
Beating Exhaustive Search for Quantified Boolean Formulas and Connections to
Circuit Complexity

Rahul Santhanam∗ Ryan Williams†

Abstract
We study algorithms for the satisfiability problem for quantified
Boolean formulas (QBFs), and consequences of faster algorithms
for circuit complexity.
• We show that satisfiability of quantified 3-CNFs with m

clauses, n variables, and two quantifier blocks (one existential
block and one universal) can be solved deterministically
in time 2n−Ω(

√
n) · poly(m). For the case of multiple

quantifier blocks (alternations), we show that satisfiability
of quantified CNFs of size poly(n) on n variables with q

quantifier blocks can be solved in 2n−n1/(q+1)
· poly(n) time

by a zero-error randomized algorithm. These are the first
provable improvements over brute force search in the general
case, even for quantified polynomial-sized CNFs with two
quantifier blocks.
A second zero-error randomized algorithm solves QBF on
circuits of size s in 2n−Ω(q) · poly(s) time when the number
of quantifier blocks is q.

• We complement these algorithms by showing that improve-
ments on them would imply new circuit complexity lower
bounds. For example, if satisfiability of quantified CNF for-
mulas with n variables, poly(n) size and at most q quantifier
blocks can be solved in time 2n−nωq(1/q) , then the complex-
ity class NEXP does not have O(log n) depth circuits of poly-
nomial size. Furthermore, solving satisfiability of quantified
CNF formulas with n variables, poly(n) size and O(log n)

quantifier blocks in time 2n−ω(log(n)) time would imply the
same circuit complexity lower bound. The proofs of these
results proceed by establishing strong relationships between
the time complexity of QBF satisfiability over CNF formulas
and the time complexity of QBF satisfiability over arbitrary
Boolean formulas.

1 Introduction
The satisfiability (SAT) problem for Boolean formulas is the
canonical NP-complete problem. Despite its apparent worst-
case intractability, nowadays the ability to solve most SAT
instances arising in practice is well-known. Over the past
two decades, there have been many substantial advances in
SAT solvers that led to the current state of affairs that “SAT
is generally easy in practice” [MZ09]. On the theoretical

∗University of Edinburgh. Supported by the European Research Council
under the European Union’s Seventh Framework Programme (FP7/2007-
2013) / ERC grant agreement no. 615075.
†Stanford University. Supported in part by a David Morgenthaler II

Faculty Fellowship, and NSF CCF-1212372. Any opinions, findings and
conclusions or recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the National Science
Foundation.

side, there are many known SAT algorithms which provably
solve the problem faster than brute force search for formulas
in conjunctive normal form (CNF) [MS85, PPZ97, Pud98,
PPSZ98, Sch99, Sch05, DW06, CIP09, IMP12].

The quantified Boolean formula (QBF) problem is the
analogue of SAT for the larger complexity class PSPACE.
Variables can have arbitrary quantification (existential or
universal), and the problem is to determine whether a given
quantified formula is true or false. QBF would potentially
have a much wider range of applications than SAT, if only we
understood more about how to solve it. The best known QBF
solvers can only tackle a very limited range of the problem
space [Zha06, GIB09].

Moreover, in theory, comparatively very little is
known concerning general worst-case algorithms for QBF.
Williams [Wil02] showed that QBFs over general CNF for-
mulas with m clauses are solvable in O(1.71m) time, and
demonstrated that 3-CNF QBFs with two quantifier blocks
can be solved in O(2n−εn) time (where n is the number of
variables) for a constant ε > 0 depending on the clause-
variable ratio m/n (however, ε → 0 as m/n → 2). San-
thanam [San10] showed that for every c ≥ 1, there is a
δ < 1 such that Formula-SAT on m clauses and n vari-
ables can be solved in 2δn time, and extended his algorithm
to solving QBFs over CNF formulas in 2n−Ω(n/ logn) time
when the maximum number of occurrences of any variable
is bounded above by a constant. Calabro, Impagliazzo, and
Paturi [CIP10] give less-than-2n algorithms for two special
cases of QBF: the case where every clause contains at most
one existential variable, and the case where every clause con-
tains at least one universal literal.1

So although improved algorithms were known for quan-
tified Boolean CNFs with cn clauses and n variables (for
small c), slightly more general problems have remained
open. Even for CNF formulas with n variables and poly(n)
clauses, it was open whether QBF was solvable in faster than

1In slightly related work, Williams [Wil14] recently showed that check-
ing first-order formulas with k quantifiers on arbitrary n-node graphs is pos-
sible in nk−1+o(1) time when k is a sufficiently large constant, improving
over the O(nk) of exhaustive search. While that work indeed addresses
quantified formulas, the setting is rather different (a constant number of
variables over a non-Boolean domain) and the algorithms apply fast matrix
multiplication (which we avoid here).

2n time on formulas of the form

(∀x1) · · · (∀xk)(∃xk+1) · · · (∃xn)φ

where φ is 3-CNF. Such formulas are said to have two quan-
tifier blocks, or one quantifier alternation. Calabro, Impagli-
azzo, and Paturi [CIP10] gave evidence that even this special
case is very hard to solve: they showed that general CNF
satisfiability on n variables can be reduced in subexponen-
tial time to quantified k-CNF on n + O(n1/(k−1)) variables
with two quantifier blocks. Therefore, a 1.999n time algo-
rithm for quantified 3CNF would imply similar results for
CNF-SAT, resolving a longstanding open question.2

In this paper, we present new algorithms for solving
QBF on CNF and DNF formulas that run faster than brute
force, as well as interesting hardness reductions demonstrat-
ing that these problems are surprisingly powerful. Our algo-
rithms exploit known algorithmic techniques for satisfiabil-
ity together with some new methods of analysis. Our hard-
ness results show that quantified Boolean CNFs are a highly
expressive class of logical formulas compared to the usual
CNFs, giving a partial explanation for why QBFs in practice
are so much more difficult to solve.

Beating Exhaustive Search for QBF Satisfiability.
We first consider quantified 3-CNFs with two quantifier
blocks. No non-trivial algorithms were known for this case
for 3-CNFs of non-linear size. We give an algorithm that
beats exhaustive search by a considerable margin:

THEOREM 1.1. Satisfiability of quantified 3-CNF (or 3-
DNF) formulas with two quantifier blocks, n variables, and
m clauses (or disjuncts) can be solved deterministically in
time poly(m) · 2n−Ω(

√
n).3

The algorithm of Theorem 1.1 has a branch-
ing/backtracking component, and performs a case analysis
based on the number of existential and universal variables
in the formula. (More precisely, in one case, a branching
strategy occurs; in two other separate cases, we reduce the
remaining instance to CNF-SAT and apply existing SAT
algorithms.) To analyze the backtracking component, a
tricky multivariate recursion arises, which we finesse by
taking a combinatorial approach to bound the number of
leaves in the recursion tree.

Theorem 1.1 is an interesting complement to the hard-
ness reduction of Calabro, Impagliazzo, and Paturi [CIP10],
who reduce arbitrary CNF SAT on n variables and O(n)
clauses to an instance of the above problem with only n +

2The Strong Exponential Time Hypothesis essentially posits that k-SAT
does not have a 1.999n time algorithm for all constants k [IP01, CIP09,
DW10]. Nevertheless, it is also known that even minor improvements over
exhaustive search in SAT algorithms, bounds such as O(2n/n4), can lead
to proofs of circuit complexity lower bounds [Wil10, Wil11, Wil13].

3We use poly(n) to denote arbitrary polynomial factors in n.

O(
√
n) variables. (However, we do not currently know any

direct implications of beating the 2n−
√
n time bound of The-

orem 1.1.)
Next, we consider satisfiability of quantified CNFs with

multiple alternations. We show that for n-variable CNFs
with significantly less than log n quantifier blocks, there are
algorithms which can definitively beat exhaustive search.

THEOREM 1.2. Satisfiability of quantified CNF (or DNF)
formulas with q quantifier blocks, n variables, and poly(n)
clauses (or disjuncts) can be solved probabilistically with
zero error in time poly(n) ·2n−Ω(nδq), where δq = 1/(q+1).

Theorem 1.2 is shown using the algorithmic paradigm
of truth table generation [Wil11]. The idea is that interest-
ing circuit analysis algorithms sometimes follow from inter-
esting solutions to the task: given a circuit C of size s on
n variables, output the truth table of the function computed
by C. This can be done trivially in time 2n · poly(s); when
is there a faster algorithm? We show how non-trivial truth
table generation for constant-depth circuits can be applied
to derive non-trivial algorithms for satisfiability of quanti-
fied CNFs, and achieve non-trivial truth table generation for
constant-depth circuits by modifying a constant-depth cir-
cuit analysis algorithm of Impagliazzo, Matthews, and Pa-
turi [IMP12]. From Theorem 1.2, it follows that quantified
CNFs with at most o(log n/ log log n) quantifier blocks can
be solved in time 2n−ω(logn).

Next, we observe that for formulas with asymptotically
more than log n quantifier blocks, a simple randomized
algorithm beats 2n time:

THEOREM 1.3. Let q : N → N satisfy q(n) < n for all n.
Satisfiability of quantified Boolean circuits on n variables,
where there are q(n) quantifier blocks and the circuits have
size poly(n), can be solved probabilistically with zero-error
in O(poly(n)2n−Ω(q(n))) time.

Theorems 1.2 and 1.3 show how to beat brute force on
quantified CNFs with up to O

(
logn

log logn

)
quantifier blocks,

and those with ω(log n) quantifier blocks, respectively. This
raises the question of whether there is a weakness in our
ways of reasoning about QBF, or whether the case of
O(log n) quantifier blocks is especially difficult.

The Log-Alternation Barrier. Surprisingly, we show
that improving over exhaustive search for the case of
O(log n) blocks/alternations is indeed difficult! We first
show that beating brute force on n-variable QBF in-
stances with O(log n) quantifier blocks, even in CNF form,
would imply faster algorithms for satisfiability of arbitrary
polynomial-size Boolean formulas over arbitrary gates of
fan-in two. More precisely, we show how to efficiently
express poly-size Boolean formulas as QBFs in CNF with
O(log n) quantifier blocks and n+O(log n) variables.

THEOREM 1.4. There is a polynomial time algorithm that
takes any Boolean formula of n inputs and s size and outputs
an equivalent quantified CNF instance of n + O(log s)
variables, O(s10) clauses, and O(log s) quantifier blocks.

It follows that, if quantified CNF formulas of polyno-
mial size are solvable in cn time, then all quantified Boolean
formulas (over AND/OR/NOT) of polynomial size are solv-
able in cn+o(n) time. Combining Theorem 1.4 with a re-
duction of [CIP09] (cited in this paper as Theorem 4.1), we
obtain:

COROLLARY 1.1. There is a polynomial time algorithm
that, for every fixed k, takes any Boolean formula of n inputs
and s size and outputs a logically equivalent quantified
k-CNF instance of n + O(s10/(k−1)) variables, poly(s)
clauses, and O(log s) quantifier blocks.

Applying work of Williams [Wil11], it follows that
faster solution of quantified k-CNFs withO(log n) quantifier
blocks would imply that NEXP does not have poly(n)-size
O(log n)-depth circuits, a major open problem in circuit
complexity:

COROLLARY 1.2. If for all k, quantified CNF with n vari-
ables, nk clauses, and k log n quantifier blocks can be
solved in zero-error probabilistic 2n/nk time, then NEXP 6⊂
NC1/poly.

COROLLARY 1.3. If there is an ε > 0 such that for all k,
quantified k-CNF with n variables, nk clauses, and k log n
quantifier blocks can be solved in zero-error probabilistic
2n−n

ε

time, then NEXP 6⊂ NC1/poly.

That is, such QBF algorithms imply that NEXP does not
have O(log n) depth circuits of bounded fan-in.

For the case where the number of quantifer blocks is
constant, it is natural to ask if the nΩ(1) savings in the expo-
nent of Theorem 1.2 can be improved upon, without proving
new lower bounds. Again, we can give a negative answer by
showing that even quantified CNFs with a constant number
of quantifier blocks can be very expressive. Extending Theo-
rem 1.4, we show that every formula of polynomial size can
be logically expressed as a quantified CNF with n+O(n1/k)
variables and only O(k) quantifier blocks.

THEOREM 1.5. Let k, r > 0 be any integers. There is a
polynomial-time algorithm that takes any Boolean formula
of n inputs and depth r log(n), and outputs an equivalent
quantified CNF instance of n + O(n1/k) variables, size
poly(n), and 2kr quantifier blocks.

The proof of Theorem 1.5 appears in Section 5. Since
any formula of size s can be expressed as a formula of depth
O(log s), the parameter r in the theorem can be made O(1),
yielding O(k) quantifier blocks. As a consequence:

COROLLARY 1.4. If quantified CNF with n variables,
poly(n) clauses, and q quantifier blocks can be solved in
zero-error probabilistic time 2n−n

ωq(1/q) , then NEXP 6⊆
NC1/poly. 4

The proof is in Section 5. We conclude that any sub-
stantial improvement in the running time of our algorithms
would imply new lower bounds in circuit complexity. We
do not wish to suggest that such algorithms do not exist, but
rather emphasize that they will have very interesting con-
sequences. Indeed, designing better QBFSAT algorithms
might be a route to getting better lower bounds.

2 Preliminaries
Given a function s : N→ N, let SIZE(s) denote the class of
Boolean functions with bounded fan-in circuits of size O(s),
and FormulaSIZE(s) denote the class of Boolean functions
with fan-in two formulas of size O(s) over the De Morgan
basis (AND/OR/NOT). Given a depth function d : N → N,
let DEPTH(d) denote the class of Boolean functions with
fan-in 2 Boolean circuits of depth d over the De Morgan
basis.

LEMMA 2.1. ([SPI71, BB94]) Let s be a size function
such that n ≤ s(n) for all n. Then FormulaSIZE(s) ⊆
DEPTH(2.1 log(s)).

As we will consider several quantified formula prob-
lems, it is important to establish notation distinguishing
between them. We define QB-kCNF, QB-CNF, QB-
FORMULAS to be the quantified Boolean formula problems
over k-CNF predicates, arbitrary CNF predicates, and for-
mula predicates, respectively. The case of bounded number
of quantifier blocks is often studied in complexity theory and
logic:

DEFINITION 2.1. A quantified Boolean formula φ has q
quantifier blocks or q − 1 alternations if it has the form

φ = (Q1 x1, . . . , xt1)(Q2 xt1+1, . . . , xt1+t2) · · ·

(Qq xt1+···+tq−1+1, . . . , xt1+···+tq)F,

where each Qi ∈ {∃,∀}.

The problems q-QB-kCNF, q-QB-CNF, and q-QB-
DNF denote the restriction of the QBF problem over these
predicates to formulas with at most q quantifier blocks.

For SAT, the choice of logical predicate can play a ma-
jor role in the time complexity of solving the problem: for
every k there is a δ < 1 such that k-SAT is in 2δn time (e.g.,

4Here, ωq(1/q) is shorthand for any function f(q) that grows strictly
faster than 1/q.

[MS85]), but no 1.999n time algorithm is known for gen-
eral CNF-SAT. Indeed the Strong Exponential Time Hypoth-
esis [IP01, CIP09] posits that none exists. For satisfiability
problems over more expressive predicates such as arbitrary
formulas, there is no algorithm known to run in time faster
than O(2n) for polynomial-size formulas. In fact if Formula
SAT were solvable in O(2n/n10) time, then NEXP would
not be in NC1/poly [Wil11].

In contrast, our hardness results show that quantified k-
CNFs are essentially equivalent in time complexity to quan-
tifiers over arbitrary formulas. This is a very different picture
from the complexity of SAT. It is well-known that 3-SAT can
be solved in less than O(1.4n) time [PPSZ98, DH09, MS11,
Her11], and that CNF-SAT on poly(n) clauses can be solved
in 2n−n/O(logn) time [Sch05, CIP06]. However it is believed
that CNF-SAT cannot be solved in O(1.9n) (this is implied
by the Strong Exponential Time Hypothesis [IP01, CIP09]).

3 Algorithmic Results
3.1 Quantified Formulas with Two Quantifier Blocks
Our first result is a non-trivial upper bound for satisfiability
of quantified 3-CNFs with two quantifier blocks. No non-
trivial upper bounds for this case were known previously.
The algorithm is far from straightforward: it is a recursive
branching algorithm augmented with a couple of novel “base
cases” where a CNF SAT solver takes over and finishes the
job. The cases for branching are chosen carefully so that the
size of the recursion tree can be non-trivially bounded.

We need the following CNF satisfiability algorithm.

THEOREM 3.1. ([DW06], BUILDING ON [SCH05])
There is a deterministic algorithm A solving satisfia-
bility of CNFs with m clauses and n variables in time
O(poly(m)2n−n/(1+log(m))).

REMINDER OF THEOREM 1.1 Satisfiability of 2-QB-3CNF
(or 2-QB-3DNF) with n variables and poly(n) clauses can
be solved deterministically in time 2n−Ω(n1/2).

Proof. We will run a recursive algorithm R on the given
3CNF formula with n variables and two quantifier blocks.
In the following, let n denote the number of variables in
the original formula fed to the algorithm R. (Although the
number of variables in the current formula may decrease
over multiple calls to R, the parameter n stays the same
throughout the algorithm.) Let ε > 0 be a constant which
we fix later. Here is the algorithm R:

0. If there is a clause containing only universal literals or
an empty clause, return 0. If there are no clauses left to
satisfy, return 1. If there are no universal literals in the
formula, the instance is a 3SAT formula. If the 3SAT is
satisfiable then return 1 else return 0.

1(a). Let u denote the number of universal variables and e
be the number of existential variables. If e >

√
n,

then try all 2u−e assignments to the universals and
solve the remaining 3CNF in 1.4e time, using (for
example) the deterministic 3-SAT algorithm of Moser
and Scheder [MS11]. This case takes O?(2u1.4−e) =
2n−Ω(

√
n) time.

1(b). [At this point, the number of existential variables is
at most

√
n.] Suppose there is a clause of length three

with two universal literals and one existential. Let it
be (ui ∨ uj ∨ ek), where ui, uj are universal and ek is
existential. Perform the three recursive calls:

– Set (ui = 1) and call the algorithm R on the
formula,

– Set (ui = 0) and (uj = 1) and call R,

– Set (ui = 0), (uj = 0), (ek = 1) and call R.

If all three calls return 1 then return 1, else return 0.5

1(c) [At this point, all clauses contain at most one universal
literal.] If u < εn, then solve the QBF using brute force
search. Otherwise, make a DNF with 2e conjuncts,
consisting of an OR over all variable assignments to the
e remaining existential variables, and each conjunct is
an AND over the remaining universal literals in each
clause, given a fixed existential variable assignment.
This DNF has O(2e · u) clauses, and u variables.
The tautology problem for this DNF can be solved in
O?(2u−Ω(u/ log(2e))) ≤ O?(2u−Ω(u/e)) time using the
CNF-SAT algorithm of Theorem 3.1. Return 1 if the
DNF is a tautology, else return 0.

Let Te(u) be the running time of the algorithm R on a
formula with n variables initially, and u universal variables
and e existential variables. Every run of the algorithmR on a
given formula can be expressed as follows. Either e >

√
n at

the beginning of the algorithm, in which case the algorithm
R runs in 2n−Ω(

√
n) time and halts, or e ≤

√
n and we

have a recursion tree representing the recursive calls in case
1(b). (Note that if e ≤

√
n in the very first call to R, then

we also have e ≤
√
n in every subformula, so only cases

1(b) and 1(c) will be applied after that.) At the leaves of
the recursion tree (when there is at most one universal literal
in each clause), a procedure of 2u−Ω(u/e) time is applied;
we associate each leaf with a cost, namely the corresponding
running time at that leaf. The running time for the recursion
tree is bounded by the sum of the costs over all leaves of the
recursion tree.

5A reference note: this branching step originally appears in
Williams [Wil02], who used it in a (weaker) QB-3CNF algorithm. Its cor-
rectness follows because in the third branch, the two universals have forced
the existential to a value. Note that in (for example) a 4-CNF clause with
two universals and two existentials, we could not necessarily perform such
a branching.

We term the three recursive calls in case 1(b) calls of
type A, type B and type C respectively. We first bound
the size N , i.e., the number of leaves, of the recursion tree.
We classify leaves according to how many calls of type C
occur on the path from root to leaf. For each i such that
0 ≤ i ≤

√
n, let f(i) be the number of leaves for which i

calls of type C occur on the path from root to leaf. Note that
at most

√
n calls of type C occur on any path from root to

leaf, as e ≤
√
n at the root and e decreases by 1 for each call

of type C.
Observe that f(0) = O(φu) = O(φn), where φ is the

golden ratio, since if no calls of type C occur, there are only
calls of type A and type B, the first of which decreases u
by 1 and the second of which decreases u by 2. Thus the
recurrence for f(0) as a function of u is the same as the
Fibonnaci recurrence.

In general, we have that f(i) ≤
(
n
i

)
O(φu), as there are(

n
i

)
ways of choosing the i levels of the recursion tree at

which calls of type C are made, and among these, the size of
the recursion tree is largest, namely O(φu), when all calls of
type C are made before calls of type A and type B. Thus we
have that

N ≤
i=
√
n∑

i=0

f(i) ≤ 2o(n)φu ≤ 2n−Ω(n),

since
(
n
i

)
= 2o(n) for i ≤

√
n, and φu ≤ φn ≤ 2n−Ω(n).

Let δ > 0 be a constant such that N ≤ 2n−δn.
We now partition the set of leaves into deep leaves and

shallow leaves, defined as follows. Let γ = δ/2. Deep
leaves are those which occur at depth at least (1 − γ)n,
and shallow leaves are leaves which are not deep. We will
account for the number of deep leaves and shallow leaves
separately.

First we analyze the deep leaves. Consider any deep
leaf at depth d ≥ (1 − γ)n. The cost of any deep leaf is at
most 2γn. Since there are at most 2n−δn total leaves in the
recursion tree, there are at most 2n−δn deep leaves, and the
total cost of all such leaves is at most 2n−δn+γn = 2n−Ω(n).

Now set ε = δ/4. We partition the shallow leaves
into two classes – heavy and light leaves: heavy leaves are
shallow leaves with u > εn, and light leaves are shallow
leaves which are not heavy.

The cost of any light leaf is at most 2εn. Because light
leaves are shallow, there are at most 2(1−γ)n light leaves,
and hence the cumulative cost of such leaves is at most
2n−γn+εn = 2n−δn/4 = 2n−Ω(n).

Finally, we consider the heavy leaves. The cost of a
heavy leaf at depth d is at most

2u−Ω(u/e) ≤ 2n−d−Ω(
√
n),

since for such leaves we have u ≤ n − d, u ≥ εn and
e ≤

√
n. Thus the cumulative cost of all heavy leaves is

at most 2n−Ω(
√
n).

Summing up all contributions, the total cost of all leaves
of the recursion tree is at most O(2n−Ω(

√
n)), establishing

the running time of the algorithm. �

3.2 Quantified Formulas with a Bounded Number of
Quantifier Blocks The algorithm and analysis of Theo-
rem 1.1 do not seem to extend naturally to CNFs of larger
width and to more quantifier blocks. For example, in a 4-
CNF, one may have a clause with two universally quanti-
fied variables and two existentially quantified variables. The
branching step 1(b) doesn’t naturally extend to that case: we
need to quantify over all the other universal variables, be-
fore setting the two existentials – the existentials are not yet
forced to certain values.

Instead, our algorithm for q-QB-CNF (quantified CNFs
with a bounded number of quantifier blocks q), when q > 2,
applies the function enumeration paradigm based on a recent
result on satisfiability of constant-depth circuits [IMP12].

THEOREM 3.2. ([IMP12]) There is a probabilistic zero-
error algorithm A solving satisfiability of constant-depth
AND/OR circuits of n variables, s size, and d depth, in time
O(s · 2n−Ω(n/(log s)d−1)).

A key component is a method for computing the truth
table of a constant-depth circuit more efficiently. Computing
the truth table of a constant-depth circuit of size s over n
variables can be done trivially in O(2n · s) time; we can do
better using ideas of [IMP12].

We require some definitions. A restriction over n bits
is a string y ∈ {0, 1, ?}n. A bit string x is said to complete
a restriction y if x agrees with y on all non-? coordinates.
Given a set S of restrictions over n bits, we say that S
partitions the n-bit cube if for each bit string x ∈ {0, 1}n,
there is precisely one restriction y ∈ S such that x completes
y.

LEMMA 3.1. There is a probabilistic zero-error algorithm
E which, given an unbounded fan-in circuit of size s and
depth d on n variables, outputs the truth table corresponding
to the circuit in time O((2n + s2n−Ω(n/(log(s)d−1))poly(n)).

Proof. Theorem 3.2 is proved in [IMP12] by showing that
there exists a probabilistic zero-error algorithm B which,
given an unbounded fan-in circuit C of size s and depth d
on n variables, outputs a set S of restrictions over n bits
partitioning the n-bit cube, as well as a Boolean function
f on S, such that for each input x ∈ {0, 1}n, C(x) is
equal to f(y), where y is the unique restriction in S such
that x completes y. Furthermore, the algorithm B runs
in poly(n) · s · 2n−Ω(n/(log(s)d−1) time, hence |S| is upper
bounded by the same quantity.

We define algorithm E as follows. Suppose E is given
a circuit C over n bits, as input. E has random access to a

table T of length 2n bits, which are all initially zero. At the
end of E’s computation, T will hold the truth table of C.

E first runs B on C to obtain S and f . Then for each
restriction y in S, E computes the set X(y) ⊆ {0, 1}n of
all n-bit strings that complete y. For a restriction y with k
stars, this can be done in time 2k · poly(n) time. E then
evaluates f on y, and updates the values of all bits in T
corresponding to strings in X(y) to f(y). This update takes
time |X(y)| · poly(n) ≤ 2k · poly(n). After all elements y of
S have been processed, E halts and outputs T .

To analyze the running time, notice that∑
y∈S
|X(y)| = 2n,

since S partitions the n-bit Boolean hypercube. Therefore,
the running time of E is bounded by the running time of
B, plus

∑
y∈S |X(y)| · poly(n) ≤ 2n · poly(n). Therefore

the running time of E is at most (2n + |S|) · poly(n) ≤
(2n + s · 2n−Ω(n/(log(s)d−1)) · poly(n). �

We now show how to use Lemma 3.1 and Theorem 3.2
to solve Satisfiability for quantified CNFs and DNFs with q
quantifier blocks.
REMINDER OF THEOREM 1.2 Satisfiability of q-QB-CNF
(resp. q-QB-DNF) with n variables and m = poly(n)
clauses (resp. disjuncts) can be solved probabilistically in
time poly(n) · 2n−Ω(n1/(q+1)) with zero error.

Proof. First, observe that the most difficult cases of q-QB-
CNF occur when the innermost quantifier block is existen-
tial; otherwise, it is easy to tell whether universally quan-
tified variables over a CNF evaluate to true or false (such a
QBF is true iff the CNF is a tautology over the universal vari-
ables, i.e., the empty formula with no clauses). Similarly, the
difficult case of q-QB-DNF occurs when the innermost quan-
tifier is universal.

Therefore, without loss of generality, we may assume
the input QBF φ has the form

∃ ~x1∀ ~x2 . . . ~xqψ(~x1 . . . ~xq),

where ψ is a DNF with m clauses if q even, a CNF with m
clauses if q odd. (If this is not the case, we can solve the
satisfiability question for ¬φ instead, and flip the answer.)

The number of variables n equals
∑q
i=1 |~xi|. We as-

sume q is even for simplicity (so ~xq is universally quanti-
fied); the case of odd q is analogous. For each i such that
1 ≤ i ≤ q, let ni = |~xi|.

We consider two cases, depending on the size of n1.
If n1 ≥ n − n1/(q+1), let n′ = Σqi=2ni. We have
that n1 + n′ = n. The algorithm constructs an AC0

circuit C of depth at most q + 1 and size at most s =
2n
′
poly(n) which has as input ~x1, as follows: C is an

AND over all possible assignments to ~x2, of an OR over all
possible assignments to ~x3, ..., of an AND over all possible
assignments to ~xq of the DNF predicate ψ(~x1, ~x2, . . . , ~xq).
It then runs the satisfiability algorithm A of Theorem 3.2 on
C. Note that C is satisfiable if and only if the QBF φ is
satisfiable. By Theorem 3.2, the running time in this case
is at most O(poly(n)2n

′
2n1−Ω(n1/(log(s))q)), which since

n′ ≤ n1/(q+1), is at most O(poly(m)2n−Ω(n/nq/(q+1))), i.e.,
at most O(poly(m)2n−Ω(n1/(q+1))), as desired.

In the other case, n1 < n − n1/(q+1). Let i be the
largest number such that Σij=1ni < n− n1/(q+1). Note that
i ≥ 1. Let y ∈ ~xi+1 be the variable such that the number of
variables quantified after y is n1/(q+1) − 1. Let us assume
WLOG that i is odd; a similar argument works when i is
even. The algorithm constructs an AC0 circuit C ′ of depth at
most q + 1 and size at most s = 2n

1/q+1
poly(n) as follows:

C ′ is the AND over all assignments to variables in ~xi+1

which are either y or after y in order of quantification, of
the OR over all possible assignments to variables in ~xi+2, ...,
of the AND over all possible assignments to ~xq of the DNF
predicate ψ(~x1, ~x2, . . . , ~xq). Note that circuitC ′ has as input
variables all variables in ~x1 . . . ~xi, as well as all variables
in ~xi+1 before y. The satisfiability of φ is equivalent to
the satisfiability of the quantified Boolean circuit C ′, where
variables in ~x1 . . . ~xi+1 are quantified as in φ.

The algorithm then does the following. It uses algo-
rithm E from Lemma 3.1 to compute the truth table of
C ′, which it stores in random access memory. The time
taken for this computation is poly(n) · (2n−n

1/(q+1)
+

2n
1/(q+1)

2n−n
1/(q+1)−Ω((n−n1/(q+1))/nq/q+1)), which is

O(poly(n) · 2n−Ω(n1/(q+1))).
Next, the algorithm evaluates the quantified satisfiability

of C ′ exhaustively by constructing the AND-OR tree of
assignments corresponding to variables in ~x1 . . . ~xi+1 being
quantified as in φ, and searching the tree exhaustively.
However, for each leaf of the tree, rather than evaluating
C ′ to determine this value, the algorithm simply looks up
the corresponding value in its stored truth table, in poly(n)
time per lookup. Thus the total time for evaluation is
O(2n−n

1/(q+1)
poly(n)), since the tree has O(2n−n

1/(q+1)
)

nodes.
Hence the total running time of the algorithm in this case

is O(poly(n)2n−n
1/(q+1)

), as desired. �

Note that Theorem 1.2 gives a non-trivial improvement
over brute force search even when the number of quantifier
blocks is q = o(log(n)/ log log(n)). For q = 2, the savings
given by Theorem 1.2 is Ω(n1/3), which is not as good
as Theorem 1.1 when the quantified formula is in 3CNF.
However, as shown in Section 4, the dependence on q for
large q is optimal modulo showing new circuit lower bounds.

3.3 Quantified Formulas with Many Quantifier Blocks
Theorem 1.2 gives improvements over brute force search
for QBF satisfiability on formulas with a small number of
quantifiers. Somewhat counterintuitively, we observe that it
is also possible to get savings when the number of quantifiers
is relatively large, by a simple application of the idea of
Snir [Sni85] and Saks-Wigderson [SW86] for reducing the
decision tree complexity of game-tree evaluation.
REMINDER OF THEOREM 1.3 Let q : N → N satisfy
q(n) < n for all n. Satisfiability of q(n)-QBF over m-size
circuits with n input variables can be solved probabilistically
in poly(m) · 2n−Ω(q(n))) time, with zero-error.

Proof. The idea is to explore the tree of variable assignments
randomly. In particular, we branch on each variable in
turn according to the quantifier order of the QBF, picking
a random 0-1 assignment to the variable and recursing on
the resulting instance. If the current variable is quantified
existentially and the call returns SAT, then we return SAT,
else we flip the variable to its opposite value and recurse,
returning the answer resulting from the call. Dually, if the
current variable is universally quantified and a recursive call
returns UNSAT, then we return UNSAT, else we flip the
variable and recurse on it.

We claim that random search runs in 2n−Ω(q(n)) (worst-
case) expected time on QBFs with q(n) quantifier blocks.
In particular, we expect that the exponent of the running
time is reduced by Ω(1) per quantifier block. First note
that, if the QBF instance is SAT, then at most 1/2 fraction
of the possible assignments to variables in each existential
quantifier block are explored on average, before finding a
certificate that the instance is satisfiable (i.e., a recursive
call that returns SAT). Second, if the QBF is UNSAT, then
at most 1/2 fraction of the assignments in each universal
quantifier block are explored on average, before finding a
certificate that the instance is unsatisfiable (i.e., a call that
returns UNSAT). No matter whether the given QBF instance
is SAT or UNSAT, there is a Ω(1) savings in the exponent
of the running time for every two consecutive quantifier
blocks. When there are q(n) quantifier blocks, we achieve
an Ω(q(n)) savings in the exponent. �

Note that the above algorithm only improves over ex-
haustive search when q(n) = ω(log(n)): otherwise, the
poly(n) factor dominates the the 2−Ω(q(n)) savings. This
is an interesting phenomenon where the presence of many
quantifiers creates so many additional constraints on the
QBF problem that the problem actually becomes easier to
solve.

Theorem 1.2 and Theorem 1.3 together show that the
“hard” cases of satisfiability of quantified Boolean formu-
las are where the number of quantifier blocks is between
Θ(log(n)/ log log(n)) and Θ(log(n)) – in all other cases,
we are able to obtain non-trivial savings.

4 From Algorithms for QBF Satisfiability to Circuit
Lower Bounds

In the second part of the paper, we investigate the conse-
quences of finding faster QBF satisfiability algorithms. We
find that Boolean formulas can be encoded rather well as
QBF satisfiability instances over CNF, even bounded-width
CNFs. This is extremely different from the case of typical
satisfiability over 3-CNF (i.e., 3-SAT), as there are many
known faster-than-2n time algorithms for 3-SAT, but no gen-
eral reductions from formula SAT to 3-SAT which yield
faster SAT algorithms for general Boolean formulas. Re-
lating these encoding results to known connections between
SAT algorithms and circuit lower bounds, we prove that
faster algorithms for QBF satisfiability over CNF would im-
ply new lower bounds in circuit complexity such as NEXP is
not contained in non-uniform NC1.

4.1 Quantified Boolean Formulas with Arbitrary Num-
ber of Quantifier Blocks We establish a rather tight rela-
tionship between the time complexity of solving quantified
formulas and that of solving quantified 3-CNF. We will show
that the choice of predicate in a quantified problem essen-
tially does not matter: if quantified 3-CNF is solvable in
cn time then all quantified Boolean formulas are solvable in
about cn time.

REMINDER OF THEOREM 1.4 There is a polynomial time
algorithm that takes any Boolean formula of n inputs and
s size and outputs an equivalent quantified CNF instance
of n + O(log s) variables, O(s10) clauses, and O(log n)
quantifier blocks.

Proof. We first do some general massaging of a given for-
mula F , construed as a tree with interior nodes labeled by
AND/OR gates, and leaves labelled by literals. We can as-
sume WLOG that F has depth c log s where c < 5. (If
this is not true, we can make it the case via known reduc-
tions [BCE91, BB94], at the cost of squaring the size of the
formula.) Moreover, we may assume that the depth is even,
and odd depths of F contain no AND gates (only OR gates,
along with possibly 0− 1 constants and literals), while even
depths contain no OR gates. (Enforcing this only increases
the depth by a factor of two, and at most squares the size.)
Finally, we can make the length of every path in F from the
output gate to a literal exactly d = 2c log s. (Suppose a path
ends early at a literal `; since b ∧ b = b and b ∨ b = b
for b ∈ {0, 1}, we can duplicate occurrences of ` to match
the desired alternations of ANDs and ORs and the desired
length of each path.) Notice that F now has exactly 2d ≤ s10

leaves.
Let d be the depth of F , and let L =

{x1, . . . , xn,¬x1, . . . ,¬xn} be the set of literals of F .
Define a mapping φF : {0, 1}d → L as follows. Given a
d-bit string b, label every edge in F to a left child with a 0,

and every edge to a right child with 1. Follow the path from
the output gate (the root of the tree) by reading the bits of b
from left to right, then output the literal at the leaf found.

The variables of our QB-CNF instance will be
x1, . . . , xn along with new variables y1, . . . , yd. For con-
venience, we use the notation y1

i := yi and y0
i := ¬yi. The

instance of QB-CNF includes all 2d possible clauses of the
form

(y1−b1
1 ∨ · · · ∨ y1−bd

d ∨ φF (b1, . . . , bd)),

over all possible vectors (b1, . . . , bd) ∈ {0, 1}d. Noticing
that

(y1−b1
1 ∨ · · · ∨ y1−bd

d ∨ φF (b1, . . . , bd))

≡ ((yb11 ∧ · · · ∧ y
bd
d)→ φF (b1, . . . , bd)),

we have that (a) for every assignment to (y1, . . . , yd), at most
one of the above clauses is not trivially satisfied, and (b) this
remaining clause is satisfied if and only if the literal at the
leaf defined by the root-to-leaf path b1 · · · bd is true. The
final formula is then

(Q1x1, . . . , Qnxn)(∀y1)(∃y2) · · · (∀yd)[C]

where C is the above collection of clauses and Qi ∈ {∃,∀}
is the quantifier on variable xi from the original quantified
Boolean formula. �

The following two reductions to QB-CNF are immedi-
ate corollaries:

COROLLARY 4.1. There is a polynomial time reduction
from QB-FORMULA instances of n inputs and s size to QB-
CNF instances of n+O(log s) variables and O(s10) size.

COROLLARY 4.2. There is a polynomial time reduction
from FORMULA-SAT instances of n inputs and s size to QB-
CNF instances of n + O(log s) variables, O(s10) size, and
O(log n) quantifier blocks.

These corollaries have several nice consequences. First,
the QBF problem over arbitrary formulas and the QBF
problem over CNFs are essentially identical with respect
to time complexity. Second, Boolean formula satisfiabil-
ity can be efficiently reduced to QBF over CNF formulas
with only O(log n) quantifier blocks. Applying results of
Williams [Wil11], it follows that a nontrivial algorithm for
QB-CNF satisfiability (even with zero-error) for O(log n)
quantifier blocks would imply new circuit lower bounds:

REMINDER OF COROLLARY 1.2 If for all k, quantified
CNF with n variables, nk clauses, and k log n quantifier
blocks can be solved in zero-error probabilistic 2n/nk time,
then NEXP 6⊂ NC1/poly.

Proof. Williams [Wil11] shows that if there is a co-
nondeterministic algorithm for FORMULA-SAT on instances
with n inputs and nk size running in O(2n/n10) time for all
k, then NEXP 6⊂ NC1/poly. Hence the proof follows from
Corollary 4.2. �

We can reduce from quantified CNF formulas to quan-
tified k-CNF formulas, by applying a reduction of Calabro,
Impagliazzo, and Paturi [CIP10].

THEOREM 4.1. ([CIP10]) For all k, there is a polynomial-
time reduction converting any CNF with n variables and
m clauses into a logically equivalent 2-QB-kCNF with
n+O(m1/(k−1)) variables and poly(m,n) clauses.

Proof. (Sketch) Calabro, Impagliazzo, and Paturi use
O(m1/(k−1)) additional variables to encode CNF evaluation
in such a way that the given CNF F on n variables evalu-
ates to true on an assignment if and only if the new QBF
with n + O(m1/(k−1)) variables is unsatisfiable. In partic-
ular, define a (k − 1)-CNF formula G with m clauses and
O(m1/(k−1)) variables which is minimally unsatisfiable, in
the sense that if any clause is removed then the formula is
satisfiable. To build the clauses of the QBF, iterate over all
clauses ci of the given F and literal ` in it, putting in the QBF
the clause (ci ∨ ¬`). The final QBF existentially quantifies
over the n variables of F , then universally quantifies over
the O(m1/(k−1)) variables of G. Then, a given assignment
A to the n variables of F is satisfying if and only if every
clause in G is present in the QBF after variable assignment
A (which is true if and only if the remaining clause set is
unsatisfiable). �

The above proof easily extends to a reduction from QB-
CNF with q quantifier blocks to QB-kCNF with q + 1
quantifier blocks, with the same increase in the number of
variables.

Combining the reduction of Theorem 1.4 with the re-
duction of Theorem 4.1, we obtain:
REMINDER OF COROLLARY 1.1 There is a polynomial
time algorithm that, for every fixed k, takes any Boolean
formula of n inputs and s size and outputs an equivalent
quantified k-CNF instance of n + O(s10/(k−1)) variables,
poly(s) clauses, and O(log s) quantifier blocks.

Proof. Theorem 1.4 says that we can take any Boolean for-
mula F with n inputs and s size and generate (in polynomial
time) an equivalent quantified CNF F ′ with n + O(log s)
variables, O(s10) clauses, and O(log s) quantifier blocks.
Applying Theorem 4.1 to the CNF part of F ′, we can reduce
F ′ to an equivalent 2-QB-kCNF F ′′ with n + O(log s) +
O(s10/(k−1)) variables and poly(s) clauses. That is, by
adding a quantifier to F ′ we obtain an equivalent k-CNF F ′′

with a few more variables. This completes the proof. �

Corollary 1.1 implies that faster algorithms for solving
quantified k-CNF would imply new circuit lower bounds:
REMINDER OF COROLLARY 1.3 If there is an ε > 0
such that for all k, quantified k-CNF with n variables, nk

clauses, and k log n alternations can be solved in zero-error
probabilistic 2n−n

ε

time, then NEXP 6⊂ NC1/poly.

Proof. The hypothesis implies that Formula-SAT on nc size
formulas can be solved in zero-error O(2n/nc) time for
all constants c. To see this, let F be an nc size formula.
By the reduction of Corollary 1.1, we can convert F into
a quantified k-CNF F ′ with n + O(n10c/(k−1)) variables,
ncd clauses, and dc log n quantifier blocks. The hypothesis
of the theorem says that, for every k, such formulas on
m variables can be solved in 2m−m

ε

time for a universal
ε > 0. Let k be greater than (10c)/ε3 + 1. Then the
running time of the algorithm on the formula F ′ is at most
2n+O(nε

2
)−(n+O(n10c/(k−1)))ε ≤ 2n−Ω(nε).

Finally, Williams [Wil10] showed that such a Formula-
SAT algorithm would imply NEXP 6⊂ NC1/poly. �

5 Lower Bound Implications of Solving Quantified
Boolean Formulas with Constant Number of
Quantifier Blocks

First we show how to convert an arbitrary Boolean formula
into a quantified Boolean CNF with a small number of extra
variables:
REMINDER OF THEOREM 1.5 Let k, r > 0 be any integers.
There is a polynomial-time algorithm that takes any Boolean
formula of n inputs and depth r log(n), and outputs an
equivalent QB-CNF instance of n+O(n1/k) variables, size
poly(n), and 2kr quantifier blocks.

Proof. We use a similar divide-and-conquer approach to
the proof of Nepomnjascii’s theorem [Nep70] that NL is in
alternating linear time. Let F be the given formula of depth
r log(n) on variables x1 . . . xn. We assume WLOG that all
leaves (i.e., literals or constants) of F are at depth r log(n);
if there is a literal or constant v at lower depth d, we replace
it by a full binary tree of ANDs of depth (r log(n)− d) with
v at each leaf.

We imagine F as divided into kr layers, where layer i
consists of all nodes between depth b(i log(n))/kc and depth
b(i log(n) + log(n))/kc. Sub-formulas at layer i are those
sub-trees of the formula which have as root a node at depth
b(i log(n))/kc and as leaves the descendants of the root at
depth b(i log(n) + log(n))/kc. We call such a sub-formula
for any i, 0 ≤ i ≤ kr − 1, a local sub-formula. Every local
sub-formula has at most 4n1/k nodes, since F is a formula
where all nodes have fan-in at most two.

We construct a QB-CNF instance φ as follows. φ
begins with 2kr−1 quantifier blocksQ1, Q2 . . . Q2kr, where
Qi is existential if i is odd, and universal if i is even.

The quantifier blocks Qi for odd i quantify over variable
blocks y1, y2 . . . ykr, where for each j, 1 ≤ j ≤ kr, each
variable block yj consists of d4n1/ke variables yjl , l =
1 . . . d4n1/ke. The quantifier blocks Qi for even i quantify
over variable blocks z1, z2 . . . zkr−1, where for each j, 1 ≤
j ≤ kr − 1, each variable block zj consists of m(n) =
dlog(2n1/k)e variables zjl , l = 1 . . . dlog(2n1/k)e. Note
that the total number of quantified variables is O(n1/k).
Following the quantifier blocks is a CNF formula ψ in
variables x1 . . . xn, y

1 . . . ykr, z1 . . . zkr−1. The variables
x1 . . . xn will be called x-variables, y1 . . . ykr will be y-
variables, and z1 . . . zkr will be z-variables.

Before describing ψ, we give some intuition for the
construction of the QBF instance. The idea is to partition
the formula into several local sub-formulas, each of small
(i.e., O(n1/k)) size, and to verify the computation of the
formula by verifying each local sub-formula independently.
To verify the computation of a local sub-formula, values for
all the nodes in the sub-formula are guessed existentially and
checked for local consistency. Of course, to guess values
for all nodes of the formula independently would require too
many extra variables. Instead, universal quantifiers are used
to take advantage of the layered structure of the formula and
re-use variables between different sub-formula verifications.
It turns out that a constant number of alternations suffices for
this purpose.

We define a way to inductively index local sub-formulas.
We identify each local sub-formula with its root. The
root of the formula F is indexed by (). Now, given an
index (t1, t2 . . . ti) for a local sub-formula T at layer i, let
T1, T2 . . . T` be the local sub-formulas at layer i + 1 which
are leaves of T , where t1 . . . ti ∈ N, and ` ≤ 2n1/k. We say
that (t1, t2 . . . ti, ti+1) indexes Tj for ti+1 ∈ N, 1 ≤ j ≤ `,
if ti+1 ≡ j mod `.

Now, let t1, t2 . . . tkr−1 ∈ {0, 1}m(n) be arbitrary. For
each such sequence, and for each initial segment t1, t2 . . . ti,
0 ≤ i ≤ kr − 1 of the sequence, we define a CNF
formula ψ(t1,t2...ti) of size poly(n). The CNF formula ψ
is the conjunction of ψ(t1,t2...ti) over all sequences and all
i, 0 ≤ i ≤ kr − 1. It is not hard to see that ψ is of size
poly(n).

Fix i. Interpreting t1, t2 . . . tkr−1 as non-negative in-
tegers in the natural way, let T be the local sub-formula
indexed by (t1, t2 . . . ti). We define a CNF consT which
has as variables y1, y2 . . . yi+1 and x1 . . . xn. We then
define ψ(t1,t2...ti) using consT and additional variables
z1, s2 . . . zi. In fact, consT will only involve y-variables
in yi and yi+1, and will only involve x-variables when i =
kr − 1. ψ(t1,t2...ti) will only involve additional z-variables
in zi.

We distinguish two cases: i < kr − 1 and i = kr − 1.
When i < kr − 1, we define consT as follows. Identify the
variables in yi+1 with distinct nodes of T in some canonical

way. There are at least as many variables in yi+1 as nodes
in T , so some variables might be left over - these just
won’t be used in consT . Let a, b, c be arbitrary nodes in
T such that b and c are children of a. Assume wlog that
yi+1

1 , yi+1
2 and Y i+1

3 are the y-variables identified with a,b
and c respectively. If a is an AND gate, consT contains a
set of clauses encoding that yi+1

2 ∧ yi+1
3 = yi+1

1 , else a is an
OR-gate and consT contains a set of clauses encoding that
yi+1

2 ∨ yi+1
3 = yi+1

1 . In addition, suppose v is the root of
T , yi+1

s is associated with v in T and yiq is associated with v
in the local sub-formula of which v is a leaf. Then there is a
pair of clauses in consT encoding that yi+1

s = yiq .
When i = kr − 1, consT contains all clauses as

before, but in addition “leaf clauses” as follows. In this
case, the leaves of T are all literals, i.e., x-variables or their
complements, or else constants. Leaf clauses encode, for
each leaf v′ of T , that the y-variable associated with v′ is
equal to the corresponding literal/constant in formula F .

The CNF consT encodes local consistency of the local
sub-formula T in terms of the guessed information repre-
sented by the y-variables, but since we would like to re-use
the y-variables for all local sub-formulas at a given layer, we
would like this consistency check to kick in only for a spe-
cific setting of the universal variables. This is ensured by
incorporating the z-variables as follows.

For each j, 1 ≤ j ≤ m(n), let wj = zij if the j’th bit of
ti is 0, and let wj be the complement of zij otherwise. When

i ≥ 1, we define ψt1...ti to be ∨m(n)
j=1 wj ∨ consT . When

i = 0, ψt1...ti is the same as consT .
This completes the description of the QB-CNF formula

φ. It is clear that φ can be constructed from F in polynomial
time. What remains to be shown is that φ is equivalent to F .

Suppose F evaluates to 1 on a specific input
x1, x2 . . . xn. Then by assigning y-variables to the values
of corresponding interior nodes in the formula for this as-
signment, it is easy to see that φ is satisfied. Conversely, if φ
is satisfied, then using the fact that local consistency as well
as consistency between a local sub-formula and its parent is
encoded into φ, F evaluates to 1. Indeed, values of interior
nodes for F can be recovered from any witness tree for φ. �

COROLLARY 5.1. There is a polynomial-time reduction
from FORMULA-SAT instances of n inputs and size poly(n)
to QB-CNF instances with O(k) quantifier blocks, n +
O(n1/k) variables and size poly(n).

Corollary 5.1 follows from Theorem 1.5 using Lemma
2.1, which gives a simulation of poly(n) size formulas by
O(log(n)) depth formulas. Note that any O(log(n)) depth
circuit can be simulated by an O(log(n)) depth formula by
creating separate copies of sub-formulas to replace gates
with fan-out greater than 1.
REMINDER OF COROLLARY 1.4 If satisfiability of quan-
tified CNF with n variables, poly(n) clauses and q quan-

tifier blocks can be solved in zero-error probabilistic time
2n−n

ωq(1/q) , then NEXP 6⊆ NC1/poly.

Proof. Suppose the assumption holds. Then, using Corol-
lary 5.1, we have that Formula-SAT instances of n inputs
and size poly(n) can be solved in zero-error probabilistic
time 2n−ω(log(n)). Using the algorithms-to-lower-bounds
connection of Williams [Wil10], this implies that NEXP 6⊆
NC1/poly. �

By combining Corollary 5.1 with Theorem 4.1, we can
derive an even stronger connection:

COROLLARY 5.2. If satisfiability of quantified q-CNF with
n variables, poly(n) clauses and q quantifier blocks can
be solved in zero-error probabilistic time 2n−n

ωq(1/q) , then
NEXP 6⊆ NC1/poly.

Acknowledgements. We thank the SODA reviewers
for their helpful comments.

References

[BB94] Maria Bonet and Samuel Buss. Size-depth tradeoffs
for boolean formulae. Information Processing Letters,
49(3):151–155, 1994.

[BCE91] Nader H. Bshouty, Richard Cleve, and Wayne Eberly.
Size-depth tradeoffs for algebraic formulae. In FOCS, pages
334–341, 1991.

[CIP06] Chris Calabro, Russell Impagliazzo, and Ramamohan
Paturi. A duality between clause width and clause density for
SAT. In Proceedings of IEEE Conference on Computational
Complexity, pages 252–260, 2006.

[CIP09] Chris Calabro, Russell Impagliazzo, and Ramamohan Pa-
turi. The complexity of satisfiability of small depth circuits.
In Proc. International Workshop on Parameterized and Exact
Computation, 2009.

[CIP10] Chris Calabro, Russell Impagliazzo, and Ramamohan
Paturi. On the exact complexity of evaluating quantified k-
CNF. Algorithmica, 65(4):817–827, 2013. See also IPEC
2010.

[DH09] Evgeny Dantsin and Edward Hirsch. Worst-case upper
bounds. In Handbook of Satisfiability, chapter 12, pages 403–
424. IOS Press, 2009.

[DW06] Evgeny Dantsin and Alexander Wolpert. A faster clause-
shortening algorithm for sat with no restriction on clause
length. JSAT, 1(1):49–60, 2006.

[DW10] Evgeny Dantsin and Alexander Wolpert. On moderately
exponential time for SAT. In Proceedings of 13th Interna-
tional Conference on Satisfiability Testing, pages 313–325,
2010.

[GIB09] Alexandra Goultiaeva, Vicki Iverson, and Fahiem Bac-
chus. Beyond CNF: A circuit-based QBF solver. In Theory
and Applications of Satisfiability Testing (SAT 2009), pages
412–426, 2009.

[Her11] Timon Hertli. 3-sat faster and simpler - unique-sat bounds
for ppsz hold in general. In FOCS, pages 277–284, 2011.

[IMP12] Russell Impagliazzo, William Matthews, and Ramamo-
han Paturi. A satisfiability algorithm for AC0. In Proceed-
ings of 23rd Annual ACM-SIAM Symposium on Discrete Al-
gorithms, pages 961–972, 2012.

[IP01] Russell Impagliazzo and Ramamohan Paturi. On the com-
plexity of k-sat. J. Comput. Syst. Sci., 62(2):367–375, 2001.

[MS85] Burkhard Monien and Ewald Speckenmeyer. Solving sat-
isfiability in less than 2n steps. Discrete Applied Mathemat-
ics, 10:287–295, 1985.

[MS11] Robin A. Moser and Dominik Scheder. A full derandom-
ization of Schöning’s k-SAT algorithm. In STOC, pages 245–
252, 2011.

[MZ09] Sharad Malik and Lintao Zhang. Boolean satisfiability
from theoretical hardness to practical success. Communica-
tions of the ACM, 52(8):76–82, 2009.

[Nep70] V. Nepomnjascii. Rudimentary predicates and turing
calculations. Soviet Mathematics - Doklady, 11(6):1462–
1465, 1970.

[PPSZ98] Ramamohan Paturi, Pavel Pudlak, Mike Saks, and Fran-
cis Zane. An improved exponential-time algorithm for k-sat.
In Proceedings of 39th International Symposium on Founda-
tions of Computer Sciece (FOCS), pages 628–637, 1998.

[PPSZ98] Ramamohan Paturi, Pavel Pudlák, Michael E. Saks, and
Francis Zane. An improved exponential-time algorithm for
k-sat. J. ACM, 52(3):337–364, 2005. (See also FOCS’98).

[PPZ97] Ramamohan Paturi, Pavel Pudlak, and Francis Zane. Sat-
isfiability coding lemma. In Proceedings of 38th Inter-
national Symposium on Foundations of Computer Science
(FOCS), pages 566–574, 1997.

[Pud98] Pavel Pudlak. Satisfiability – algorithms and logic. In
Mathematical Foundations of Computer Science, Springer
LNCS Volume 1450, pages 129–141, 1998.

[San10] Rahul Santhanam. Fighting perebor: New and improved
algorithms for formula and QBF satisfiability. In Proceedings
of 51st Annual IEEE Symposium on Foundations of Computer
Science, pages 183–192, 2010.

[Sch99] Uwe Schoning. A probabilistic algorithm for k-sat and
constraint satisfaction problems. In Proceedings of 40th
Annual Symposium on Foundations of Computer Science,
pages 410–414, 1999.

[Sch05] Rainer Schuler. An algorithm for the satisfiability prob-
lem of formulas in conjunctive normal form. J. Algorithms,
54(1):40–44, 2005.

[Sni85] Marc Snir. Lower bounds on probabilistic decision trees.
Theoretical Computer Science, 38:69–82, 1985.

[Spi71] Philip Spira. On time-hardware complexity tradeoffs for
boolean functions. In Proceedings of the Fourth Hawaii
International Symposium on System Sciences, pages 525–527,
1971.

[SW86] Michael Saks and Avi Wigderson. Probabilistic boolean
decision trees and the complexity of evaluating game trees. In
Proceedings of 27th Annual IEEE Symposium on Foundations
of Computer Science, pages 29–38, 1986.

[Wil02] Ryan Williams. Algorithms for quantified boolean for-
mulas. In Proceedings of the Thirteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 299–307, 2002.

[Wil10] Ryan Williams. Improving exhaustive search implies
superpolynomial lower bounds. In Proceedings of the 42nd
Annual ACM Symposium on Theory of Computing, pages
231–240, 2010.

[Wil11] Ryan Williams. Non-uniform ACC circuit lower bounds.
In Proceedings of 26th Annual IEEE Conference on Compu-
tational Complexity, pages 115–125, 2011.

[Wil13] Ryan Williams. Natural proofs versus derandomization.
In STOC, pages 21–30, 2013.

[Wil14] Ryan Williams. Faster decision of first-order graph prop-
erties. In Joint Meeting of the Twenty-Third EACSL An-
nual Conference on Computer Science Logic (CSL) and the
Twenty-Ninth Annual ACM/IEEE Symposium on Logic in
Computer Science (LICS), CSL-LICS ’14, Vienna, Austria,
page 80, 2014.

[Zha06] Lintao Zhang. Solving QBF by combining conjunctive
and disjunctive normal forms. In Proceedings of 21st Na-
tional Conference on Artificial Intelligence and 18th Innova-
tive Applications of Artificial Intelligence Conference (AAAI
2006), 2006.

	Introduction
	Preliminaries
	Algorithmic Results
	Quantified Formulas with Two Quantifier Blocks
	Quantified Formulas with a Bounded Number of Quantifier Blocks
	Quantified Formulas with Many Quantifier Blocks

	From Algorithms for QBF Satisfiability to Circuit Lower Bounds
	Quantified Boolean Formulas with Arbitrary Number of Quantifier Blocks

	Lower Bound Implications of Solving Quantified Boolean Formulas with Constant Number of Quantifier Blocks

