
When Connectivity Is Hard, RandomWalks Are Easy with
Non-determinism

Dean Doron

deand@bgu.ac.il

Ben-Gurion University

Beer Sheba, Israel

Edward Pyne

epyne@mit.edu

MIT

Cambridge, United States

Roei Tell

roei@cs.toronto.edu

University of Toronto

Toronto, Canada

Ryan Williams

rrw@mit.edu

MIT

Cambridge, United States

Abstract
Two fundamental problems on directed graphs are to decide 𝑠-𝑡

connectivity, and to estimate the behavior of random walks. Cur-

rently, there is no known algorithm for 𝑠-𝑡 connectivity running in

polynomial time and 𝑛𝑜 (1) space, and no known algorithm for esti-

mating the𝑛-step randomwalkmatrix running in non-deterministic

logspace.

We show that for every directed graph, at least one of these

problems is solvable in time and space that significantly improve

on the respective state-of-the-art. In particular, there is a pair of

algorithms 𝐴1 and 𝐴2 such that for every graph 𝐺 , either:

(1) 𝐴1 (𝐺) outputs the transitive closure of𝐺 in polynomial time

and polylogarithmic space.

(2) 𝐴2 (𝐺) outputs an approximation of the 𝑛-step random walk

matrix of 𝐺 in non-deterministic logspace.

As one application, we show surprisingly tight win-win results

for space-bounded complexity. For example, for certain parameter

regimes, either Savitch’s theorem can be non-trivially sped up, or

randomized space can be almost completely derandomized.

We also apply our techniques to significantly weaken the as-

sumptions required to derandomize space-bounded computation,

and to make non-deterministic space-bounded computation un-

ambiguous. Specifically, we deduce such conclusions from lower

bounds against uniform circuits of polynomial size, which is an ex-

ponential improvement on the required hardness in previous works

(Doron–Pyne–Tell STOC 2024, Li–Pyne–Tell FOCS 2024). We fur-

ther show similar results for minimal-memory derandomization

(Doron–Tell CCC 2024).

To prove these results, we substantially improve the array of

technical tools introduced in recent years for studying hardness-

vs.-randomness for bounded-space computation. In particular, we

develop derandomized distinguish-to-predict transformations for

new types of distinguishers (corresponding to compositions of PRGs

with weak distinguishers), we construct a derandomized logspace

reconstruction procedure for the Shaltiel–Umans generator (JACM

This work is licensed under a Creative Commons Attribution-NonCommercial-

NoDerivatives 4.0 International License.

STOC ’25, Prague, Czechia
© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1510-5/25/06

https://doi.org/10.1145/3717823.3718303

2005) that can compress hard truth-tables to polylogarithmic size,

and we design a version of the Chen–Tell generator (FOCS 2021)

that is particularly suitable for the space-bounded setting.

CCS Concepts
• Theory of computation→ Complexity classes; Pseudoran-
domness and derandomization; Random walks and Markov
chains; Graph algorithms analysis.

Keywords
Derandomization, Complexity, Random Walks, Connectivity

ACM Reference Format:
Dean Doron, Edward Pyne, Roei Tell, and Ryan Williams. 2025. When

Connectivity Is Hard, Random Walks Are Easy with Non-determinism. In

Proceedings of the 57th Annual ACM Symposium on Theory of Computing
(STOC ’25), June 23–27, 2025, Prague, Czechia. ACM, New York, NY, USA,

10 pages. https://doi.org/10.1145/3717823.3718303

1 Introduction
How much time and space is necessary to simulate randomized

small-space algorithms? To simulate non-deterministic small-space

algorithms? These are two of the most well-studied questions in

space complexity, with particularly clean complete problems:

(1) For BPL = BPSPACE[𝑂 (log𝑛)], the corresponding prob-

lem is to estimate 𝑛-step random walk probabilities on an

𝑛-vertex graph, with small additive error.

(2) For NL = NSPACE[𝑂 (log𝑛)], the problem is to decide 𝑠-𝑡

connectivity on an 𝑛-vertex graph.

At the moment, we do not know how to solve either problem in

polynomial time and only logarithmic space. For problem (1), it is

widely conjectured that such an algorithm exists (i.e., that BPL = L,
which follows from conjectured lower bounds [14, 15, 29]). How-

ever, the best known algorithms work either in super-polynomial

time 2
log(𝑛)3/2−𝑜 (1)

and in space log(𝑛)3/2−𝑜 (1) [24, 42], or in poly-

nomial time and in larger space 𝑂 (log2 𝑛) [4, 33]. Moreover, it

is not even known how to improve these algorithms using non-

deterministic computation (e.g., we do not know whether BPL ⊆
NSPACE[log1.49 𝑛]).

For problem (2), there is seemingly no consensus on a widely be-

lieved conjecture, and the most important reference point is the clas-

sical algorithm of Savitch [44], which works in super-polynomial

https://orcid.org/0000-0003-1862-8341
https://orcid.org/0000-0002-3454-2057
https://orcid.org/0000-0002-3454-2057
https://orcid.org/0000-0003-2326-2233
https://creativecommons.org/licenses/by-nc-nd/4.0
https://creativecommons.org/licenses/by-nc-nd/4.0
https://creativecommons.org/licenses/by-nc-nd/4.0
https://doi.org/10.1145/3717823.3718303
https://doi.org/10.1145/3717823.3718303

STOC ’25, June 23–27, 2025, Prague, Czechia Dean Doron, Edward Pyne, Roei Tell, and Ryan Williams

time 2
Θ(log2 𝑛)

and in space 𝑂 (log2 𝑛). A major open problem asks

whether Savitch’s algorithm can be improved. For example, al-

ready 30 years ago, Wigderson [52] asked whether an algorithm

can achieve polynomial time and space 𝑛1−𝜀 for some 𝜀 > 0: This

problem is still wide open, and the best known polynomial-time

algorithm uses nearly-linear space 𝑛/2Θ(
√
log𝑛)

[3]. In fact, in a

natural restricted model encompassing all known deterministic,

randomized, and non-deterministic algorithms for directed (and

undirected) connectivity,
1
there is a lower bound ruling out algo-

rithms running in time 2
log

1.99 𝑛
and space 𝑛0.99 [16].

1.1 Our Results, Part 1: A Pair of Algorithms
We prove that for every graph, at least one of these problems can

be solved significantly more efficiently than previously known

algorithms:

Theorem 1. There are algorithms A1,A2 such that for every
graph 𝐺 on 𝑛 vertices, one of the following holds:

• A1 (𝐺) solves 𝑠-𝑡 connectivity in 𝐺 in polynomial time and
polylogarithmic space.
• A2 (𝐺) estimates length-𝑛 random walk probabilities in 𝐺 in
non-deterministic logspace.2

Moreover, both algorithms report if they fail to compute the desired
answer, and do not exceed their resource bounds in any case.

We stress that the constructions of A1 and A2 are explicit (i.e.,

these are specific algorithms, and their descriptions will be given

in Section 2.1), and that provably, for every graph, at least one of
the algorithms works (and both of them never return an incorrect

answer). Moreover, these algorithms run in time and space that sig-
nificantly improve on the respective state-of-the-art: The algorithm

A1 runs in polynomial time and uses only polylogarithmic space

(compared to 𝑛/2
√
log𝑛

space [3]); and A2 uses only logarithmic

space, alas it also uses non-determinism (i.e., it is akin toBPL ⊆ NL;
in comparison, the algorithm of [23, 42] uses log(𝑛)3/2−𝑜 (1) space).

Application: Tight win-win results in space-bounded complexity.
Since the pair of algorithms A1 and A2 from Theorem 1 solve the

complete problems for forNL and forBPL, respectively, we can use
them to tightly connect the challenges of simulating NL and BPL.
As one application, we leverage the pair of algorithms to show that

either Savitch’s theorem can be improved, or randomized space can

be deterministically simulated near-optimally.

Theorem 2. For every constant 𝜀 > 0, at least one of the following
holds:

• NSPACE [𝑛] ⊆ 𝑖 .𝑜 .TISP
[
2
𝑂 (𝑛2−𝜀) , 𝑛𝑂 (1)

]
.

• BPSPACE[𝑛] ⊆ SPACE
[
𝑂 (𝑛1+𝜀)

]
.

1
Specifically, this is the Node-Named JumpingAutomata onGraphs (NNJAG)model [12,

31, 37]. This model captures all known space-bounded directed and undirected con-

nectivity algorithms, including Savitch, BFS, DFS, Immerman-Szelepcsényi [25, 47],

Nisan et al. [35], Barnes et al. [3], Armoni et al. [2], and Reingold [40].

2
The estimation is up to an additive 1/poly(𝑛) error. The algorithm runs in logspace,

makes non-deterministic guesses, and either declares fail if the guess sequence is

bad, or a single canonical matrix only depends on the graph𝐺 , or a special symbol ⊥
indicating that A2 does not succeed on this input (in which case A1 succeeds on the

input).

We stress that the second item in Theorem 2 does not use non-
determinism (i.e., it is a scaled-up version of the statement BPL ⊆
SPACE[(log𝑛)1+𝜀)]), in contrast toA2 fromTheorem 1. Theorem 2

is not an immediate corollary of Theorem 1, but it does use the

techniques underlying the proof of the latter (i.e., a more general

construction of a pair of algorithms).

Theorem 2 is particularly meaningful in two parameter regimes,

corresponding to choices of 𝜀 > 0. Specifically, the following two

instantiations assert that for each of the two problems we con-

sider (i.e., 𝑠-𝑡 connectivity and estimating random walks), either

we can non-trivially improve on the state-of-the-art for solving the

problem, or we can near-optimally solve the other problem:

• With an arbitrarily small 𝜀 > 0: Either Savitch’s algorithm

can be non-trivially sped-up (i.e., replacing 2
𝑛2

with 2
𝑛2−𝜀

),

or we can near-optimally derandomize BPSPACE[𝑛].
• With 𝜀 = 0.49: Either the frontier derandomization of Saks–

Zhou can be non-trivially improved (i.e. SPACE[𝑛1.5] with
SPACE[𝑛1.49]), or Savitch’s algorithm can be substantially

sped up (i.e. replacing 2
𝑛2

with 2
𝑛3/2+0.01

).

If we are willing to settle for non-deterministic simulation of

BPSPACE, we can leverage Theorem 1 to connect near-optimal
solutions to both problems (i.e., rather than connecting a slight

improvement to the state-of-the-art for one problem to a near-

optimal solution to the other problem). For example, either Savitch’s

Theorem can be optimally sped up, or we can optimally simulate

probabilistic linear space using non-determinism:

Theorem 3 (informal). It holds that either

NSPACE[𝑛] ⊆ 𝑖 .𝑜 .TISP
[
2
𝑂 (𝑛) , 𝑛𝑂 (1)

]
,

or BPSPACE[𝑛] ⊆ NSPACE[𝑂 (𝑛)].

Interpretation. If one believes that L = NL and BPL = L (i.e.,

that we can solve 𝑠-𝑡 connectivity in logspace and estimate random

walk probabilities in logspace), then Theorem 1 and the win-win

results can be interpreted as concrete steps towards proving both
statements. Alternatively, if one believes that (say) Savitch’s algo-

rithm cannot be sped up, then our results can be interpreted as

showing that such a statement implies optimal derandomization.

In any case, our results in this section provide a new algorithmic

tool, and connect two fundamental problems.

1.2 Our Results, Part 2: Derandomization from
Very Weak Hardness

One perspective on the win-win results above is that they convert

hardness into randomness: Specifically, they deduce near-optimal

derandomization of small space from hardness of improving Sav-

itch’s theorem (i.e., of solving 𝑠-𝑡 connectivity) by uniform, deter-

ministic algorithms. We stress that typical results in hardness vs.

randomness deduce derandomization from stronger assumptions

(i.e., from hardness for non-uniform circuits or for probabilistic

algorithms).
3

3
Only very recently, several works deduced derandomization of small-space compu-

tation from hardness for uniform, deterministic algrithms (see [14, 30, 39]). Jumping

ahead, we build on these works and significantly develop the technical machinery

introduced in them. For details, see Section 1.3.

When Connectivity Is Hard, Random Walks Are Easy with Non-determinism STOC ’25, June 23–27, 2025, Prague, Czechia

From this perspective (i.e., if the goal is to deduce derandomiza-

tion from weak hardness), we want to do better than Theorem 2

and Theorem 3, by deducing optimal derandomization – without

non-determinism, and without an 𝑛1+𝜀 space overhead. We are

indeed able to do so.

Full derandomization of BPSPACE from very weak hardness. A
classical result of Klivans and van Melkebeek [29] (following [36])

showed that BPL = L follows from sufficiently explicit lower

bounds against exponential sized non-uniform circuits (c.f. [15]).

Since these circuit lower bounds currently seem out of reach, a

natural direction is to deduce derandomization from assumptions

that are weak enough so that we hope to unconditionally prove

them.

Recently, Doron, Pyne, and Tell [14] showed one such result,

in which they deduced derandomization from lower bounds for

exponential-sized circuits that can be printed by uniform, space-
bounded machines (rather than non-uniform circuits). As they point

out, proving such a lower bound seems significantly more tractable

, since there are already known lower bounds against uniform

circuits (see, e.g., Santhanam and Williams [43]).

To be more precise, in [14] they proved that BPSPACE[𝑛] ⊆
SPACE[𝑂 (𝑛)] follows from hardness of SPACE[𝑛] for logspace-
uniform oracle circuits of size 2

𝜀𝑛
; that is, against exponential-sized

circuits that can be printed in space 𝑂 (𝑛). We deduce the same

conclusion from lower bounds against uniform polynomial-sized
circuits (equipped with an oracle that uses space 𝜀𝑛).

Theorem 4. There is a constant 𝑐 > 1 such that the following
holds. Suppose there exists a constant 𝜀 > 0 such that SPACE[𝑛] is
hard for TISP[2𝑐𝑛, 𝑛𝑐]-uniform circuits of size 𝑛𝑐 with oracle access
to SPACE[𝜀𝑛].4 Then, BPSPACE[𝑛] ⊆ SPACE[𝑂𝜀 (𝑛)].

Theorem 4 represents a near-exponential improvement in the

size of the circuits against which we need hardness, at the cost of

relaxing the uniformity condition from SPACE[𝑂 (𝑛)]-uniformity

to TISP[2𝑂 (𝑛) , 𝑛𝑂 (1)]-uniformity. The assumption in Theorem 4

strikes us as very weak, and plausibly provable: It asserts that

there are 𝑁 -bit strings printable in space 𝑂 (log𝑁) that cannot be
deterministically compressed (in small time and space) to a circuit

of size polylog(𝑁) that can make oracle queries to space 𝜀 · log(𝑁).

Derandomization with minimal memory footprint. We also con-

sider the question of derandomization with minimal memory over-

head, which was introduced by Doron and Tell [15] (following [9,

13]). The classical conjecture BPL = L asserts that randomized

space-𝑆 machines can be simulated in space 𝑆 ′ = 𝐶 · 𝑆 , for some

(possibly large) constant𝐶 > 1. The more ambitious goal from [15]

is to have 𝑆 ′ as close as possible to 𝑆 ; for example, deduce simula-

tion with 𝑆 ′ ≈ 2𝑆 or even 𝑆 ′ ≈ 𝑆 . Since we do not hope to show

this unconditionally at the moment, the goal is to deduce it under

the weakest possible assumptions.

We base minimal-memory derandomization on assumptions that

are qualitatively weaker than those known to imply standard (i.e.

not superfast) derandomization in the time-bounded setting. To

see this, recall that the work of [15] deduced derandomization of

4
The input length 𝑛 to the oracle is the same length as the input to the generating

algorithm (so we do not let the machine write longer oracle queries).

randomized space-𝑆 with deterministic space 𝑆 ′ = 2𝑆 + 𝑂 (log𝑛)
under two assumptions: very efficient cryptographic PRGs, and

strong circuit lower bounds. The subsequent work [14] obtained

the same conclusion without the cryptographic assumption, while

still requiring lower bounds for non-uniform circuits. We go further,

deducing the same conclusion from hardness of compression of a

multi-output function by uniform, deterministic machines that run

in polynomial time and sublinear space:

Theorem 5 (informal). Assume that for any large enough con-
stant 𝐶 there exists a function 𝑓 mapping 𝑛 bits to 𝑛2 bits that is
computable in space (𝐶 + 1) · log(𝑛), but for any deterministic algo-
rithm 𝑅 that runs in space 𝑛0.01 and time 𝑛𝑂 (𝐶) , there are at most
finitely many 𝑥 ∈ {0, 1}𝑛 such that the following holds: When given
input 𝑥 , the algorithm 𝑅(𝑥) prints an 𝑂 (𝑛)-length description of a
machine𝑀 that runs in space 𝐶 · log(𝑛) and prints 𝑓 (𝑥). Then, for
any 𝑆 (𝑛) = Ω(log𝑛) and constant 𝜀 > 0,

BPSPACE[𝑆] ⊆ SPACE[(2 + 𝜀) · 𝑆] .

In the time-bounded regime, deducing extremely efficient (i.e.,

superfast) derandomization from a strong circuit lower bound is

still an open problem, let alone deducing it from hardness for uni-

form deterministic algorithms; currently, all works require either

cryptography, or lower bounds for non-deterministic non-uniform

circuits (see, e.g., [8–10, 13, 46]).

Disambiguating nondeterministic logspace. The final question

we consider is whether nondeterministic logspace can be made

unambiguous, in the sense that for every NL language, there is

a (one-way logspace) verifier that is only convinced by a unique
witness for every 𝑥 ∈ 𝐿. This is commonly known as the NL = UL
question, and it is the space-bounded analogue of the NP vs. UP
question. The disambiguation task reduces to a derandomization

task, and specifically to derandomizing a graph-theoretic variant

of the classical isolation lemma by [50], where the variant was

introduced by Reinhardt and Allender [41] (see also [18]).

Allender, Reinhardt, and Zhou [1] showed that if there is a prob-

lem in SPACE[𝑂 (𝑛)] hard for non-uniform exponential-sized cir-

cuits, then indeed NL = UL. Very recently, Li, Pyne, and Tell [30]

proved an analogous conclusion in a scaled-up regime (i.e. that

NSPACE[𝑛] = USPACE[𝑂 (𝑛)]) from hardness against uniform
exponential-sized circuits (where the machine printing the circuit

is itself an 𝑂 (𝑛) space unambiguous machine). In this context too,

we deduce the same conclusion from lower bounds against uniform

polynomial-sized circuits.

Theorem 6. There is a constant 𝑐 > 1 such that the following
holds. Suppose there exists a constant 𝜀 > 0 such that USPACE[𝑛] is
hard for circuits of size 𝑛𝑐 with oracle access to USPACE[𝜀𝑐𝑛], where
the circuits are uniformly generated by an algorithm that runs in
TISP[2𝑂 (𝑛) , poly(𝑛)] with oracle access to USPACE[𝑂 (𝑛)].5 Then,
NSPACE[𝑛] ⊆ USPACE[𝑂𝜀 (𝑛)].

Similarly to Theorem 4, the hardness assumption in Theorem 6

represents a near-exponential improvement in the size of the cir-

cuits against which we need hardness, at the cost of mildly increas-

ing the space allowed for the uniform machine.

5
Here too, the input length 𝑛 to the oracle is the same length as the input to the

generating algorithm.

STOC ’25, June 23–27, 2025, Prague, Czechia Dean Doron, Edward Pyne, Roei Tell, and Ryan Williams

1.3 The Technical Contributions
Our results are based on substantial improvements to the array

of technical tools that have been introduced in recent years for

studying hardness-vs.-randomness for bounded-space computation.

To contextualize this contribution, consider classical constructions

of pseudorandom generators based on a hard function 𝑓 (e.g., the

Nisan-Wigderson [36] PRG). The analysis of these PRGs is based

on a reconstruction argument: If an efficient distinguisher is not

fooled by the generator (built from 𝑓), then an efficient procedure

computes 𝑓 .

Now, let us view both the pseudorandom generator and the

reconstruction as a pair of algorithms “of equal status”, rather than

thinking of the reconstruction as only part of the analysis; similar

perspectives have been useful for extractor theory, meta-complexity,

learning, and pseudodeterministic algorithms (see, e.g., [5, 6, 22,

26, 49]). Observe that a generator with respect to 𝑓 is useful for

derandomization, whereas the reconstruction procedure computes

𝑓 , and at least one of the two is guaranteed to work (cf., Theorem 1).

We will use a function 𝑓 such that both the output of the generator

(when 𝑓 is hard) and the output of 𝑓 itself (when 𝑓 is easy) are

useful.

A key point for making this approach work is using both a

generator and a reconstruction procedure with low complexity. In

recent years, deterministic reconstruction procedures have been

developed, following Pyne, Raz, and Zhan [39] (see also [14, 30]), in

which case both the generator and the reconstruction algorithms

are deterministic. Technically, in this work we develop new efficient

generators with deterministic reconstruction procedures, as well

as deterministic reconstruction procedures for known generators

that work in broader contexts than before. Specifically, our results

rely on the following technical contributions:

(1) Derandomized D2Ps for PRG+Distinguisher. All known
derandomized reconstruction procedures rely on derandom-

ized transformations of distinguishers to predictors (D2P).

Informally, a D2P transformation is a mapping from circuits

𝐶 into short sequences 𝑃1, . . . , 𝑃𝑚 of circuits, such that if

𝐶 distinguishes a distribution D from uniform, then some

𝑃𝑖 is a decent next-bit predictor for D. Yao’s [53] classical
lemma can be thought of as a very general randomized D2P,

whereas we are interested in deterministic D2Ps.

Previously, deterministic D2Ps were known either for read-

once branching programs [14] or for specific distinguish-

ers [30]. We develop deterministic D2Ps for compositions
of PRGs with distinguishers, where both the distinguisher

and the PRG may be of various types: Our D2Ps work for

compositions of Nisan’s [34] PRGwith ROBPs, of the Forbes-
Kelley [17] PRG with AOBPs, and of a PRG by van Melke-

beek and Prakriya [51] with a graph-theoretic distinguisher.

See Section 2.1.2 and Section 2.3 for details.

(2) SU Generator with deterministic reconstruction. Previ-
ous deterministic reconstruction procedures were for gener-

ators or targeted generators based on the Nisan-Wigderson

generator [36] (e.g., for the targeted generator of [8] instanti-

ated with [36]; see also [14, 30, 39]). However, the NW gener-

ator is well-known to have suboptimal parameters, and using

it in our constructions would not allow us to obtain our re-

sults. We thus develop a deterministic low-space reconstruc-

tion procedure for the more efficient Shaltiel-Umans [45]

generator, which we use for our results. See Section 2.1.3 for

details.

(3) Anew targeted generator. For the pair of algorithms in The-

orem 1, we construct a new targeted generator with a de-

terministic reconstruction procedure. This generator can

be thought of as a variant of the Chen–Tell [8] generator

that is particularly suited for space-bounded hardness-vs.-

randomness results. The construction is described in Sec-

tion 2.1.

2 Overview of Proofs
In this section we present high-level overviews of our proofs, aim-

ing to present self-contained descriptions (especially for the proof

of Theorem 1). In particular, while describing the proofs we will

explain the role of the new complexity-theoretic tools mentioned

in Section 1.3 (i.e., the D2P transformations, the reconstructive gen-

erator, and the targeted generator for space-bounded settings), but

we will present the constructions of these tools in separate subsec-

tions. In particular, in Section 2.1 we explain the proof of Theorem 1,

in Section 2.2 we explain how to deduce the win-win corollaries,

and in Section 2.3 we explain the proofs of results from Section 1.2.

2.1 The Pair of Algorithms
At a high level, our algorithmsA1,A2 (for randomwalk estimation

and 𝑠-𝑡 connectivity respectively) work as follows. Fixing a graph

𝐺 on 𝑛 vertices, we consider a reachability bootstrapping system (à

la [8]), which is a sequence of 𝑛 strings (“layers”) defined as follows.

For 𝑖 ∈ [𝑛], the 𝑖th layer, denoted 𝑃𝑖 ∈ {0, 1}𝑛
2

, is defined as:

(𝑃𝑖)𝑠,𝑡 = I [there exists a path from 𝑠 to 𝑡 of length at most 𝑖] .

We observe two critical properties about this system:

(1) Downward self reducibility. There is a (deterministic)

logspace algorithm that, given input (𝐺, (𝑠, 𝑡)) and query

access to 𝑃𝑖 , computes (𝑃𝑖+1)𝑠,𝑡 .
(2) Nondeterministic computability. There is a nondeter-

ministic logspace algorithm that, given (𝐺, 𝑖, 𝑠, 𝑡), computes

(𝑃𝑖)𝑠,𝑡 .
The algorithm in Item 1 is direct, whereas the algorithm in Item 2

requires the Immerman-Szelepcsényi theorem [25, 47] that coNL =

NL. Note that we could use the first algorithm to compute any

entry in the bootstrapping system (by repeatedly using downward

self-reducibility), but the recursion depth is 𝑛, yielding a space-

inefficient algorithm. The second algorithm allows us to “shortcut”,

and compute each entry in the bootstrapping system using nonde-

terminism.

We build the pair of algorithms A1,A2 around the following

question: Is there an 𝑖 such that 𝑃𝑖 allows us to produce pseudoran-

dom walks on 𝐺 (using complexity-theoretic tools)? Given such an

𝑖 , we will estimate random walk probabilities; otherwise, we will

solve 𝑠-𝑡 connectivity.

Specifically, for the purpose of producing pseudorandom walks

from 𝑃𝑖 , we build a pseudorandom generator GEN with the follow-

ing properties:

When Connectivity Is Hard, Random Walks Are Easy with Non-determinism STOC ’25, June 23–27, 2025, Prague, Czechia

(1) Logspace computability. Given 𝑃 ∈ {0, 1}𝑛2

and a graph

𝐺 on 𝑛 vertices, GEN𝑃 (𝐺) is computable in logspace. More-

over, the output is either G̃ ∈ R𝑛×𝑛 or ⊥, where G̃ is a

1/𝑛-approximation of G𝑛
, and G is the random walk matrix

of 𝐺 .

(2) Deterministic reconstruction. There is an algorithm REC
running in polynomial time and polylogarithmic space that,

given 𝑃 and𝐺 such thatGEN𝑃 (𝐺) =⊥, outputs a polylog(𝑛)-
size (oracle) circuit 𝐶 such that 𝐶𝐺 (𝑥) = 𝑃𝑥 for all 𝑥 ∈ [|𝑃 |].

First we explain how to combine these ingredients to obtain The-

orem 1, then go further into the description of the generator. To

estimate random walk probabilities in NL, we enumerate over 𝑖 ,

and use GEN(𝐺) with 𝑃𝑖 to try to produce G̃ ≈ G𝑛
. When GEN(𝐺)

tries to access entries of 𝑃𝑖 , we answer using the NL algorithm

from Item 2. This yields anNL algorithmA1 such that if there is an

𝑖 for whichGEN𝑃𝑖 (𝐺) ≠⊥, the algorithm outputs an approximation

of 𝑛-step walks on 𝐺 .6

Otherwise, it is the case that GEN𝑃𝑖 (𝐺) =⊥ for every 𝑖 . In this

case, we iterate from 𝑖 = 1, . . . , 𝑛, at each stage using REC to build a

compressed representation𝐶𝑖 of 𝑃𝑖 . This compressed representation

is of size polylog(𝑛), and can be evaluated in space polylog(𝑛).7
Once we have a compressed representation𝐶𝑛 of 𝑃𝑛 , we can output

the transitive closure of𝐺 using polylog(𝑛) space and poly(𝑛) time.

In more detail, in each iteration 𝑖 ∈ [𝑛]:
(1) Assume we have a representation𝐶𝑖−1 such that𝐶𝐺

𝑖−1 (𝑠, 𝑡) =
(𝑃𝑖−1)𝑠,𝑡 for all (𝑠, 𝑡) ∈ [𝑛]2. By Item 1, we can compute

(𝑠, 𝑡) ↦→ (𝑃𝑖)𝑠,𝑡 using queries to 𝐶𝑖−1.
(In the first iteration 𝑖 = 1 we can compute each entry of 𝑃1
directly in logspace.)

(2) By our assumption, GEN𝑃𝑖 (𝐺) =⊥. Hence, we can use the

algorithm REC from Item 2 to obtain𝐶𝑖 such that𝐶𝐺
𝑖
(𝑠, 𝑡) =

(𝑃𝑖)𝑠,𝑡 for all 𝑠, 𝑡 .
(3) Finally, delete the representation 𝐶𝑖−1, and increment 𝑖 .

Since each of the 𝑛 steps takes polylog(𝑛) space and poly(𝑛) time,

and space is reused across steps, the algorithm A2 runs in SC =

TISP[poly(𝑛), polylog(𝑛)] as claimed.

Finally, note that both algorithms can detect failure. Specifically,

the NL algorithmA1 outputs ⊥ if no 𝑖 allowed it to produce G̃ (i.e.,

if GEN(𝐺) outputs ⊥ with all 𝑃𝑖). Similarly, the SC algorithm A2

can check at each iteration 𝑖 that 𝐶𝐺
𝑖

computes 𝑃𝑖 (otherwise, it

outputs ⊥).

Outline of Technical Description. In Section 2.1.1, we give an

overview of the construction ofGEN. Then, in Section 2.1.2 and Sec-
tion 2.1.3, we describe constructions of two key technical compo-

nents that are necessary for the construction of GEN.

2.1.1 A walk generator with deterministic reconstruction. The con-
struction ofGEN is based on the hardness vs. randomness paradigm.

As explained in Section 1.3, this paradigm yields a pair of algorithms

GEN and REC such that for every string 𝑃 , either GEN produces

pseudorandomness from 𝑃 or REC efficiently computes 𝑃 (in this

6
To ensure the output is consistent for a fixed graph, the algorithm tries 𝑖 = 1, . . . , in

sequence and uses the first layer that produces an output.

7
To be more accurate, the algorithm needs to evaluate𝐶𝐺

𝑖
rather than𝐶𝑖 . But since𝐺

is given to the algorithm as input, whenever𝐶𝑖 queries𝐺 , the algorithm can answer

the query in logspace.

case, REC produces a small description of 𝑃). The pseudorandom-

ness that we need in our setting is very specific: we just need to

approximate walk probabilities on a graph.

A first attempt might be to instantiate a known PRG, such as

NW [27, 36], with the truth table 𝑓 = 𝑃𝑖 , and use the output

of the generator to take random walks on 𝐺 . A line of recent

work [11, 14, 15, 30, 39] developed deterministic and space-efficient

reconstruction procedures for NW that work in our setting (i.e.,

when using the output to approximate walks), but there is a funda-

mental issue: If we use NW to produce 𝑛 pseudorandom bits (for an

𝑛-step walk), then we can only guarantee that when NW fails, the

reconstruction compresses 𝑓 to size 𝑛𝑐 (for some constant 𝑐 > 1),

which in our case would not compress the reachability matrix at

all.

Indeed, we need a generator that will produce 𝑛-step pseudoran-

dom walks, such that failure of this generator allows us to compress

𝑓 to size polylog(𝑛). This is known to be impossible when using

standard black-box techniques to produce 𝑛 pseudorandom bits,
8

but since we only care about producing pseudorandom walks for a

given graph (rather than arbitrary pseudorandom bits), we are able

to bypass this barrier using two technical components.

Technical component 1: Using an unconditional “outer” PRG. In-
stead of producing 𝑛-step walks, we use the PRG to produce a

polylog(𝑛)-bit seed for the pseudorandom generator of Nisan [32],

which stretches its seed to an 𝑛-step pseudorandom walk.
9
Since

our PRG now only needs to output polylog(𝑛) bits, when it fails

we can compress 𝑓 to size polylog(𝑛).
However, this breaks a key part of the argument. Specifically,

the reconstruction REC for our PRG relies on a transformation of a

distinguisher (for the output of the PRG) into a next-bit-predictor, à
la Yao [53], denoted D2P. Since we need REC to be deterministic,

we need the D2P to be deterministic. However, previous works [11,

14, 30, 39] constructed D2P transformations only for certain classes

of distinguishers, and the distinguisher “does the PRG output a seed
for NIS that causes it to produce good pseudorandom walks?” is not
in these classes.

Thus, we develop a new deterministic D2P for the latter dis-

tinguisher. In fact, this is part of a broader contribution of this

work, in which we develop deterministic D2Ps for various types

of distinguishers of the form “composition of a PRG with a weak

distinguisher”. Our D2P for the current specific distinguisher is

described in Section 2.1.2.

Technical component 2: A better “inner” PRG.. A well-known lim-

itation of NW is that when producing polylog(𝑛) output bits and
compressing 𝑓 to size polylog(𝑛), its seed is polylogarithmic rather

than logarithmic. Thus, it would not have the properties that we

need from GEN (i.e., logspace and polytime computability). Instead

of using NW, we use a generator that does not suffer from this

limitation, namely the Shaltiel–Umans [45] generator SU.

8
To be precise, whenever using the standard hybrid argument (or, more generally, a

distinguish-to-predict transform for arbitrary distinguishers) and black-box hardness

amplification to produce𝑛 pseudorandom bits, an overhead of poly(𝑛) in compression

is unavoidable; see [20, 46] and [30, Appendix B].

9
In this simplified description, we consider NIS as an algorithm that takes as input a

random seed and produces a set of random walks (and for most seeds, the uniform

distribution over the set of walks is pseudorandom). This idea was also used to reduce

the catalytic space complexity of producing random walks [38].

STOC ’25, June 23–27, 2025, Prague, Czechia Dean Doron, Edward Pyne, Roei Tell, and Ryan Williams

However, now another key part in the argument breaks. Recent

works developed deterministic logspace reconstruction algorithms

for NW, but no such algorithms are known for SU. In fact, only

very recently Chen et al. [6] showed a setting in which (a modifi-

cation of) SU has reconstruction that can be computed uniformly

(rather than by non-uniform circuits), and their algorithm is nei-

ther space-efficient nor randomness-efficient. Thus, we develop a

new reconstruction procedure, which simultaneously achieves both

these goals. This is described in Section 2.1.3.

By combining. the two foregoing technical components, we ob-

tainGEN = SU such thatGEN and REC have the properties needed

to construct the pair of algorithms described in Section 2.1.

2.1.2 A D2P for Nisan’s generator composed with estimating random
walks. Let us recall the definitions of distinguishers, predictors, and
of D2P transformations (the latter were formally introduced in [14]

and studied more generally in [30]).

Definition 2.1 (distinguisher). We say that 𝐶 : {0, 1}𝑛 → {0, 1} is
an 𝜀-distinguisher for a distribution D over {0, 1}𝑛 if

���E[𝐶 (U𝑛)] −

E[𝐶 (D)]
��� ≥ 𝜀, where U𝑛 is the uniform distribution.

Definition 2.2 (next-bit predictor). For 𝑖 ∈ [𝑛], we say that

𝑃 : {0, 1}𝑖−1 → {0, 1} is a 𝛿-next-bit-predictor for a distribution D
over {0, 1}𝑛 if Pr𝑥←D [𝑃 (𝑥<𝑖) = 𝑥𝑖] ≥ 1

2
+ 𝛿 .

Definition 2.3 (D2P, simplified). An algorithm 𝐴 is a distinguish
to predict (D2P) transformation for a class C if 𝐴 gets as input

a description of a circuit 𝐶 : {0, 1}𝑛 → {0, 1} from C, and prints

a list of circuits 𝑃1, ..., 𝑃𝑚 : {0, 1}★ → {0, 1} such that for every
distribution D over {0, 1}𝑛 the following holds. If 𝐶 is a (1/3)-
distinguisher for D, then there is an 𝑖 ∈ [𝑚] such that 𝑃𝑖 is an

(1/𝑂 (𝑛))-predictor for D.
Several prior works [11, 14, 19, 34, 39] yield deterministic D2P

transformations for the “randomwalk” distinguisher. In more detail,

this distinguisher can bemodeled as a read-once branching program

(ROBP), and deterministic D2Ps for ROBPs are known.
Now, recall that Nisan’s PRG NIS chooses at random ℓ = log𝑛

hash functions
®ℎ = (ℎ1, . . . , ℎℓ), each over 𝑂 (log𝑛) bits, and for

every graph 𝐺 , for almost all collections of hash functions, the

generator NIS®ℎ produces a pseudorandom distribution of random

walks for 𝐺 . Our distinguisher is therefore

𝑇𝐺 (®ℎ) = I
[
NIS®ℎ produces good random walks for 𝐺

]
,

and this is not an ROBP (as the Nisan PRG reads each hash function

repeatedly even to produce a single output). We overcome this issue

by constructing a D2P transformation for this distinguisher:

Theorem 2.4 (informal). There is a deterministic logspace D2P
transformation for𝑇𝐺 . Moreover, each candidate predictor is evaluable
in logspace, given access to 𝐺 .

Our proof uses a reduction from the recent work of Li, Pyne, and

Tell [30]. They show that producing a D2P transformation for a

distinguisher 𝑇 reduces to solving a problem called “prefix-CAPP”

(PCAPP) for 𝑇 .10 In particular, we say that a logspace machine

10CAPP is short for Circuit Approximation Probability Problem [28], the problem of

estimating the probability of acceptance of a given circuit𝐶 to within a fixed additive

solves PCAPP for 𝑇 if given 𝑇 : {0, 1}𝑛 → {0, 1} and 𝑥 ∈ {0, 1}≤𝑛 ,
the machine estimates E𝑧 [𝑇 (𝑥 ◦ 𝑧)] to within error 1/𝑛2.

Theorem 2.5 ([30]). Suppose there is a logspace machine that solves
PCAPP for 𝑇 . Then, there is a logspace computable D2P transforma-
tion for 𝑇 .

Naively, solving such a PCAPP problem may seem as hard as

solving CAPP directly for 𝑇 (which itself in general is as hard as

derandomization). However, we exploit the structure of 𝑇 to solve

PCAPP more efficiently. In [30] they observed that this is possible

if the distinguisher obeys a certain polarization property, which in

our case is as follows. For every 𝐺 , and prefix of hash functions

(ℎ1, . . . , ℎ𝑖), the following dichotomy occurs:

(1) There is a 𝑗 ≤ 𝑖 such that ℎ 𝑗 is a “bad” hash function. In this

case, for every suffix 𝑧, E𝑧 [𝑇𝐺 (ℎ1, . . . , ℎ𝑖 , 𝑧)] = 0.

(2) There is no 𝑗 ≤ 𝑖 such that ℎ 𝑗 is a bad hash function. In this

case, E𝑧 [𝑇𝐺 (ℎ1, . . . , ℎ𝑖 , 𝑧)] ≈ 1.

We show that (a slight modification of) the generator NIS indeed
obeys this polarization property. Hence, when considering the out-

put distribution of this (modified) generator, we can solve PCAPP
in a simple, deterministic way: we only need to test each of the hash

functions in the given prefix (i.e., rather than estimate𝑇 on a distri-

bution of suffixes). By the reduction of D2P to PCAPP from [30],

we obtain an efficient D2P transformation for 𝑇𝐺 .

2.1.3 A generator with uniform near-deterministic logspace recon-
struction. The generator SU maps 𝑓 ∈ {0, 1}𝑁 to a list of strings

in {0, 1}𝑀 , which are hopefully pseudorandom. It is coupled with

an efficient reconstruction algorithm RSU that converts any next-

bit-predictor 𝑃 for the list of 𝑀-bit strings into a circuit 𝐶𝑃
𝑓
of

size poly(𝑀) ≪ 𝑁 that computes 𝑓 . In our setting 𝑁 = 𝑛2 and

𝑀 = polylog(𝑛), and it is crucial that RSU is a small-space machine

that uses only 𝑂 (log𝑁) random coins (so that we can enumerate).

A formal statement appears in the full version, and we now

describe some of the ideas in our modification, at a high-level. The

generator SU, which we do not change, arithmetizes its input 𝑓 as a

low-degree polynomial
ˆ𝑓 : F𝑣𝑞 → F𝑞 , and outputs evaluations of

ˆ𝑓

on “lines” going in a certain direction𝐴 in F𝑣𝑞 .
11

A simplified version

of the reconstruction is as follows: Choose a random low-degree

curve 𝐶 : F𝑞 → F𝑣𝑞 , and query
ˆ𝑓 at the𝑚 − 1 “preceding” curves

going back from𝐶 in direction𝐴−1 (i.e., query ˆ𝑓 at all points on the

curves 𝐴−𝑖 ·𝐶 for 𝑖 ∈ [𝑚 − 1]). This curve 𝐶 and queried “starting

points” define a circuit 𝐹 , which computes
ˆ𝑓 . Specifically, when

given ®𝑧, the circuit 𝐹 starts from 𝐶0 = 𝐶 and repeatedly uses the

next-element-predictor – which predict in “direction”𝐴 – to predict

the next curve 𝐴 ·𝐶𝑖+1, until reaching a curve that contains ®𝑧. (This
simplified description hides many details, among them the fact that

𝐷 works in several “strides” of the form 𝐴𝑖
for 𝑖 = 𝑞, ..., 𝑞𝑣−1, and

the fact that 𝐶 actually uses two interleaved curves and relies on a

list-decoding algorithm at each step.)

error. In a “prefix-CAPP” problem, we are given a prefix 𝑥 along with a device𝑇 , and

wish to approximate the probability of acceptance of𝑇 (𝑥 ◦ 𝑦) over random suffixes 𝑦.
11
To be more accurate, consider a matrix𝐴 ∈ F𝑣×𝑣𝑞 representing multiplication by a

primitive element in F𝑞𝑣 . Then, the generator chooses a random ®𝑥 ∈ F𝑣𝑞 and outputs

the evaluations of
ˆ𝑓 at the points ®𝑥,𝐴 · ®𝑥,𝐴2 · ®𝑥, ..., 𝐴𝑚−1 · ®𝑥 .

When Connectivity Is Hard, Random Walks Are Easy with Non-determinism STOC ’25, June 23–27, 2025, Prague, Czechia

We briefly explain howwemake this reconstruction randomness-

efficient. (Making the reconstruction space-efficient is relatively

easier, relying on the efficiency of many of its components as well

as on ideas of Doron and Tell [15].)

Randomness-efficient samplers. A la [39], we use randomness-

efficient samplers to reduce the randomness complexity of various

parts of the reconstruction. The underlying observation is thatmany

of the components in the reconstruction repeat a single procedure

that uses 𝑂 (log𝑁) coins multiple times (and take, for example, an

OR, or the majority vote). Instead of repeating the procedure with

independent coins, we can use a sampler with 𝑂 (log𝑁) coins to
output a sample such that (w.h.p.) the procedure behaves on the

sample approximately the same as on a uniformly chosen sample.

Pseudorandom curves, and reusing randomness for defining points.
The procedure relies on the random low-degree curve having suffi-

ciently strong sampling properties. First, it needs the curve to be a

good sampler (i.e., for any subset 𝑇 ⊆ F𝑣𝑞 , the points on the curve

sample𝑇 approximately correctly, with high probability). A natural

idea is to replace a random curve with a curve sampler, which pseu-

dorandmly outputs a curve with the needed sampling properties.

Indeed such a sampler was designed by Guo [21] (following [48])

for this particular purpose – and in fact with our parameter regime

in mind.

Secondly, when considering the defining points for the ℓ-degree
curve, which are the points 𝑡1, ..., 𝑡ℓ ∈ F𝑞 such that we interpolate

the curve according to certain values on 𝑡1, ..., 𝑡ℓ , the procedure

splits these points into 𝑂 (log𝑁) blocks, and needs the points in-

side each block to be good samplers (in F𝑞).
12

A naive approach is

to choose the points in each block using a sampler, but this seem-

ingly requires too much randomness (i.e., 𝑂 (log𝑁) coins, times

the sampler’s randomness complexity). However, we show that the

same randomness can be reused across blocks, since the analysis

boils down to a union-bound over events that each depend on a

single block.

Pseudorandom interleaving. The last part of our modification is

more subtle. Loosely speaking, in [45] they actually use two low-

degree curves 𝐶1 and 𝐶2, where 𝐶1 is a random curve and 𝐶2 is

obtained by “shifting” the values of 𝐶1 on some of the defining

points, by a small number 𝑂 (log𝑁) of predetermined shift val-

ues.
13

In their argument, both 𝐶1 and 𝐶2 have sufficient sampling

properties, since the marginal distribution over each of the curves

is that of a random low-degree curve. However, in our argument,

𝐶2 is obtained by applying a sequence of predetermined shifts to

the values of a curve sampler 𝐶1 on the defining points (and then

interpolating), and it is not clear that this operation preserves the

sampling properties of 𝐶1.

If 𝐶2 would have been obtained by applying shifts to all of the
points of 𝐶1 (rather than applying them to the defining points

and then interpolating), then we would be able to prove that 𝐶2

is indeed a sampler. Of course, we cannot enforce that all of the

12
This sampling property of the defining points of the curve𝐶 is used to argue that,

with high probability, the predictor succeeds in predicting sufficiently many points on

𝐶 (and on each𝐴𝑖 · 𝐶).

13
That is, if𝐶1 is defined by a small number of conditions of the form “𝐶1 (𝑡) = ®𝑧𝑡 ”

(for a small number of 𝑡 ∈ F𝑞 and ®𝑧𝑡 ∈ F𝑣𝑞), then 𝐶2 is defined by the conditions

“𝐶2 (𝑡) = 𝐴𝑡 · ®𝑧𝑡 ”, where𝐴𝑡 is an invertible matrix in F𝑣𝑞 × F𝑣𝑞 .

points of𝐶2 will be various shifts of𝐶1, since that is not necessarily

a low-degree curve. To get around this, we partition F𝑞 into a small

number 𝑂 (log𝑁) of large subfields, and for each subfield, we use

a sampler to choose defining points in the subfield, and define 𝐶2

using an appropriate shift of 𝐶1 on these defining points. As above,

we reuse randomness for the sampler across subfields.
14

Since𝐶2 is

a shift of 𝐶1 on a pseudorandom set of points within each subfield,

we can argue that𝐶2 behaves sufficiently similar to a shift of𝐶1 on

the entire subfield. Further details appear in the full version.

2.2 Tight Win-Win Results in Space-Bounded
Complexity

We now explain how to obtain the win-win results in space com-

plexity, based on (the proof of) Theorem 1. For Theorem 2, we first

modify the pair of algorithms. Rather than attempting to compute

reachability and random walks on the same graph (equivalently,

on two graphs of comparable size), we instead take a small graph

𝐺1 (of size 2
log

1/2+𝜀/2 𝑛
), and a large graph 𝐺2, and attempt to either

compute reachability on𝐺1, or estimate random walk probabilities

on𝐺2. Also, instead of computing the reachability bootstrapping

system inNL, we use Savitch’s Theorem [44] to compute the system

deterministically. This yields the following pair of algorithms:

Theorem 2.6 (informal). For every 𝜀 > 0, there are algorithms
A1,A2 such that for every pair of graphs 𝐺1 on 2

log
1/2+𝜀/2 𝑛 vertices,

and 𝐺2 on 𝑛 vertices, at least one of the following holds:
• A1 (𝐺1,𝐺2) computes 𝑠-𝑡 connectivity in 𝐺1 in SC.
• A2 (𝐺1,𝐺2) estimates length-𝑛 random walk probabilities in
𝐺2 in SPACE[log1+𝜀 𝑛].

Moreover, both algorithms report if they fail to compute the desired
answer, and do not exceed their resource bounds in any case.

Indeed, in the proof of Theorem 2.6, the bootstrapping system

can be computed in nondeterministic space 𝑂 (log1/2+𝜀/2 𝑛), and
hence in deterministic space𝑂 (log1+𝜀 𝑛) by Savitch’s Theorem [44].

As such, in the case that the reachability bootstrapping system

does contain a hard truth table, we can compute this truth table

(and hence compute random walks on 𝐺2) in space 𝑂 (log1+𝜀 𝑛),
obtaining a small overhead even for deterministic derandomization.

We use the pair of algorithms from Theorem 2.6 to prove Theo-

rem 2. Following the approach of [14, 30], we fix a BPSPACE[𝑛]
machine B and a NSPACE[𝑛1/2+𝜀/2] machine N . For each pair

(𝑥,𝑦) ∈ {0, 1}𝑛 × {0, 1}𝑛 , consider the following two graphs:

𝐺1 (𝑦) = the configuration graph of N(𝑦)
𝐺2 (𝑥) = the configuration graph of B(𝑥).

Let us try and simulate B in SPACE[𝑛1+𝜀] (if we fail, we will
show another algorithm that simulates N in TISP[2𝑚, poly(𝑚)]).
Our algorithm gets 𝑥 ∈ {0, 1}𝑛 and enumerates over all 𝑦 ∈ {0, 1}𝑛
(which it can, since it is allowed to use super-linear space). It then

runs A2 on the pair of graphs 𝐺1 (𝑦),𝐺2 (𝑥); if A2 outputs an esti-

mation of random walks on 𝐺2 (𝑥), we are done, and otherwise we

continue to the next𝑦. The point is that one of two things happened:

14
In fact, we set things up so that the𝑂 (log𝑁) subfields we use for pseudorandom

interleaving are also exactly the𝑂 (log𝑁) blocks mentioned above (when discussing

pseudorandom curves).

STOC ’25, June 23–27, 2025, Prague, Czechia Dean Doron, Edward Pyne, Roei Tell, and Ryan Williams

Either for every 𝑥 there is 𝑦 such that this algorithm succeeds, in

which case we simulated B in SPACE[𝑛1+𝜀] on this input length;

or there exists 𝑥 such that for every 𝑦 this algorithm fails. In the

latter case, a symmetric argument shows that for all 𝑦 ∈ {0, 1}𝑛 we

can simulateA1 in TISP[2𝑚, poly(𝑚)] (i.e., given 𝑦, we enumerate

over all 𝑥 and simulateA1 with the two graphs). For further details

see the full version.

2.3 Derandomization from Very Weak Hardness
The basic idea behind all of our results that deduce derandomization

from very weak hardness (i.e., Theorem 4, Theorem 6 and Theo-

rem 2.7) is the same. Let us describe the idea in general terms,

and then later focus on describing one particular result in more

technical detail.

To demonstrate the idea, consider trying to derandomize the

class BPSPACE[𝑂 (𝑛)] in SPACE[𝑂 (𝑛)]. We instantiate a genera-

tor with a hard problem𝐿 ∈ SPACE[𝑂 (𝑛)], say, the Shaltiel–Umans

generator SU from Section 2.1.3. Now, if the derandomization fails

on some input, then we can compress the hard truth-table, as fol-

lows. We enumerate over inputs 𝑥 ∈ {0, 1}𝑛 (indeed, we can do this

since we are working in a scaled-up regime of linear space) and

run the reconstruction algorithm. This algorithm is deterministic,

and whenever the derandomization fails at 𝑥 , the reconstruction

manages to compress the truth-table of 𝐿𝑂 (𝑛) . (For simplicity, we

ignore for a moment the distinguisher that is not fooled by SU and

whose description is part of the compressed version of 𝐿𝑂 (𝑛) .)
The key question is what is the size of the compressed version of

𝐿𝑂 (𝑛) . For this question, a main bottleneck is the number of output

bits that we ask SU to output; loosely speaking, if it outputs𝑀 bits,

then the compressed version will be of size poly(𝑀).15 In settings

concerning derandomization in polynomial time or logarithmic

space, we have 𝑀 = 𝑁Ω (1)
, and thus poly(𝑀) = 𝑁Θ(1)

. For our

results, we are interesting in obtaining a compressed representation

of size only polylog(𝑁).

The key: Unconditional PRGs and corresponding D2Ps. The way
to achieve this goal will be similar to an idea from the proof of The-

orem 1. In all of our settings, we consider relatively weak distin-

guishers, for which unconditional PRGs are known. For example,

when derandomizing BPSPACE[𝑂 (𝑛)], the distinguisher 𝐷 is an

ROBP, and we can compose it with Nisan’s [32] PRG to obtain a

distinguisher 𝐷 ◦ NIS over𝑀 = polylog(𝑁) bits.
The main challenge is that we now need to develop derandom-

ized D2P transformations for distinguishers of the form “compose

a weak distinguisher with an unconditional PRG”. Indeed, one such

D2P was presented in Section 2.1.2, for a composition of ROBPs
with NIS. To further demonstrate out approach, we now describe

another derandomized D2P, for the composition of an AOBPwith (a

modified version of) the Forbes-Kelley [17] PRG. The AOBP distin-

guisher – which is an any-order branching program, defined in [7]

– comes up when constructing derandomization algorithms with

minimal memory overhead (and when using an idea from [15]), and

the FK PRG fools such distinguishers with polylogarithmic seed.

15
This is since the reconstruction overhead is affected by the prediction advantage,

and the prediction advantage is at most 1/𝑀 whenever using a hybrid argument (or a

deterministic D2P; see [30, Appendix B]).

2.3.1 Derandomized D2P for AOBP ◦ FK. Consider an AOBP de-

noted 𝐴 and the Forbes-Kelley PRG FK. Note that even if 𝐴 would

have been an ROBP, the composition 𝐴 ◦ FK is not an ROBP, and
thus we cannot use the known D2P transformations for ROBPs
(e.g., from [14]) for this composition.

We construct a derandomized D2P transform for a modified

version of the Forbes-Kelley generator, where the modification

facilitates the D2P transform. For our goal of minimal-memory

overhead it will be crucial that the modified version of FK remains

strongly explicit (as is the original generator), but we can afford a

seed length that is 𝑛𝜀 (rather than polylog(𝑛)). We give an informal

statement of the result here:

Theorem 2.7 (Forbes–Kelley D2P, informal). There is a generator
FK : {0, 1}𝑛𝜀 → {0, 1}𝑛 with the following properties.

(1) Strong Explicitness. Themap (𝑥, 𝑗) → FK(𝑥) 𝑗 is computable
in space 𝑂 (𝜀 log𝑛) with catalytic access to 𝑗 .16

(2) Fooling. The generator fools AOBPs of size 𝑛 to error 1/𝑛.
(3) White-Box D2P. There is a white-box D2P transform that

can be computed in time poly(𝑛) and space𝑂 (𝑛𝜀), where each
predictor can be evaluated in space log(𝑛) +𝑂 (𝜀 log𝑛).17

Our actual construction makes several changes to the Forbes–

Kelley generator, but the idea is the following. The generator is

constructed as a sequence of random restrictions, each of which elim-

inate some variables while approximately preserving the expecta-

tion of the branching program 𝐴. We think of the generator’s input

as (𝐴1, 𝐵1, . . . , 𝐴ℓ , 𝐵ℓ), where each 𝐴𝑖 , 𝐵𝑖 is the output of a 𝑘-wise

independent generator over {0, 1}𝑛 . We then define FKℓ+1 = 0
𝑛
,

and

FK𝑖 = 𝐴𝑖 ⊕ 𝐵𝑖 ∧ FK𝑖+1
In particular, for 𝑗 ∈ [𝑛] where (𝐵𝑖) 𝑗 = 0, we say a variable has

been eliminated by level 𝑖 , and further levels of the generator do

not affect the output of the generator on that bit. Recall that by [30],

to produce a D2P transform, it suffices to solve prefix-CAPP, which

in this case is the following:

Question 2.8. Given an AOBP 𝐴 and

(®𝑎, ®𝑏) = (𝐴1, 𝐵1, . . . , 𝐴𝑖−1, 𝐵𝑖−1),
estimate

E
®𝑎′,®𝑏′
[𝐴(FK(®𝑎, ®𝑏, ®𝑎′, ®𝑏′)] .

To see how the prefix affects the problem, consider the branching

program 𝐴®𝑎,®𝑏 wherein every variable that has been eliminated is

simply fixed to the value output by the generator at that bit. Thus,

we are now being asked to estimate

E[𝐴®𝑎,®𝑏 (𝑧 ⊕ FK𝑖 (U))] .

where 𝑧 is a fixed vector that accounts for the prior levels of the

generator.

The key observation is that the Forbes-Kelley generator fools
branching programs, and so this expectation should itself be close

16
The algorithm is given access to a special read-write tape, initialized to (the binary

representation of) 𝑗 . When the algorithm halts and returns FK(𝑥) 𝑗 , the tape must be

restored to that initial configuration.

17
For technical reasons we construct a white-box Yao derandomization [30], where

we are given access to the distribution D that does not fool 𝐴 ◦ FK and construct a

predictor for this distribution.

When Connectivity Is Hard, Random Walks Are Easy with Non-determinism STOC ’25, June 23–27, 2025, Prague, Czechia

to E[𝐴®𝑎,®𝑏 (U)], i.e., filling in all non-eliminated variables with inde-

pendent true randomness. Estimating this quantity is easily seen to

be in BPL ⊆ SC, and so we obtain a SC-computable D2P transform

with this complexity.

We remark that our actual construction is substantially different

from the above due to the following technical issues: First, we

cannot afford 𝑘 = 𝑂 (log𝑛)-wise independent restrictions, as at

several steps in our argument we must enumerate over all seeds

in a single level of a generator, which would take time 2
log

2 𝑛 ≫ 𝑛.

Because of this, we can only afford 𝑂 (1/𝜀)-wise independence,

which requires a generator with 𝑛𝜀 levels, and a much smaller

restriction probability.

The second and larger issue is that it is not actually true that for

every prefix of a seed to the Forbes-Kelley generator, the output of

the generator on a random suffix of the generator is approximately

the same as filling in bits uniformly. For example, consider a patho-

logical prefix that eliminates far fewer variables than it should; then,

a random suffix of a seed for the generator will not eliminate all

the variables (with high probability), in which case the generator

fills in many bits with FKℓ+1 = 0
𝑛
. (Needless to say, this is very far

from uniform.)

Our solution is to construct an auxiliary D2P transform such

that, if many prefixes are in deficient in this way, then we can solve

PCAPP on these prefixes very efficiently. This modification requires

changing the final level of the generator to behave differently when

few variables are left alive. By itself, this change would destroy

strong explicitness, but we are able to use ideas from catalytic

computation to obtain a strongly explicit PRG with catalytic access
to the input (which suffices for the minimal memory overhead

application, as explained in the full version). The interested reader

is referred to the full version for further details about the D2P.

References
[1] Eric Allender, Klaus Reinhardt, and Shiyu Zhou. 1999. Isolation, Matching, and

Counting Uniform and Nonuniform Upper Bounds. J. Comput. Syst. Sci. 59, 2
(1999), 164–181.

[2] Roy Armoni, Amnon Ta-Shma, Avi Wigderson, and Shiyu Zhou. 2000. An

O(log(n)4/3) space algorithm for (s, t) connectivity in undirected graphs. J. ACM
47, 2 (2000), 294–311. doi:10.1145/333979.333984

[3] Greg Barnes, Jonathan F. Buss, Walter L. Ruzzo, and Baruch Schieber. 1998. A

Sublinear Space, Polynomial Time Algorithm for Directed s-t Connectivity. SIAM
J. Comput. 27, 5 (1998), 1273–1282.

[4] Jin-yi Cai, Venkatesan T. Chakaravarthy, and Dieter van Melkebeek. 2006. Time-

Space Tradeoff in Derandomizing Probabilistic Logspace. Theory Comput. Syst.
39, 1 (2006), 189–208. doi:10.1007/S00224-005-1264-9

[5] Marco Carmosino, Russell Impagliazzo, Valentine Kabanets, and Antonina

Kolokolova. 2015. Tighter Connections between Derandomization and Cir-

cuit Lower Bounds. In Proc. 19th International Workshop on Randomization and
Approximation Techniques in Computer Science (RANDOM). 645–658.

[6] Lijie Chen, Zhenjian Lu, Igor Carboni Oliveira, Hanlin Ren, and Rahul Santhanam.

2023. Polynomial-Time Pseudodeterministic Construction of Primes. arXiv
preprint arXiv:2305.15140 (2023).

[7] Lijie Chen, Xin Lyu, Avishay Tal, and Hongxun Wu. 2023. New PRGs for

Unbounded-Width/Adaptive-Order Read-Once Branching Programs. In Proc.
50 International Colloquium on Automata, Languages and Programming (ICALP)
(LIPIcs, Vol. 261). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 39:1–39:20.

[8] Lijie Chen and Roei Tell. 2021. Hardness vs Randomness, Revised: Uniform,

Non-Black-Box, and Instance-Wise. In Proc. 62nd Annual IEEE Symposium on
Foundations of Computer Science (FOCS). 125–136.

[9] Lijie Chen and Roei Tell. 2021. Simple and fast derandomization from very hard

functions: Eliminating randomness at almost no cost. In Proc. 53st Annual ACM
Symposium on Theory of Computing (STOC). 283–291.

[10] Lijie Chen and Roei Tell. 2023. When Arthur has Neither Random Coins nor

Time to Spare: Superfast Derandomization of Proof Systems. In Proc. 55th Annual
ACM Symposium on Theory of Computing (STOC). 60–69.

[11] Kuan Cheng and William M. Hoza. 2022. Hitting Sets Give Two-Sided Deran-

domization of Small Space. Theory Comput. 18 (2022), 1–32.
[12] Stephen A. Cook and Charles Rackoff. 1980. Space Lower Bounds for Maze

Threadability on Restricted Machines. SIAM J. Comput. 9, 3 (1980), 636–652.

doi:10.1137/0209048

[13] Dean Doron, Dana Moshkovitz, Justin Oh, and David Zuckerman. 2022. Nearly

Optimal Pseudorandomness From Hardness. Journal of the ACM 69, 6 (2022),

1–55.

[14] Dean Doron, Edward Pyne, and Roei Tell. 2024. Opening Up the Distinguisher:

A Hardness to Randomness Approach for BPL = L that Uses Properties of BPL.
In Proc. 56th Annual ACM Symposium on Theory of Computing (STOC).

[15] Dean Doron and Roei Tell. 2023. Derandomization with Minimal Memory Foot-

print. In Proc. 38 Annual IEEE Conference on Computational Complexity (CCC).
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Article 11.

[16] Jeff Edmonds, Chung Keung Poon, and Dimitris Achlioptas. 1999. Tight Lower

Bounds for st-Connectivity on the NNJAG Model. SIAM J. Comput. 28, 6 (1999),
2257–2284.

[17] Michael A. Forbes and Zander Kelley. 2018. Pseudorandom generators for read-

once branching programs, in any order. In Proc. 59th Annual IEEE Symposium on
Foundations of Computer Science (FOCS). 946–955.

[18] Anna Gál and Avi Wigderson. 1996. Boolean complexity classes vs. their arith-

metic analogs. Random Struct. Algorithms 9, 1-2 (1996), 99–111.
[19] Uma Girish, Ran Raz, and Wei Zhan. 2023. Is Untrusted Randomness Helpful?. In

Proc. 14 Conference on Innovations in Theoretical Computer Science (ITCS) (LIPIcs,
Vol. 251). 56:1–56:18.

[20] AryehGrinberg, Ronen Shaltiel, and Emanuele Viola. 2018. Indistinguishability by

Adaptive Procedures with Advice, and Lower Bounds on Hardness Amplification

Proofs. In Proc. 59th Annual IEEE Symposium on Foundations of Computer Science
(FOCS). 956–966.

[21] Zeyu Guo. 2013. Randomness-Efficient Curve Samplers. In Approximation, Ran-
domization, and Combinatorial Optimization. Algorithms and Techniques (AP-
PROX/RANDOM). Springer, 575–590.

[22] Shuichi Hirahara. 2023. Non-black-box worst-case to average-case reductions

within NP. SIAM Journal on Computing 52, 6 (2023), FOCS18–349–FOCS18–382.

[23] William M. Hoza. 2021. Better Pseudodistributions and Derandomization for

Space-Bounded Computation. In Proceedings of the 25th International Conference
on Randomization and Computation (RANDOM). 28:1–28:23.

[24] William M. Hoza. 2022. Recent Progress on Derandomizing Space-Bounded

Computation. Bull. EATCS 138 (2022).
[25] Neil Immerman. 1988. Nondeterministic Space is Closed Under Complementation.

SIAM J. Comput. 17, 5 (1988), 935–938. doi:10.1137/0217058
[26] Russell Impagliazzo, Ronen Shaltiel, and Avi Wigderson. 2006. Reducing the seed

length in the Nisan-Wigderson generator. Combinatorica 26, 6 (2006), 647–681.
[27] Russell Impagliazzo and Avi Wigderson. 1997. P = BPP if E requires exponential

circuits: derandomizing the XOR lemma. In Proc. 29th Annual ACM Symposium
on Theory of Computing (STOC). 220–229.

[28] Valentine Kabanets, Charles Rackoff, and Stephen A. Cook. 2000. Efficiently

Approximable Real-Valued Functions. Electron. Colloquium Comput. Complex.
TR00-034 (2000). ECCC:TR00-034 https://eccc.weizmann.ac.il/eccc-reports/2000/

TR00-034/index.html

[29] Adam R. Klivans and Dieter van Melkebeek. 2002. Graph Nonisomorphism Has

Subexponential Size Proofs Unless the Polynomial-Time Hierarchy Collapses.

SIAM Journal on Computing 31, 5 (2002), 1501–1526.

[30] Jiatu Li, Edward Pyne, and Roei Tell. 2024. Distinguishing, Predicting, and

Certifying: On the Long Reach of Partial Notions of Pseudorandomness.

[31] Pinyan Lu, Jialin Zhang, Chung Keung Poon, and Jin-yi Cai. 2005. Simulat-

ing Undirected st-Connectivity Algorithms on Uniform JAGs and NNJAGs.

In Proceedings of 16th International Symposium on Algorithms and Computa-
tion (ISAAC) (Lecture Notes in Computer Science, Vol. 3827). Springer, 767–776.
doi:10.1007/11602613_77

[32] Noam Nisan. 1991. Pseudorandom bits for constant depth circuits. Combinatorica
11, 1 (1991), 63–70.

[33] Noam Nisan. 1992. Pseudorandom generators for space-bounded computation.

Combinatorica 12, 4 (1992), 449–461.
[34] Noam Nisan. 1994. RL ⊆ SC. Computational Complexity 4 (1994), 1–11.

[35] NoamNisan, Endre Szemerédi, andAviWigderson. 1992. Undirected Connectivity

in 𝑂 (log1.5 𝑛) Space. In Proc. 33rd Annual IEEE Symposium on Foundations of
Computer Science (FOCS). 24–29.

[36] Noam Nisan and Avi Wigderson. 1994. Hardness vs. randomness. Journal of
Computer and System Sciences 49, 2 (1994), 149–167.

[37] Chung Keung Poon. 1993. Space Bounds for Graph Connectivity Problems

on Node-named JAGs and Node-ordered JAGs. In 34th Annual Symposium on
Foundations of Computer Science (FOCS). IEEE Computer Society, 218–227. doi:10.

1109/SFCS.1993.366865

[38] Edward Pyne. 2024. Derandomizing Logspace with a Small Shared Hard Drive. In

Proc. 39th Annual IEEE Conference on Computational Complexity (CCC). 4:1–4:20.
[39] Edward Pyne, Ran Raz, and Wei Zhan. 2023. Certified Hardness vs. Randomness

for Log-Space. In 64th IEEE Annual Symposium on Foundations of Computer Science,

https://doi.org/10.1145/333979.333984
https://doi.org/10.1007/S00224-005-1264-9
https://doi.org/10.1137/0209048
https://doi.org/10.1137/0217058
https://eccc.weizmann.ac.il/eccc-reports/2000/TR00-034/index.html
https://eccc.weizmann.ac.il/eccc-reports/2000/TR00-034/index.html
https://doi.org/10.1007/11602613_77
https://doi.org/10.1109/SFCS.1993.366865
https://doi.org/10.1109/SFCS.1993.366865

STOC ’25, June 23–27, 2025, Prague, Czechia Dean Doron, Edward Pyne, Roei Tell, and Ryan Williams

FOCS 2023.
[40] Omer Reingold. 2008. Undirected connectivity in log-space. Journal of the ACM

55, 4 (2008), 17:1–17:24.

[41] Klaus Reinhardt and Eric Allender. 2000. Making Nondeterminism Unambiguous.

SIAM J. Comput. 29, 4 (2000), 1118–1131.
[42] Michael E. Saks and Shiyu Zhou. 1999. BPHSPACE[𝑆] ⊆ DSPACE[𝑆3/2].

Journal of Computer and System Sciences 58, 2 (1999), 376–403.
[43] Rahul Santhanam and R. RyanWilliams. 2013. On medium-uniformity and circuit

lower bounds. In Proc. 28th Annual IEEE Conference on Computational Complexity
(CCC). IEEE, 15–23.

[44] Walter J. Savitch. 1970. Relationships between nondeterministic and deterministic

tape complexities. J. Comput. System Sci. 4 (1970), 177–192.
[45] Ronen Shaltiel and Christopher Umans. 2005. Simple extractors for all min-

entropies and a new pseudorandom generator. Journal of the ACM 52, 2 (2005),

172–216.

[46] Ronen Shaltiel and Emanuele Viola. 2022. On Hardness Assumptions Needed for

“Extreme High-End” PRGs and Fast Derandomization. In Proc. 13 Conference on
Innovations in Theoretical Computer Science (ITCS).

[47] Róbert Szelepcsényi. 1988. The Method of Forced Enumeration for Nondetermin-

istic Automata. Acta Informatica 26, 3 (1988), 279–284.
[48] Amnon Ta-Shma and Christopher Umans. 2006. Better lossless condensers

through derandomized curve samplers. In Proc. 47th Annual IEEE Symposium on
Foundations of Computer Science (FOCS). 177–186.

[49] Amnon Ta-Shma, Christopher Umans, and David Zuckerman. 2007. Lossless

condensers, unbalanced expanders, and extractors. Combinatorica 27, 2 (2007),
213–240.

[50] Leslie G. Valiant and Vijay V. Vazirani. 1986. NP is as Easy as Detecting Unique

Solutions. Theor. Comput. Sci. 47, 3 (1986), 85–93.
[51] Dieter van Melkebeek and Gautam Prakriya. 2019. Derandomizing Isolation in

Space-Bounded Settings. SIAM J. Comput. 48, 3 (2019), 979–1021.
[52] Avi Wigderson. 1992. The Complexity of Graph Connectivity. In Mathematical

Foundations of Computer Science (MFCS) (Lecture Notes in Computer Science,
Vol. 629). Springer, 112–132.

[53] Andrew C. Yao. 1982. Theory and Application of Trapdoor Functions. In Proc.
23rd Annual IEEE Symposium on Foundations of Computer Science (FOCS). 80–91.

Received 2024-11-04; accepted 2025-02-01

	Abstract
	1 Introduction
	1.1 Our Results, Part 1: A Pair of Algorithms
	1.2 Our Results, Part 2: Derandomization from Very Weak Hardness
	1.3 The Technical Contributions

	2 Overview of Proofs
	2.1 The Pair of Algorithms
	2.2 Tight Win-Win Results in Space-Bounded Complexity
	2.3 Derandomization from Very Weak Hardness

	References

