcs.STACS.2015.21

Weak Lower Bounds on Resource-Bounded Compression... STOC ’19, June 23–26, 2019, Phoenix, AZ, USA

[BSSV03] Paul Beame, Michael Saks, Xiaodong Sun, and Erik Vee. Time-space

trade-off lower bounds for randomized computation of decision problems.

Journal of the ACM (JACM), 50(2):154–195, 2003.
[BW15] Samuel R. Buss and Ryan Williams. Limits on alternation trading proofs

for time-space lower bounds. Computational Complexity, 24(3):533–600,
2015.

[Cho11] Timothy Y. Chow. Almost-natural proofs. J. Comput. Syst. Sci., 77(4):728–
737, 2011.

[FLvMV05] Lance Fortnow, Richard J. Lipton, Dieter van Melkebeek, and Anastasios

Viglas. Time-space lower bounds for satisfiability. JACM, 52(6):835–865,

2005.

[Hir18] Shuichi Hirahara. Non-black-box worst-case to average-case reductions

within NP. Electronic Colloquium on Computational Complexity (ECCC),
25:138, 2018.

[HOS18] Shuichi Hirahara, Igor Carboni Oliveira, and Rahul Santhanam. Np-

hardness of minimum circuit size problem for OR-AND-MOD circuits. In

CCC, pages 5:1–5:31, 2018.
[HP15] John M. Hitchcock and Aduri Pavan. On the NP-completeness of the

minimum circuit size problem. In 35th IARCS Conf. Found. of Software
Tech. and Theoret. Comput. Sci. (FSTTCS’15), volume 45 of LIPIcs, pages
236–245, 2015.

[HS17] Shuichi Hirahara and Rahul Santhanam. On the average-case complexity

of MCSP and its variants. In CCC, pages 7:1–7:20, 2017.
[HW16] Shuichi Hirahara and Osamu Watanabe. Limits of minimum circuit size

problem as oracle. In CCC, volume 50, pages 18:1–18:20, 2016. Available

at ECCC.

[IKV18] Russell Impagliazzo, Valentine Kabanets, and Ilya Volkovich. The power

of natural properties as oracles. In CCC, pages 7:1–7:20, 2018.

[KC00] Valentine Kabanets and Jin-yi Cai. Circuit minimization problem. In

STOC, pages 73–79, 2000.
[Lev84] Leonid A. Levin. Randomness conservation inequalities; information

and independence in mathematical theories. Information and Control,
61(1):15–37, 1984.

[LW12] Richard J. Lipton and Ryan Williams. Amplifying circuit lower bounds

against polynomial time with applications. In CCC, pages 1–9, 2012.
[MP17] Moritz Müller and Ján Pich. Feasibly constructive proofs of succinct weak

circuit lower bounds. Electronic Colloquium on Computational Complexity
(ECCC), 24:144, 2017.

[MW15] Cody D. Murray and R. Ryan Williams. On the (non) NP-hardness of
computing circuit complexity. In CCC, volume 33 of LIPIcs, pages 365–380.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015.

[OPS18] Igor Carboni Oliveira, Ján Pich, and Rahul Santhanam. Hardness mag-

nification near state-of-the-art lower bounds. Electronic Colloquium on
Computational Complexity (ECCC), 25:158, 2018.

[OS18] Igor Carboni Oliveira and Rahul Santhanam. Hardness magnification for

natural problems. In FOCS, 2018. Available at ECCC.
[RR97] Alexander Razborov and Steven Rudich. Natural proofs. JCSS, 55(1):24–35,

1997.

[Sri03] Aravind Srinivasan. On the approximability of clique and related maxi-

mization problems. Journal of Computer and System Sciences, 67(3):633 –
651, 2003.

[Tra84] B. A. Trakhtenbrot. A survey of russian approaches to perebor (brute-force

searches) algorithms. Annals of the History of Computing, 6(4):384–400,
Oct 1984.

[Wil08] R. RyanWilliams. Time-space tradeoffs for counting NP solutions modulo

integers. Computational Complexity, 17(2):179–219, 2008.

https://eccc.weizmann.ac.il/report/2015/198/
https://eccc.weizmann.ac.il/report/2018/139/

	Abstract
	1 Introduction
	1.1 Our Results
	1.2 Intuition
	1.3 What Do These Results Mean?

	2 Preliminaries
	2.1 An Important Intermediate Problem

	3 Efficient Oracle Circuit Family for MCSP
	3.1 Other Compression Problems

	4 Streaming Algorithm for MCSP
	4.1 Other Compression Problems

	5 Consequences
	5.1 Other Compression Problems

	6 Conclusion
	References

