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Abstract

We consider the canonical Subset Sum problem: given a list of positive integers a1, . . . , an and a
target integer t with t > ai for all i, determine if there is an S ⊆ [n] such that

∑
i∈S ai = t. The well-

known pseudopolynomial-time dynamic programming algorithm [Bellman, 1957] solves Subset Sum in
O(nt) time, while requiring Ω(t) space.

In this paper we present algorithms for Subset Sum with Õ(nt) running time and much lower space
requirements than Bellman’s algorithm, as well as that of prior work. We show that Subset Sum can be
solved in Õ(nt) time and O(log(nt)) space with access to O(log n log log n + log t) random bits. This
significantly improves upon the Õ(nt1+ε)-time, Õ(n log t)-space algorithm of Bringmann (SODA 2017).
We also give an Õ(n1+εt)-time, O(log(nt))-space randomized algorithm, improving upon previous
(nt)O(1)-time O(log(nt))-space algorithms by Elberfeld, Jakoby, and Tantau (FOCS 2010), and Kane
(2010). In addition, we also give a poly log(nt)-space, Õ(n2t)-time deterministic algorithm.

We also study time-space trade-offs for Subset Sum. For parameter 1 ≤ k ≤ min{n, t}, we present
a randomized algorithm running in Õ((n+ t) · k) time and O((t/k) poly log(nt)) space.

As an application of our results, we give an Õ(min{n2/ε, n/ε2})-time and poly log(nt)-space algo-
rithm for “weak” ε-approximations of Subset Sum.

∗Supported by NSF CCF-1741615 and NSF CCF-1909429.



1 Introduction

We consider the classical Subset Sum problem in its standard form: given positive integers a1, . . . , an and
a target integer t with t > ai for all i, determine if there is an S ⊆ [n] such that

∑
i∈S ai = t. In the

1950s, Bellman [Bel57] showed that Subset Sum is in O(nt) time, with a textbook pseudopolynomial time
algorithm.1 The algorithm is also a textbook example of dynamic programming, requiring Ω(t) space to
store the table. In this paper, we address the question: to what extent can the space complexity of Subset Sum
be reduced, without increasing the running time of Bellman’s algorithm?2 Besides the inherent interest in
designing algorithms with tiny space overhead, recall that low-space algorithms also imply efficient parallel
algorithms due to the well-known result that space-s algorithms can be solved in O(s2) parallel time with
poly(2s) work/processors [Pap94, Theorem 16.1]. For example, an O(log(nt))-space algorithm can be
applied to solve Subset Sum in O(log2(nt)) parallel time with poly(nt) work/processors.

PriorWork. Within the last decade, there has been substantial work on improving the space complexity of
pseudopolynomial-time algorithms for Subset Sum and related problems. Lokshtanov and Nederlof [LN10]
gave an algorithm running in Õ(n3t) time and Õ(n2 log t) space, using Fast Fourier Transforms over C. El-
berfeld, Jakoby, and Tantau [EJT10] gave a generic meta-theorem for placing problems in LOGSPACE, and
their result implies that Subset Sum is in pseudopolynomial time and logarithmic space. However no nice
bounds on the running time follow (for example, they need Reingold’s algorithm for s-t connectivity [Rei08],
which has a rather high-degree polynomial running time). Kane [Kan10] gave a more explicit logspace algo-
rithm; it can be shown that his algorithm as stated solves Subset Sum in deterministic Õ(n3t+ n2.025t1.025)
time and O(log(nt)) space.3 Recently, Bringmann [Bri17] showed that, assuming the Generalized Riemann
Hypothesis, the problem can be solved in randomized Õ(nt) time and Õ(n log t) space, and unconditionally
in randomized Õ(nt1+ε) time and Õ(ntε) space. Although the running time of Bringmann’s algorithm is
very close to the dynamic programming solution, the space bound is still Ω(n). (Bringmann also gives an
Õ(n+ t) time algorithm for Subset Sum that uses Ω(t) space.)

1.1 Our Results

We extend the algebraic and randomized approaches to Subset Sum in novel ways, obtaining randomized
algorithms that use very few random bits and essentially preserve Bellman’s running time, while reducing
the space usage all the way to O(log(nt)). We also obtain deterministic algorithms. Our first main result is
the following.

Theorem 1.1. The Subset Sum problem can be solved by randomized algorithms running in

1. Õ(nt) time and O(log(nt)) space, and read-only random access to O(log n log logn) random bits.

2. Õ(n1+εt) time and O(log(nt)) space, for any ε > 0, with O(log n) random bits.

Our algorithms are Monte Carlo, in that they always answer NO if there is no solution, and answer
YES with probability at least 99% if there is a solution. We also obtain a deterministic algorithm with
polylogarithmic space and Õ(n2t) time.

1In this paper, we work in a random-access model of word lengthΘ(logn+log t), and measure space complexity in total number
of bits.

2Recall the “space complexity” of an algorithm is the size of the working memory used by it; the input integers a1, . . . , an are
assumed to be stored in a read-only randomly-accessible array, which does not count towards the space complexity.

3Kane does not give an explicit running time analysis, but the best known (unconditional) result in number theory on gaps
between primes (namely, that there is always a prime in the interval [N,N + O(N0.525)] [BHP01]) implies such a running time.
See Remark 3.5.
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Theorem 1.2. Subset Sum can be solved deterministically in Õ(n2t) time and O(log t · log3 n) space.

Furthermore, we obtain time-space trade-off algorithms for Subset Sum.

Theorem 1.3. For every parameter 1 ≤ k ≤ min{n, t}, there is a randomized algorithm for Subset Sum
with 0.01 one-sided error probability, running in Õ((n+ t) · k) time and O((t/k) poly log(nt)) space.

For k = 1, Theorem 1.3 matches the near-linear time algorithm by Bringmann [Bri17]. For larger k, we
obtain the first algorithm that uses o(t) space and runs faster than Bellman’s dynamic programming.

It is interesting to compare the time-space tradeoff of Theorem 1.3 with known conditional lower bounds
on Subset Sum. Note that the product of the time bound T and space bound S in Theorem 1.3 is always at
least Θ̃(nt + t2). Results in fine-grained complexity show that, when T = S (the time bound equals the
space bound), an algorithm running in t1−ε/22o(n) time and t1−ε/22o(n) space for Subset Sum would refute
SETH [ABHS19], so in such a case the time-space product must be at least t2−ε · 2o(n). It is interesting
that, while Subset Sum can be solved in essentially nt time and logarithmic space (Theorem 1.1) and also in
Õ((n+t)·k) time and Õ(t/k) space, obtaining t.99 ·2o(n) time and t.99 ·2o(n) space appears to be impossible!

Remark 1.4. Our algorithms solve the decision version of Subset Sum. Another well-studied setting is the
optimization version, where we want to find the largest t′ ≤ t that can be expressed as a subset sum t′ =∑

i∈S ai. We remark that the optimization version reduces to the decision version, with an O(log t) extra
factor in time complexity: perform binary search for t′, calling an oracle that determines if there is a subset
sum with value x ∈ [t′, t] for our current t′. To implement this oracle, we add blog(t− t′+ 1)c+ 1 numbers
1, 2, 4, 8, . . . , 2blog(t−t

′+1)c−1, (t− t′)− 2blog(t−t
′+1)c + 1 into the input multiset. The subset sums of these

extra numbers are exactly 0, 1, 2, . . . , t−t′, so we can implement the oracle by running the decision algorithm
with target number t.

Note that a space-s decision algorithm for Subset Sum also implies a search algorithm that finds a subset
sum solution (assuming the outputs of the algorithm are written in an append-only storage), with space
complexity O(s + log t) and an extra multiplicative factor of n in the time complexity. By iterating over
all i = 1, . . . , n, and solving the instance ai+1, . . . , an with target t − ai (which can be stored in O(log t)
space), we can determine whether ai can be included in the subset sum solution for all i, updating the target
value accordingly. (For each ai, we can output whether or not it is included on append-only storage.)

The prior results (compared with ours) are summarized in Figure 1.

An Approximation Algorithm. As an application of our techniques, we also give “weak” approximation
algorithms for subset sum with low space usage. We define a weak ε-approximation algorithm to be one that,
on an instance A = [a1, a2, . . . , an], t, can distinguish the following two cases:

1. YES: There is a subset S ⊆ [n] such that (1− ε/2)t ≤
∑

i∈S ai ≤ t.

2. NO: For all subsets S ⊆ [n] either
∑

i∈S ai > (1 + ε)t or
∑

i∈S ai < (1− ε)t.

Mucha, Węgrzycki, and Włodarczyk [MWW19], who introduced the search version of the above problem,
gave a “weak” ε-approximation algorithm in Õ(n + 1/ε5/3) time and space. They observed that this weak
approximation algorithm implies an approximation algorithm (in the usual sense) for the Partition problem
(see [BN19] for further improvement on this problem), which is a special case of the Subset Sum problem
where the input satisfies a1 + · · ·+ an = 2t.

We show that our techniques can be applied to give an extremely space-efficient algorithm for weak
approximations of Subset Sum:

Theorem 1.5. There exists a Õ(min{n2/ε, n/ε2})-time and O(poly log(nt))-space algorithm for weak
approximation of Subset Sum.
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Reference Time Space (bits) D/R Caveats

[LN10] Õ(n3t) Õ(n2 log t) D
[EJT10] (nt)O(1) O(log(nt)) D
[Kan10] Õ(n3t+ n2.025t1.025) O(log(nt)) D

Corollary 3.2 Õ(n3t) O(log(nt)) D
Theorem 1.2 Õ(n2t) O(log t · log3 n) D

[Bri17] Õ(nt) Õ(n log t) R Requires GRH
[Bri17] Õ(nt1+ε) Õ(ntε) R

Theorem 1.1 Õ(nt) O(log(nt)) R
Access to

O(log n log logn)
random bits

Theorem 1.1 Õ(n1+εt) O(log(nt)) R
[Bri17] Õ(n+ t) Õ(t) R

Theorem 1.3 Õ((n+ t) · k) Õ(t/k) R 1 ≤ k ≤ min{n, t}

Figure 1: Best known (pseudo-polynomial) time-space upper bounds for solving Subset Sumwith n elements
with a target t. “D” means the algorithm is deterministic, “R” means randomized.

1.2 Overview

All of our algorithms build upon a key idea in Kane’s logspace algorithm. Kane skillfully applies the follow-
ing simple number-theoretic fact (the proof of which we will recall in Section 3):

Lemma 1.6. Let p be an odd prime and let a ∈ [1, 2p− 3] be an integer.

• If a 6= p− 1 then
p−1∑
x=1

xa ≡ 0 (mod p).

• If a = p− 1 then
p−1∑
x=1

xa ≡ p− 1 (mod p).

Given an instance a1, . . . , an, t of Subset Sum, Kane constructs the “generating function” E(x) =
xp−1−t

∏n
i=1(1+xai) (mod p) for a prime p > nt. In particular, we computeE′ =

∑p−1
x=1E(x) (mod p).

The key idea is that, by Lemma 1.6, subset sums equal to t will contribute p − 1 in the sum E′, while all
other subset sums will contribute 0, allowing us to detect subset sums (if p is chosen carefully). The running
time for evaluatingE′ is Ω(n2t) because of the large choice of p. Intuitively, Kane needs p ≥ Ω(nt) because
the “bad” subset sums (which we want to cancel out) can be as large as Ω(nt), and modulo p there is no
difference between t and t+ p.

Our algorithms manage to get away with choosing p ≤ Õ(t), but they accomplish this in rather different
ways. We now briefly describe the three main theorems.

The Randomized Logspace Algorithm. Our randomized logspace algorithms (Theorem 1.1) combine
ideas fromKane’s logspace algorithm and Bringmann’s faster Õ(n+t)-time algorithm, applying several tools
from the theory of pseudorandom generators (k-wise δ-dependent hash functions and explicit constructions
of expanders) to keep the amount of randomness low.

The key is to apply an idea from Bringmann’s Subset Sum algorithm [Bri17]: we randomly separate
the numbers of the Subset Sum instance into different ranges. For each range, we compute corresponding
generating functions on the numbers in those ranges, and combine ranges (by multiplication) to obtain the
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value of the generating function for the whole set. If we can keep the individual ranges small, we can ensure
a prime p ≤ Õ(t) suffices. To perform the random partitioning with low space, we define a new notion of
“efficiently invertible hash functions” and prove they can be constructed with good parameters. Such a hash
function h has a load-balancing guarantee similar to a truly random partition, and the additional property that,
given a hash value v, we can list all the preimages x satisfying h(x) = v with time complexity that is near-
linear in the number of such preimages. Such families of invertible hash functions may be of independent
interest.

The Deterministic Algorithm. In the randomized logspace algorithm, we modified Kane’s algorithm so it
can work modulo a prime p ≤ Õ(t). This was achieved by mimicking Bringmann’s randomized partitioning
and color-coding ideas. While this approach yields fast low-space randomized algorithms, it seems one
cannot derandomize color-coding deterministically without a large blowup in time.

Instead of randomly partitioning, our deterministic algorithm (Theorem 1.2) uses a very different ap-
proach. We apply deterministic approximate counting in low space (approximate logarithm), in the vein of
Morris’s algorithm [Mor78] for small-space approximate counting, to keep track of the number of elements
contributing to a subset sum. This allows us to work modulo a prime p ≤ Õ(t). Along the way, we define a
special polynomial product operation that helps us compute and catalog approximate counts efficiently.

TheTime-Space Trade-off. Our time-space trade-off algorithm (Theorem 1.3) uses a batch evaluation idea
and additional algebraic tricks. In Kane’s framework, we need to evaluate the generating function at all non-
zero points x = 1, 2, . . . , p− 1. To reduce the running time, we perform the evaluation in k batches, where
each batch has (p−1)/k points to evaluate.4 In one batch, letting the evaluation points be b1, b2, . . . , b(p−1)/k,
we define a polynomial

B(x) := (x− b1)(x− b2) · · · (x− b(p−1)/k)

of degree (p−1)/k. By choosing the batches of evaluation points judiciously (see Lemma 6.1), we can ensure
that for every batch, the polynomial B(x) has only two terms, making it possible to perform the mod B(x)
operation efficiently in low space. We compute the generating function moduloB(x), which agrees with the
original polynomial on the evaluation points bi. Then, we can efficiently recover the values at these points
using fast multipoint evaluation [Fid72]. By performing the evaluation in this way, the space complexity
of performing polynomial operations becomes roughly p/k. Using Bringmann’s algorithm, we can choose
p ≤ Õ(t). The time complexity of one batch is Õ(n+ t), so the total time is Õ((n+ t)k).

The Approximation Algorithm. All of our subset sum algorithms can be modified to work even if we
want to check if there is a subset with sum in a specified range, instead of being a fixed value. This property
is used in our “weak” ε-approximation algorithm (Theorem 1.5). Our approximation algorithms also use
ideas from previous subset sum approximation algorithms [MWW19, KMPS03] such as rounding elements
and separating elements into bins of “small” and “large” elements.

1.3 Other Related Work on Subset Sum

The first Õ(n+ t)-time (randomized) algorithm for Subset Sum was given by Bringmann [Bri17] (see also
[JW19] for log-factor improvements). For deterministic algorithms, the best known running time is Õ(n +
t
√
n) [KX19]. Abboud, Bringmann, Hermelin, and Shabtay [ABHS19] proved that there is no t1−δ · 2o(n)

time algorithm for Subset Sum for any δ > 0, unless the Strong Exponential Time Hypothesis (SETH) fails.
4For simplicity, in this discussion we work modulo a prime p. For technical reasons, our actual algorithms have to work over an

arbitrary finite field Fq where q is a prime power. Informally, this is because we need our parameter k to divide p− 1; if we allow
p to be an arbitrary prime power and apply some analytic number theory, this is essentially possible by adjusting p and k.
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Recently, Bringmann and Wellnitz [BW20] showed an Õ(n)-time algorithm for Subset Sum instances that
satisfy certain density conditions.

Bansal, Garg, Nederlof, and Vyas [BGNV18] obtained space-efficient algorithms for Subset Sum with
running time exponential in n but polynomial in log t. They showed that Subset Sum (and Knapsack) can be
solved in 20.86n · poly(n, log t) time and poly(n, log t) space (assuming random read-only access to expo-
nentially many random bits). Note that currently the fastest algorithm in this regime uses 2n/2 ·poly(n, log t)
time and 2n/4 · poly(n, log t) space [HS74, SS81] (the space complexity was recently slightly improved by
Nederlof and Węgrzycki [NW20]).

Limaye, Mahajan, and Sreenivasaia [LMS12] proved that Unary Subset Sum (where all numbers are
written in unary) is TC0-complete. This implies that Subset Sum can be solved by constant-depth circuits
with a pseudopolynomial number of MAJORITY gates.

It is well-known that Subset Sum also has a fully polynomial-time approximation scheme (FPTAS),
which outputs a subset with sum in the interval [(1 − ε)t′, t′], where t′ is the maximum subset sum not
exceeding t. The most efficient known approximation algorithms are [KMPS03] which runs in time about
Õ(min{n/ε, n + 1/ε2}) and space Õ(n + 1/ε), and [GJL+16] which runs in time O(n2/ε) and space
O((log t)/ε + log n). Bringmann and Nakos [BN19] showed that the time complexity of approximating
Subset Sum cannot be improved to (n+1/ε)2−δ for any δ > 0, unlessMin-Plus Convolution can be computed
in truly subquadratic time.

2 Preliminaries

Let [n] denote {1, 2, . . . , n}, and let log x denote log2 x. We will use Õ(f) (and Ω̃, Θ̃) to denote a bound
omitting poly log(f) factors.

2.1 Finite Fields

We will use finite field arithmetic in our algorithm. Given k ≥ 1 and prime p, we construct the finite field
Fq of order q = pk by finding an irreducible polynomial of degree k over Fp, which can be solved by a (Las
Vegas) randomized algorithm in time poly(log p, k) ≤ poly log q (e.g., [Sho94]).

For k = 2, an irreducible polynomial can be found deterministically in O(q) time and O(log q) space: it
suffices to find a quadratic non-residue modulo p, since x2−a can be factored iff a has a square root modulo
p. To find a quadratic non-residue, we simply enumerate all a ∈ F∗p and check if a has a square root in O(p)
time and O(log p) space. The total running time is O(p2) = O(q).

2.2 Expanders

To keep the randomness in our algorithms low, we use “strongly explicit” constructions of expander graphs.

Definition 2.1 (Expander graphs). An n-vertex undirected graph G is an (n, d, λ)-expander graph if G is
d-regular and λ(G) ≤ λ, where λ(G) is the second largest eigenvalue (in absolute value) of the normalized
adjacency matrix of G (i.e., the adjacency matrix of G divided by d).

For constant d ∈ N and λ < 1, a family of graphs {Gn}n∈N is a (λ, d)-expander graph family if for
every n, Gn is an (n, d, λ)-expander graph.

Theorem 2.2 (Explicit Expanders [Mar73, GG81]). There exists a (λ, d)-expander graph family {Gn} for
some constants d ∈ N and λ < 1, along with an algorithm that on inputs n ∈ N, v ∈ [n], i ∈ [d] outputs the
i-th neighbor of v in graph Gn in poly log n time and O(log n) space.

5



We also need the following tail bound, showing that a random walk on an expander graph behaves simi-
larly to a sequence of i.i.d. randomly chosen vertices.

Theorem 2.3 (Expander Chernoff Bound, [Gil98]). Let G be an (n, d, λ)-expander graph on the vertex set
[n]. Let f : [n] → {0, 1}, and µ = Ev∈[n] f(v). Let v1, v2, . . . , vt be a random walk on G (where v1 is
uniformly chosen, and vi+1 is a random neighbor of vi for all i). Then for δ > 0,

Pr
v1,...,vt

[
1

t

t∑
i=1

f(vi) < µ− δ

]
≤ e−(1−λ)δ2t/4.

2.3 Polynomial operations

We will also utilize the classic multipoint evaluation algorithm for (univariate) polynomials.

Theorem 2.4 (Fast multipoint evaluation [Fid72]). 5 Every univariate polynomial over F of degree less than
n can be evaluated at n points in O(M(n) log n) time and O(n log n · log |F|) space, where M(n) is the
time complexity of polynomial multiplication over F.

Note that we can perform polynomial multiplication over Fq using FFT in Õ(n · poly log(q)) time.

3 Kane’s Number-Theoretic Approach

In this section, we will review Kane’s number-theoretic technique for solving Subset Sum [Kan10]. Kane
used this technique to obtain a deterministic algorithm for Subset Sum, but it is straightforward to adapt it to
the randomized setting. We will also improve Kane’s deterministic algorithm.

As discussed in the introduction section, Kane utilizes the following simple fact.

Lemma 3.1. Let q = pk be a prime power and let a be a positive integer. Let F∗q denote the set of non-zero
elements in the finite field Fq. Then

• If q − 1 does not divide a, then
∑

x∈F∗q x
a = 0.

• If q − 1 divides a, then
∑

x∈F∗q x
a = −1.

Proof. The multiplicative group F∗q is cyclic. Let g be a generator of F∗q . For q − 1 - a, ga 6= 1 and we have

∑
x∈F∗q

xa =

q−2∑
i=0

gai =
1− ga(q−1)

1− ga
= 0.

When q − 1 | a, ∑
x∈F∗q

xa = (q − 1) · 1 = −1.

The proof is complete.

Corollary 3.2. Let f(x) =
∑d

i=0 cix
i be a polynomial of degree at most d, where coefficients ci are integers.

Let Fq be the finite field of order q = pk ≥ d+ 2. For 0 ≤ t ≤ d, define

rt :=
∑
x∈F∗q

xq−1−tf(x) ∈ Fq.

Then rt = 0 if and only if ct is divisible by p.
5A good modern reference is [vzGG13, Section 10.1].
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Proof. We have

rt =
d∑
i=0

ci
∑
x∈F∗q

xi+q−1−t = −ct,

where the last equality follows from Lemma 3.1 and |i − t| ≤ d < q − 1. Hence rt equals 0 iff −ct is an
integer multiple of the characteristic of Fq.

The following lemma generalizes the main technique of Kane’s algorithm for Subset Sum [Kan10], ex-
tending it to randomized algorithms.

Lemma 3.3 (Coefficient Test Lemma). Consider a polynomial f(x) =
∑d

i=0 cix
i of degree at most d, with

integer coefficients satisfying |ci| ≤ 2w. Suppose there is a T -time S-space algorithm for evaluating f(a)
given a ∈ Fq, where q ≤ O(d+ w).

Then, there is an O((d + w) · (T + w + log d))-time and O(S + log(dw))-space algorithm using
logw− log logw+O(1) random bits that, given 0 ≤ t ≤ d, tests whether f(x) has a non-zero xt coefficient
ct, with at most 0.01 one-sided probability of error.

Trying all random choices, this yields a deterministic algorithm inO((d+w) ·(T+w+log d) ·w/ logw)
time and O(S + log(dw)) space.

Proof. We consider two cases, based on whether the degree of f is “high” or “low” compared to the cofficient
size.

Case 1: d > w2. By the Prime Number Theorem, we can pick B = O(d) such that the interval
[
√
d+ 2,

√
B] contains at least m = 100w/ log

√
d+ 2 primes. We can deterministically find such primes

p1, . . . , pm by simple trial division, in O(log d) space and O(
√
B · (

√
B)1/2) ≤ O(d3/4) total time. Let

qi := p2i . Then the qi’s are prime powers in the interval [d+ 2, B].
Randomly pick i ∈ [m], and let q := qi, p := pi. We compute rt =

∑
x∈F∗q x

q−1−tf(x) by running
the evaluation algorithm (and the modular exponentiation algorithm for computing xq−1−t) (q − 1) times,
in (q − 1) · (T + O(log q)) ≤ O(d(T + log d)) total time. By Corollary 3.2, rt = 0 if and only if p is a
prime factor of ct. As |ct| ≤ 2w, a non-zero ct has at most w/ log

√
d+ 2 prime factors from the interval

[
√
d+ 2,

√
B], so the probability that p is a prime factor is at most (w/ log

√
d+ 2)/m = 1/100.

Case 2: d ≤ w2. By the Prime Number Theorem, settingB = Θ(d+w), the interval [max{d+2, w}, B]
contains at least m = 100w/ logw primes. As in the first case, we can deterministically find such primes
p1, . . . , pm by trial division, in O(logB) space and O(B ·

√
B) ≤ O((d+ w)w) total time.

We randomly pick i ∈ [m] and let p := pi. We compute rt =
∑

x∈F∗p x
p−1−tf(x) by running the

evaluation algorithm p − 1 times, in (p − 1) · (T + O(log p)) ≤ O((d + w)(T + log(d + w))) total time.
By Corollary 3.2, rt = 0 if and only if p is a prime factor of ct. As |ct| ≤ 2w, a non-zero ct has at most
w/ logw prime factors from the interval [max{d+ 2, w}, B], so the probability that p is a prime factor is at
most 1/100.

To make the above tests deterministic, we simply iterate over all i ∈ [m]. Note that we only used finite
fields of order q = p or q = p2, the latter of which can be constructed deterministically in O(q) time and
O(log q) space (see Section 2.1).

Corollary 3.4. Subset Sum can be solved deterministically inO(n3t log t/ log n) time andO(log(nt)) space.

Proof. Define f(x) =
∏n
i=1(1 + xai) as the generating function of the Subset Sum instance. It has degree

d =
∑n

i=1 ai ≤ nt, and integer coefficients at most 2n. Given x ∈ Fq, f(x) can be evaluated in T =
O(n log t) time, O(log(nt)) space. By Lemma 3.3 we have an O(n3t log t/ log n)-time O(log(nt))-space
deterministic algorithm.
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Remark 3.5. Our deterministic algorithm is slightly different from Kane’s original algorithm (which is es-
sentially the “Case 2” in the proof of Lemma 3.3). Kane’s deterministic algorithm needs to find Ω̃(n) many
primes p > nt for constructing the finite fields. This could be time-consuming, as it takes square-root time
to perform primality test6. Our algorithm solves this issue by working over Fp2 instead of Fp (as in “Case
1”)7.

Here we give an upper bound on the running time of Kane’s original algorithm for finding primes. By
the prime number theorem, in the interval [nt, 100nt] there exist at least nt/ log(nt) ≥ n/ log n primes. On
the other hand, by [BHP01], the interval [N,N +O(N0.525)] contains a prime, so we can find Ω̃(n) primes
from the interval [nt, nt + n · (nt)0.525]. Hence, it suffices to search for all the primes from the interval
[nt, nt+ min{99nt, n · (nt)0.525}], in O(min{nt, n · (nt)0.525} ·

√
nt) time and O(log(nt)) space. So the

total time complexity of Kane’s algorithm is Õ(min{nt, n · (nt)0.525} ·
√
nt+n3t) = Õ(n2.025t1.025 +n3t),

where the first term becomes dominant when t� n39.

4 Randomized Algorithm

Our randomized algorithm uses color-coding (i.e., random partitioning), which plays a central role in Bring-
mann’s algorithm for Subset Sum [Bri17]. By randomly partitioning the input elements into groups, with
high probability, the number of relevant elements (i.e., elements appearing in a particular subset with sum
equal to t) that any group receives is not much larger than the average. Once this property holds, then from
each group we only need to compute the possible subset sums achievable by subsets of small size.

However, storing a uniform random partition of the elements will, in principle, require substantial space
(at least Ω(n)). We shall modify the random partitioning technique in a way that uses very low space. To
do this, we need a way to quickly report the elements from a particular group, without explicitly storing the
whole partition in memory. We formalize our requirements in the following definition.

Definition 4.1 (Efficiently Invertible Hash Functions). For 1 ≤ m ≤ n, a family H = {h : [n] → [m]} is
a family of efficiently invertible hash functions with parameter k(n) ≥ 1, seed length s(n) ≥ log n, and
failure probability δ, if |H| = 2s(n) and the following properties hold:

(Load Balancing) Let Si = {x ∈ [n] : h(x) = i}. For every set S ⊆ [n] of sizem,

Pr
h∼H

[
max
i∈[m]

|S ∩ Si| ≤ k(n)
]
> 1− δ.

(Efficient Invertibility) Given an s(n)-bit seed specifying h ∈ H and i ∈ [m], all elements of Si can be
reported in O(|Si| · poly log n) time and O(log n) additional space.8

The goal of this section is to show that good implementations of efficiently invertible hash functions
imply time and space efficient Subset Sum algorithms.

Theorem 4.2. Suppose for every constant c ≥ 1, one can implement an efficiently invertible hash family
with parameter k(n) ≥ 1, seed length s(n) ≥ log n and failure probability 1/nc.

Then, given random and read-only access to a string of s(n) random bits, Subset Sum can be solved with
constant probability in Õ(nt · poly(k(n))) time and O(log(nt)) space. This implies that Subset Sum can be
solved with constant probability in Õ(nt · poly(k(n))) time and O(s(n) + log(t)) space.

6We could of course use more time-efficient algorithms such as AKS [AKS04], but it is not clear how to implement them in
logspace, rather than poly-log space.

7This extension was already observed by Kane in [Kan10, Section 3.1], but the purpose there was not to reduce the time com-
plexity of generating primes.

8Note that the output bits do not count towards the space complexity.
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Here we state two efficiently invertible hash families of different parameters and seed lengths. Their
construction will be described in Section 5.

Theorem 4.3. For any constants c ≥ 1 and ε > 0,

(1) there is an efficiently invertible hash family with parameter k(n) = O(log n), seed length s(n) =
O(log n log log n) and failure probability 1/nc. And,

(2) there is an efficiently invertible hash family with parameter k(n) = O(nε), seed length s(n) = O(log n),
and failure probability 1/nc.

Note that Theorem 1.1 immediately follows from Theorem 4.2 and Theorem 4.3.

The algorithm given by Theorem 4.2 has a similar overall color-coding structure as in Bringmann’s Sub-
set Sum algorithm [Bri17], but it applies a generating function approach akin to Kane’s Subset Sum algo-
rithm [Kan10]. In particular, on a Subset Sum instance with target t, the algorithm constructs a polynomial
f(x) (depending on the input and the random bits), which always has a zero xt coefficient for NO-instances,
and with 0.99 probability has a non-zero xt term for YES-instances. Applying the Coefficient Test Lemma
(Lemma 3.3), we can use the evaluation of f(x) to solve Subset Sum.

4.1 Description of the algorithm

We now proceed to proving Theorem 4.2. We describe an algorithm Evaluate that evaluates such a polyno-
mial f(x) over Fq. To keep the pseudocode clean, we do not specify the low-level implementation of every
step. In the next section, we will elaborate on how to implement the pseudocode in small space.

Layer Splitting. We use the layer splitting technique from Bringmann’s Subset Sum algorithm [Bri17].
Given the input (multi)set of integers A = {a1, . . . , an} and target t, we define Li := A ∩ (t/2i, t/2i−1] for
i = 1, 2, . . . , dlog ne − 1, and let Ldlogne = A\(L1 ∪ · · · ∪ Ldlogne−1).

In the following analysis, for a given YES-instance, fix an arbitrary solution set R ⊆ A which sums to t.
The elements appearing in R are called relevant, and the elements in A \R are irrelevant. Observe that the
i-th layer Li can only contain at most 2i relevant elements.

Two-level random partitioning. For each layer Li, we apply two levels of random partitioning, also as
in Bringmann’s algorithm. In the first level, we use our efficiently invertible hash function (specified by a
random seed r1 of length s(n)) to divide Li into ` = 2i groups S1, . . . , S`, so that with high probability each
Sj contains at most k relevant elements.

In the second level, we use a pairwise independent hash function (specified by random seed v of length
s′ = O(log n)) to divide each group Sj into k2 mini-groups T1, . . . , Tk2 , so that with≥ 1/2 probability each
relevant element in Sj appears in a distinct Ti, isolated from the other relevant elements in Sj .

We repeat the second-level partitioning for m = O(log n) rounds, increasing the success probability to
1−1/poly(n). However, instead of using fresh random bits each round (in which the total seed length would
become ms′ = O(log2 n)), we use the standard expander-walk sampling technique: we pseudorandomly
generate the seeds v1, . . . , vm by taking a length-m random walk on a strongly explicit expander graph
(Theorem 2.2), where each vertex vi represents a possible s′-bit seed. The random walk is specified by
the seed r2 which only has s′ +O(m) = O(log n) bits.
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Function Evaluate(x,A, t, r1, r2)
1: Let Li := A ∩ (t/2i, t/2i−1] for i = 1, 2, . . . , dlog ne − 1
2: Let Ldlogne := A \ (L1 ∪ · · · ∪ Ldlogne−1)
3: u = 1
4: for i = 1, . . . , dlog ne do
5: u = u · PartitionLevel1(x, Li, i, r1, r2)
6: return u

Function PartitionLevel1(x, L, i, r1, r2)
1: Let ` = 2i

2: Partition L = S1 ∪̇ · · · ∪̇ S` using the efficiently invertible hash function h with parameter k(n),
specified by seed r1

3: u = 1
4: for j = 1, . . . , ` do
5: u = u · PartitionLevel2(x, Sj , k, r1, r2)
6: return u

Function PartitionLevel2(x, S, k, r1, r2)
1: u = 0,m = c′ log n (where c′ is a sufficiently large constant)
2: Let v1, . . . , vm ∈ {0, 1}O(logn) be the seeds extracted from r2 using expander walk sampling.
3: for j = 1, . . . ,m do
4: Partition S = T1 ∪̇ · · · ∪̇ Tk2 using the pairwise-independent hash function specified by seed vj
5: w =

∏k2

i=1

(
1 +

∑
a∈Ti x

a
)

6: u = u+ w
7: return u

Analysis. Now we turn to analyzing the algorithm. It is easy to see that the output values of all three
algorithms Evaluate, PartitionLevel1, and PartitionLevel2 can be expressed as polynomials in the
variable x, with coefficients determined by the parameters (except x) passed to the function calls. In the
following we will state and prove the key properties satisfied by the polynomials output by these algorithms.

In our analysis, the “xσ term” of a polynomial will be construed as the integer coefficient of xσ overZ, al-
though in our actual implementation we will perform all arithmetic operations (additions andmultiplications)
in Fq (as in the Coefficient Test of Lemma 3.3).

Lemma 4.4. The output of PartitionLevel2(x, S, k, r1, r2) is a polynomial P (x) of degree at most k2 ·
maxa∈S a, with non-negative coefficients bounded by P (1) ≤ 2O(k2 logn).

Suppose S contains at most k relevant elements RS ⊆ S, and let σ =
∑

a∈RS
a. Then P (x) contains a

positive xσ term with 1− 1
nc2 probability for any desired constant c2 ≥ 1.

Proof. By construction, the output polynomial P (x) has degree at most k2 · maxa∈S a and non-negative
coefficients bounded by P (1) ≤ m · (n+ 1)k

2 ≤ 2O(k2 logn).
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Let h′v : [|S|] → [k2] be the pairwise independent hash function specified by the seed v of length s′ ≤
O(log |S|+log k2) ≤ O(log n) bits (such a pairwise independent family can be easily evaluated in logspace
and essentially linear time, cf. [Vad12]). For randomly chosen v, each pair of distinct relevant items are
hashed into the same mini-group Ti with probability 1/k2. By a union bound over k(k − 1)/2 pairs of
relevant items, the probability that all relevant items are isolated (end up in distinct mini-groups) is at least
1− k(k−1)/2

k2
≥ 1/2.

The seeds v1, . . . , vm are generated by taking a length-m random walk on a strongly explicit (2s
′
, d, γ)-

expander graph for some constants d ∈ N, λ < 1 (Theorem 2.2). By the Expander Chernoff Bound (Theo-
rem 2.3), over the choice of random seeds v1, . . . , vm,

Pr

 1

m

m∑
j=1

[vj isolates all relevant items] < 1/2− 1/4

 ≤ e−(1−λ)(1/4)2m/4.
Choosing m := c′ log n for a sufficiently large constant c′, the above probability is at most n−c2 for any
desired constant c2 ≥ 1. Hence with probability at least 1 − n−c2 , there is a j ∈ [m] such that the seed vj
isolates all relevant items into different mini-groups T1, . . . , Tk2 . In such a case, the product

k2∏
i=1

1 +
∑
a∈Ti

xa


must have a positive xσ term. Hence, the sum u also has a positive xσ term.

Lemma 4.5. The output of PartitionLevel1(x, L, i, r1, r2) is a polynomialQ(x) of degree at most 2k2t,
with non-negative coefficients bounded by Q(1) ≤ 2O(2ik2 logn).

Let RL ⊆ L be the subset of relevant elements, and σ =
∑

a∈RL
a. Then Q(x) contains a positive xσ

term with 1− 1
nc3 probability for any desired constant c3 ≥ 1.

Proof. By Lemma 4.4, the degree of every return value of PartitionLevel2(x, Sj , k, r1, r2) as a polyno-
mial is at most k2 ·maxa∈Sj a. Hence, the degree of Q(x) as a polynomial is at most ` · k2 ·maxa∈Li a ≤
` · k2 · t/2i−1 = 2k2t. And Q(1) is the product of ` = 2i many P (1)’s, which is at most 2O(2ik2 logn).

Recall that |RL| ≤ ` = 2i. Let Rj := RL ∩ Sj and σj :=
∑

a∈Rj
a. By the properties of efficiently

invertible hash families, we have |Rj | ≤ k for every j ∈ [`] with probability 1− n−c.
Thus by Lemma 4.4 and the union bound, with probability 1 − n−c3 (for any desired constant c3 ≥ 1),

for every j ∈ [`], the output polynomial P (x) of PartitionLevel2(x, Sj , k, r1, r2) has a positive xσj term.
In such a case, Q(x) has a positive xσ1+···+σ` = xσ term.

Lemma 4.6. The output of Evaluate(x,A, r1, r2) is a polynomial S(x) of degree at most 2k2t · dlog ne,
with non-negative coefficients bounded by S(1) ≤ 2O(min{n,t}·k2 logn).

Let R ⊆ A be the subset of relevant elements, and t =
∑

a∈R a. Then S(x) contains a positive xt term
with 1− 1

nc4 probability, for any desired constant c4 ≥ 1.

Proof. By Lemma 4.5, each call to PartitionLevel1(x, Li, i, r1, r2) returns a polynomialQ(x) of degree
at most 2k2t with non-negative coefficients, and Q(1) ≤ 2O(2ik2 logn). Hence, the degree of the product
polynomial S(x) is at most 2k2t · dlog ne. And,

S(1) ≤ 2O(k2 logn)·(21+22+···+2i
′
) ≤ 2O(2i

′
k2 logn),

where i′ ≤ dlog ne and t/2i′−1 ≥ 1 (for non-empty L1, . . . , Li′).
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Let Ri := R ∩ Li and σi =
∑

a∈Ri
a. By Lemma 4.5 and the union bound, with probability at least

1 − n−c4 (for any desired constant c4 ≥ 1), for every i = 1, . . . , dlog ne, the output polynomial Q(x) of
PartitionLevel1(x, Li, i, r1, r2) contains a positive xσi term. In such a case, the final product S(x) has
a positive xσ1+···+σdlogne = xt term.

4.2 Implementation

Now we describe in more detail how to implement Evaluate, PartitionLevel1, and PartitionLevel2
in logarithmic space (assuming read-only access to random seeds r1, r2), and analyze the time complexity.

Lemma 4.7. Assuming read-only access to random seeds r1, r2, the procedure Evaluate (where arithmetic
operations are over Fq with q = Ω(t)) runs in Õ(n · poly(k, log q)) time and O(log(nq)) working space.

Proof. Recall A = {a1, . . . , an} is the set of input integers. In Evaluate(x,A, t, r1, r2), we do not have
enough space to collect all elements ofLi and pass them to PartitionLevel1. Instead, in PartitionLevel1,
we partition the set A into ` groups S′1, . . . , S′` using an efficiently invertible hash function h : [n] → [`],
specified by seed r1 (on different layers, the value of ` = 2i is different, but we will use the same seed r1
to generate h : [n] → [`]). Next, we define the partition of Li = S1 ∪̇ · · · ∪̇ S` by Sj := S′j ∩ L. By the
efficient invertibility property, assuming read-only access to the seed r1, we can iterate over the elements of
Sj inO(|S′j | ·poly log(n)) time andO(log n) space, by iterating over |S′j | and ignoring the elements that do
not belong to Li. Hence, iterating over S1, . . . , S` takes Õ(n) time in total.

In PartitionLevel2(x, S, k, r1, r2), we iterate over j = 1, . . . ,m, and compute each vj in O(log n)
space by following the expander walk. In the loop body, for every Ti, we compute

(
1 +

∑
a∈Ti x

a
)
in

O(log n+log q) space by iterating over S and ignoring the elements that do not belong to Ti. In total, we iter-
ate overS formk2 passes during the execution of PartitionLevel2(x, S, k, r1, r2). In PartitionLevel1,
the procedure PartitionLevel2 is called once for each Sj , so the total time is Õ(n ·mk2 · poly log(q)).
Therefore, over all dlog ne layers, the total time complexity of Evaluate is Õ(n · poly(k log q)), and the
space complexity is O(log(nq)).

We complete this section by proving Theorem 4.2, which demonstrates how to solve Subset Sum effi-
ciently from an efficiently invertible hash family by computing Evaluate on many values of x.

Proof of Theorem 4.2. By Lemma 4.6, the output of Evaluate is a polynomial of degree d = O(t ·
poly(k, log n)), with non-negative coefficients bounded by 2w where w = O(min{n, t} · poly(k, log n)).

Applying the Coefficient Test Lemma (Lemma 3.3) to the efficient Evaluate algorithm of Lemma 4.7
with running time T = Õ(n · poly(k, log q)) where q ≤ O(d + w), we can test whether the output of
Evaluate as a polynomial contains a positive xt term in Õ((d+ w)(T + w)) ≤ Õ(nt · poly(k)) time and
O(log(nt)) space.

To complete our randomized algorithm for Subset Sum, it remains to provide the efficiently invertible
hash families claimed in Theorem 4.3, which we do next.

5 Construction of Efficiently Invertible Hash Families

Now we show how to construct the efficiently invertible hash families (Definition 4.1) used by the function
PartitionLevel1 in our algorithm from Section 4. Our construction has a similar structure to the hash
family constructed by Celis, Reingold, Segev, and Wieder [CRSW13], which achieves the load-balancing
property of our hash functions. By making several modifications to their construction, the hash family can
be made efficiently invertible.
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Theorem 5.1. For any c > 0, and integers 1 ≤ m ≤ n which are both powers of 2, there is a family Hn,m
of bijections h : [n]→ [m]× [n/m] satisfying the following conditions.

• Each function h ∈ Hn,m can be described by an O(log n log log n)-bit seed.

• Given the seed description of h ∈ Hn,m, h(x) can be computed in O((log log n)2) time and O(log n)
space for any x ∈ [n], and h−1(i, j) can be computed in O((log log n)2) time and O(log n) space for
any i ∈ [m], j ∈ [n/m].

• For i ∈ [m], let Si := {x ∈ [n] : h(x) = (i, j) for some j ∈ [n/m]}. There is a constant γ > 0 such
that for every set S ⊆ [n] of sizem,

Pr
h∈Hn,m

[
max
i∈[m]

|S ∩ Si| ≤ γ log n
]
> 1− 1

nc
.

Remark 5.2. The original construction of [CRSW13] achieves the optimal load-balancing parameter γ logn
log logn ,

rather than γ log n. Such a bound is also achievable for us; for simplicity we state a weaker version here,
which is sufficient for our purpose.

We observe that Theorem 5.1 immediately implies an efficiently invertible hash family with the desired
parameters claimed in Theorem 4.3(1). In particular, to invert a hash value i, we simply iterate over j ∈ [n/m]
and output the unique x ∈ [n] such that h(x) = (i, j).

Corollary 5.3. For any constant c ≥ 1, there is an efficiently invertible hash family with parameter k(n) =
O(log n), seed length s(n) = O(log n log logn) and failure probability 1/nc.

Wenowdescribe the construction ofHn,m. The analysis of correctness is basically the same as [CRSW13];
for completeness, we include this analysis in Appendix A.

We begin with a construction of an almost k-wise independent hash family.

Definition 5.4. A family F of functions f : [u] → [v] is k-wise δ-dependent if for any k′ ≤ k distinct
elements x1, . . . , xk′ ∈ [u], the statistical distance between the distribution (f(x1), . . . , f(xk′)) where f is
uniformly randomly chosen from F and the uniform distribution over [v]k

′ is at most δ.

Lemma 5.5 ([AGHP90, MRRR14]). Let k · ` ≤ O(log n), w ≤ O(log n), and δ = 1/ poly(n). There is a
k-wise δ-dependent familyH of functions from {0, 1}w to {0, 1}`, where each h ∈ H can be specified by an
O(log n)-bit seed, and each h can be evaluated in poly log n time.

Our construction of the family of bijections in Theorem 5.1 has a d-level structure, where d = O(log log n).
First we assign some parameters:

• m0 = m,mi = mi−1/2
`i for every i ∈ [d];

• `i = b(logmi−1)/4c for i ∈ [d− 1], and `d = logm−
∑d−1

i=1 `i;

• ki`i = Θ(log n), and ki is even for every i ∈ [d− 1];

• kd = Θ(log n/ log logn);

• δ = 1/ poly(n).
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The constant factors d, ki, log(1/δ) all depend on the constant c, and are specified further in the analysis of
Appendix A.

For every i ∈ [d], let
ni := mi · (n/m).

For each i ∈ [d], independently sample a gi : [ni] → [2li ] from a ki-wise δ-dependent family using a
O(log n)-bit random seed (Lemma 5.5). The total seed length is thus d · O(log n) ≤ O(log n log logn).
For i ∈ [d], we define a bijection fi : [2li ]× [ni]→ [ni−1] by

fi(b, u) := (b⊕ gi(u)) ◦ u,

where ◦ stands for concatenation. Note that f−1i (·) can be computed with one evaluation of gi(·).
Now we define the bijections h : [n]→ [m]× [n/m]. Given input x0 ∈ [n], let

(bi, xi) = f−1i (xi−1)

for i = 1, 2, . . . , d. Then we define

h(x0) := (b1 ◦ · · · ◦ bd, xd).

To compute the inverse x0 = h−1(b1 ◦ · · · ◦ bd, xd), we can simply compute xi−1 = fi(bi, xi) for each
i = d, d− 1, . . . , 1, and eventually find x0. This also shows that h is a bijection.

Remark 5.6. The above construction of the bijection h : [n] → [m] × [n/m] can be naturally viewed as a
depth-d tree structure, similar to [CRSW13]. The root node (at level 0) represents an array containing all
elements of [n] in ascending order. For 0 ≤ i ≤ d, the i-th level of the tree has 2`1+`2+···+`i = n/ni nodes,
each representing a length-ni array. A node B at level (i− 1) has 2`i children B1, . . . , B2`i , which form a
partition of the elements in array B: the u-th element of array Bb equals the fi(b, u)-th element of array B.
At level d, there arem leaf nodes S1, . . . Sm, forming a partition of [n], where the u-th element of array Sb
is h−1(b, u).

By reducing the depth d to a constant in the construction, we can achieve O(log n) seed length, but with
a worse load-balancing parameter k(n) = nε, for any ε > 0.

Corollary 5.7. For any constants c ≥ 1 and ε > 0, there is an efficiently invertible hash family with
parameter k(n) = O(nε), seed length s(n) = O(log n), and failure probability 1/nc.

The proof sketch is deferred to Appendix A.

6 Time-Space Tradeoffs for Subset Sum

In this section we present an algorithm achieving a time-space tradeoff for Subset Sum. Our algorithm uses
several algebraic and number-theoretic ideas in order to trade more space for a faster running time.

Reminder of Theorem 1.3 For any parameter 1 ≤ k ≤ min{n, t}, there is a randomized algorithm for
Subset Sum with 0.01 one-sided error probability, running in Õ((n+ t) · k) time andO((t/k) poly log(nt))
space.

Our algorithm also uses Bringmann’s framework combined with Kane’s number-theoretic technique, as
described in Section 4. Recall that in the algorithm of Section 4, assuming we use the hash family from
Theorem 4.3(1) with parameter O(log n), we evaluated a particular generating function (a polynomial of
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degree at most tpoly log n, by Lemma 4.6) at all points b ∈ F∗q , where q = t poly log n was a randomly
chosen prime power (as described in Lemma 3.3).

Here, our new idea is to perform the evaluation in S batches, where each batch has (q − 1)/S points to
evaluate. In one batch, letting the evaluation points be b1, b2, . . . , b(q−1)/S , we define a polynomial

B(x) := (x− b1)(x− b2) · · · (x− b(q−1)/S)

of degree (q− 1)/S. Then we run the algorithm of Section 4, with the following key modifications (the first
were used in Bringmann’s Õ(n + t)-time Õ(t)-space algorithm [Bri17], while the second one is new and
crucial to the space improvement).

(1) Instead of plugging in a specific value for x, we treat x as a formal variable, and the intermediate results
during computation are all expanded as a polynomial in x. We use FFT for polynomial multiplication.

(2) All polynomials are computed modulo B(x). Since B(x) has degree (q − 1)/S, the polynomial opera-
tions now only take O((q/S) log q) space.

Finally we obtain the generating function modulo B(x), which agrees with the original polynomial on the
evaluation points bi. We can evaluate at these points using Theorem 2.4 in (q/S) poly log q ≤ (t/S) poly log(nt)
time and space (recall that q = t poly log n).

In order to run the above algorithm efficiently in low space, we have to make some adjustments to the
lower-level implementation, which we elaborate in the following.

• In PartitionLevel1, we need to compute the product of ` = 2i many polynomials of degree
min{d, (q−1)/S}moduloB(x), where d = O((log2 n)·2t/`) (see Lemma 4.4). When d < (q−1)/S
is small, it might be slow tomultiply them one by one. Instead, we divide them into groups, each having
Θ(q/(Sd)) polynomials. The polynomials in one group have total degree O(q/S), and their product
can be computed in (q/S) poly log q time and space, by multiplying them in a natural binary-tree
structure. There are O

(
`
/

(q/(Sd))
)
≤ S poly log n groups. We multiply the product of each group

one by one modulo B(x), in total time

(S poly log n) · ((q/S) poly log q) ≤ q poly log(nq),

and (q/S) poly log q space.
When d ≥ (q − 1)/S, we can simply multiply them one by one, in q poly log(nq) total time and
(q/S) poly log q space.

• In PartitionLevel2, we need to compute the polynomial (1 +
∑

a∈Ti x
a) modulo B(x). When

a� (q− 1)/S, this is not easy to compute efficiently in (q/S) poly log q space. To resolve this issue,
we will carefully pick the evaluation points b1, . . . , b(q−1)/S so that B(x) only has two terms, i.e., it
has the form B(x) = x(q−1)/S − h. Then, xa mod B(x) is always a monomial, which can be easily
computed in poly log(aq) time.

Hence, one batch of evaluation can be performed in Õ(n + t) time and O((t/S) poly log(nt)) space.
The total time complexity is Õ((n+ t)S).

Now we show how to pick the evaluation points b1, . . . , b(q−1)/S so thatB(x) always has only two terms.
We assume S is a divisor of q − 1. We use the following algebraic lemma:

Lemma 6.1. Let S divide q− 1. The set F∗q can be partitioned disjointly into S sets P0, . . . , PS−1 such that
for all j = 0, . . . , S − 1 there is a polynomial Bj(x) of two terms that vanishes only on Pj .
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Proof. Take a generator g of F∗q .9 For j = 0, . . . , S − 1, define the set of points

Pj := {gaS+j | a = 0, . . . , (q − 1)/S − 1},

and the polynomial
Bj(x) := x(q−1)/S − gj(q−1)/S .

Note that |Pj | = (q− 1)/S and P0 ∪̇P1 ∪̇ · · · ∪̇PS−1 is a partition of F∗q . Now we want to show that, for all
0 ≤ j ≤ S − 1, Bj(x) =

∏
b∈Pj

(x− b).
For every b = gaS ∈ P0, B0(b) = ga(q−1) − 1 = 0. Since |P0| = (q − 1)/S, these are all the roots of

B0(x), and we have B0 =
∏
b∈P0

(x− b). So the claim holds for j = 0.
For j 6= 0, note that ∏

b∈Pj

(x− b) =
∏
a

(x− gaS+j)

= gj(q−1)/S
∏
a

(x/gj − gaS)

= gj(q−1)/SB0(x/g
j)

= gj(q−1)/S((x/gj)(q−1)/S − 1)

= Bj(x).

Hence, when S divides q − 1, we can simply use P0, P1, . . . , PS−1 as the batches.
The following lemma ensures that, for any given parameter 1 ≤ k ≤ min{n, t}, we can find a prime

power q = Θ̃(t) such that q − 1 has a divisor S = Θ̃(k).

Lemma 6.2. For all sufficiently large R and 4 ≤ K ≤ R/4, there are at least Ω(R/ log2R) prime powers
q ∈ (R/2, R] such that q − 1 has an integer divisor in the interval [K/2, 2K · log15K].

Weprovide a proof of this lemma inAppendix B. It relies on the Bombieri-Vinogradov Theorem [Bom65,
Vin65] from analytic number theory.

To finish the proof of Theorem 1.3, we apply Corollary 3.2 in a similar way as we did in proving the
Coefficient Test Lemma. By Lemma 4.6, there is some w = Θ̃(t · poly log n) such that the generating
function has degree at most w and integer coefficients of magnitude at most 2w. For a given parameter 1 ≤
k ≤ min{n, t}, we apply the Lemma 6.2 with some R = Θ̃(w) so that there are at least 100w prime powers
q in the interval [w+ 2, R], such that q− 1 has a divisor S ∈ [K/2, Õ(K)], whereK = Θ̃(k poly log(nt)).
To find these prime powers q, we iterate over the interval [w + 2, R] and use AKS primality test, and then
iterate over the interval [K/2, Õ(K)] to find a divisor S of q− 1, using Õ(RK) ≤ kt poly log(nt) time and
poly log(nt) space. Then, we pick a random q from them, and run the evaluation algorithm described above
in Õ((n+ t)S) total time and (t/S) poly log(nt) space.

7 Deterministic Algorithm

In this section, we present a faster low-space deterministic algorithm for Subset Sum.

Reminder of Theorem 1.2 Subset Sum can be solved deterministically in Õ(n2t) time andO(log t · log3 n)
space.

9To check whether some h ∈ F∗q is a generator, we can simply enumerate all factors r of q − 1 and check if hr = 1. This takes
at most O(

√
q poly log(q)) time. There are φ(q − 1) ≥ Ω(q0.99) many generators in F∗q (see e.g., [HW75, Theorem 327]), so we

can find a generator with a (Las Vegas) randomized algorithm in o(q) time.
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Consider a subset sum instanceA = (a1, a2, . . . , an)with target sum t. In Section 4, we modified Kane’s
algorithm so that it works modulo a prime p ≤ Õ(t), rather than needing p ≥ Ω(nt). We achieved that by
first randomly splitting A into various sets Li (as Bringmann does), whereby in each Li we could estimate a
nice upper bound on the number of elements that may contribute towards a subset sum of value t. To ensure
that we only had the contribution of these sums and no larger sums, we used color-coding (and efficient hash
functions to keep the space and the randomness low). As mentioned in the introduction, this approach gives
fast low-space randomized algorithms, but it seems very difficult to derandomize color-coding quickly.

Here, to obtain a good deterministic algorithm, we give an alternative approach. As before, we splitA into
Li lists. From there, we try to deterministically approximate the number of elements, by only keeping track
of the approximate logarithm of the number of elements, in a similar spirit to Morris’s algorithm [Mor78]
for small-space approximate counting. We start by defining a special polynomial product operation that will
help us approximately count.
Definition 7.1 (Product for Approximate Counting). Let ε ∈ (0, 1). Let q1(y) = 1+

∑d1
i=1 viy

i and q2(y) =

1 +
∑d2

j=1wjy
j be two polynomials with coefficients vi, wi from a ring R. Define

q1(y) ? q2(y) := 1 +

d1∑
i=1

viy
i +

d2∑
j=1

wjy
j +

∑
1≤i≤d1,1≤j≤d2

viwjy
u(i,j),

where u(i, j) is the integer such that

(1 + ε)u(i,j) ≥ (1 + ε)i + (1 + ε)j > (1 + ε)u(i,j)−1.

Note the operation ? implicitly depends on the ε chosen. Intuitively, the ? operation uses the exponents
of polynomials to approximately count. The exponent represents log1+ε(count) approximately. If we had
(1 + ε)u(i,j) = (1 + ε)i + (1 + ε)j , where i = log1+ε(count1) and j = log1+ε(count2), then we would in
fact have (1 + ε)u(i,j) = count1 + count2, i.e., our counting would be exact. As we only have (1 + ε)u(i,j) ≥
(1 + ε)i + (1 + ε)j > (1 + ε)u(i,j)−1, we potentially lose a multiplicative factor of (1 + ε) every time we
apply the ? operation. Note that the approximation factor improves, as we decrease ε.

Now we give the pseudocode of our deterministic algorithm.

Function Evaluate2(x,A, t)
1: Let Li := A ∩ (t/2i, t/2i−1] for all i = 1, 2, . . . , dlog ne − 1.
2: Let Ldlogne := A\(L1 ∪ · · · ∪ Ldlogne−1).
3: Set u := 1.
4: for i = 1, . . . , dlog(n)e do
5: u := u · ApproxCount(x, Li, 2

i).
6: return u

Function ApproxCount(x, L, z)
1: Let L = {b0, b1, . . . , bm−1}.
2: Let F (i, i+ 1, x) := 1 + yxbi where y is a formal variable.
3: Let ε = 1/ log2(m), and define F (i, j, x) (a univariate polynomial in variable y) recursively:

F (i, j, x) := F (i, (i+ j)/2, x) ? F ((i+ j)/2, j, x).
4: Let v = sum of the coefficients of yk in F (0,m, x) for 0 ≤ k ≤ 1 + log1+ε(z) + logm.
5: return v
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For fixed x and L, F (i, j, x) is a univariate polynomial in variable y with coefficients depending on x
and L.

We will use xS for S ⊆ {0, 1, . . . ,m − 1} and L = {b0, b1, . . . , bm−1} to denote x
∑

i∈S bi . We omit L
from the notation as it will be clear from the context.

The key to our analysis is the following lemma regarding F (i, j, x), which proves that F (i, j, x) can be
used to approximately count. In particular, F (i, j, x) contains terms of the form ykxS ; we will ensure that
the exponent k approximates log1+ε|S|.

Lemma 7.2. F (i, j, x) has the following properties:

1. F (i, j, x) = 1 +
p∑

k=1

∑
S∈Si,j,k

ykxS where p ≤ 1 + log1+ε(m) + log2(m), and for all S ∈ Si,j,k we

have ∅ 6= S ⊆ [i, j).

2. For every S, i, j such that ∅ 6= S ⊆ [i, j) there exists a unique integer k such that S ∈ Si,j,k. Further-
more, log1+ε(|S|) ≤ k ≤ 1 + log1+ε(|S|) + log2(j − i).

Proof. We prove all properties simultaneously by induction on j− i. For the base case of j = i+ 1, observe
that

1. For F (i, i+ 1, x) := 1 + yxbi we have 1 = p ≤ 1 + log1+ε(m) + log2(m) and Si,i+1,1 = {{i}}.

2. Only the set S = {i} satisfies ∅ 6= S ⊆ [i, i + 1), and {i} ∈ Si,i+1,1 = {{i}}, where 0 =
log1+ε(|S|) ≤ k = 1 ≤ 1 + log1+ε(|S|) + log2(j − i) = 1.

Let us now move to proving the induction hypothesis. Recall F (i, j, x) is defined to be F (i, j′, x) ?

F (j′, j, x) for j′ = (i + j)/2. By induction we have that F (i, j′, x) = 1 +
p∑

k1=1

∑
S1∈Si,j′,k1

yk1xS1 and

F (j′, j, x) = 1 +
p∑

k2=1

∑
S2∈Sj′,j,k2

yk2xS2 . Hence we have

F (i, j, x)

= F (i, j′, x) ? F (j′, j, x)

=

1 +

p∑
k1=1

∑
S1∈Si,j′,k1

yk1xS1

 ?

1 +

p∑
k2=1

∑
S2∈Sj′,j,k2

yk2xS2


= 1 +

p∑
k1=1

∑
S1∈Si,j′,k1

yk1xS1 +

p∑
k2=1

∑
S2∈Sj′,j,k2

yk2xS2

+

p∑
k1=1

p∑
k2=1

∑
S1∈Si,j′,k1

∑
S2∈Sj′,j,k2

yu(k1,k2)xS1∪S2 ,

where the last equality follows because S1 ∩ S2 = ∅ (as S1 ⊆ [i, j′) and S2 ⊆ [j′, j)).
Consider a nonempty subset S ⊆ [i, j) and let S1 = S ∩ [i, j′) and S2 = S ∩ [j′, j). We will prove

the existence of a unique monomial ykxS which occurs with coefficient 1 and log1+ε(|S|) ≤ k ≤ 1 +
log1+ε(|S|) + log2(j − i) is satisfied.

Our analysis has three separate cases:
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Case 1. S1 = ∅ and S = S2 6= ∅. By induction (Property 2) there exists a unique k2 such that yk2xS2 =
yk2xS is a monomial in F (j′, j, x). Furthermore by induction (Property 1) this monomial occurs with coeffi-
cient 1. By Definition 7.1 this monomial gets carried over to F (i, j, x) with coefficient 1. As for all k′ every
set in Si,j′,k′ is non-empty (Property 1) there is no other occurrence of the monomial yk2xS in F (i, j, x).
Hence we have k = k2.

By induction (Property 2), we have log1+ε(|S2|) ≤ k = k2 ≤ 1 + log1+ε(|S2|) + log2((j − i)/2) <
1 + log1+ε(|S|) + log2(j − i).

Case 2. S2 = ∅ and S = S1 6= ∅. This is entirely symmetric to the case above.

Case 3. S1, S2 6= ∅. By induction there exist unique k1, k2 such that yk1xS1 is a monomial in F (i, j′, x)
and yk2xS2 is a monomial in F (j′, j, x). Furthermore by induction both of these monomials have coefficient
1. By Definition 7.1 the only term containing xS will be yu(k1,k2)xS = ykxS occurring with coefficient 1.
Hence we have k = u(k1, k2).

By induction (Property 2), log1+ε(|S1|) ≤ k1 and log1+ε(|S2|) ≤ k2, which imply that

(1 + ε)u(k1,k2) ≥ (1 + ε)k1 + (1 + ε)k2

≥ |S1|+ |S2|
= |S|,

or equivalently, k = u(k1, k2) ≥ log1+ε(|S|).
By induction (Property 2) we have that

k1 ≤ 1 + log1+ε(|S1|) + log2((j − i)/2)

= log1+ε(|S1|) + log2(j − i).

Similarly we have k2 ≤ log1+ε(|S2|) + log2(j − i).
Hence we have

(1 + ε)k1 + (1 + ε)k2

≤ |S1|(1 + ε)log2(j−i) + |S2|(1 + ε)log2(j−i)

= |S|(1 + ε)log2(j−i)

= (1 + ε)log1+ε(|S|)+log2(j−i).

Hence by Definition 7.1,

k = u(k1, k2) < 1 + log1+ε((1 + ε)k1 + (1 + ε)k2)

≤ 1 + log1+ε(|S|) + log2(j − i),

which completes the proof by induction. Finally, since |S| ≤ m and j − i ≤ m, we have that p ≤ 1 +
log1+ε(m) + log2(m).

Using Lemma 7.2, we can infer useful properties of the polynomial returned by ApproxCount:

Lemma 7.3. ApproxCount(x, L, z) where |L| = m returns
∑

S∈S x
S such that

1. for every set S ⊆ L with |S| ≤ z, S ∈ S.

2. for all S ∈ S, |S| ≤ O(z).
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Proof. Let us first prove Property 1. By Lemma 7.2, for every set S ⊆ L with |S| ≤ z there is a unique
k such that xSyk is a monomial in F (0,m, x) and that for this unique k, xSyk occurs with coefficient 1.
Furthermore, k ≤ 1+log1+ε(|S|)+logm ≤ 1+log1+ε(z)+logm. Since we are adding the coefficients of
yk for all such k, we get that the monomial xS occurs in the polynomial returned by ApproxCount(x, L, z)
with coefficient 1.

By Lemma 7.2, if xSyk is amonomial inF (0,m, x), then log1+ε(|S|) ≤ k or equivalently |S| ≤ (1+ε)k.
Since we are restricting k ≤ 1+log1+ε(z)+logm, it follows that |S| ≤ z(1+ε)1+logm ≤ zmO(ε) ≤ O(z),
where the last inequality follows from ε = 1/ log2(m).

We now use Lemma 7.3 to argue about the polynomial returned by Evaluate2.

Lemma 7.4. Evaluate2(x,A, t) returns
∑

S∈S x
S such that

1. for every set S ⊆ [n] with
∑

i∈S ai ≤ t, S ∈ S.

2. for all S ∈ S,
∑

i∈S ai ≤ O(t log n).

Proof. Consider a set S ⊆ [n] with
∑

i∈S ai ≤ t. Let Si = S ∩ Li. By the definition of Li, |Si| ≤
2i. By Lemma 7.3, ApproxCount(x, Li, 2

i) has a term xSi with coefficient 1. As Evaluate2(x,A, t) =∏
i ApproxCount(x, Li, 2

i) hence Evaluate2(x,A, t) will have the term
∏
i x

Si = xS with coefficient 1.
This proves property 1.

By Lemma 7.3, ApproxCount(x, Li, 2
i) only has monomials of the form xSi where Si ⊆ Li such that∑

j∈Si

aj ≤ (max
j∈Si

aj) · |Si|

≤ (t/2i−1) ·O(2i)

≤ O(t).

Any monomial in Evaluate2(x, L, z) will have the form
∏
i x

Si = xS where xSi is a monomial in
ApproxCount(x, Li, 2

i) and S = ∪iSi. Property 2 follows from

∑
j∈S

aj =

dlogne∑
i=1

∑
j∈Si

aj

≤
dlogne∑
i=1

O(t)

≤ O(t log n).

Corollary 7.5. Let the output of Evaluate2(x,A, t) is a polynomial P (x) where A = [a1, a2, . . . , an].
Then:

1. P (x) is a polynomial of degree at most d = O(t log n), with non-negative coefficients that are bounded
above by 2min{n,d logn}.

2. P (x) contains the monomial xt iff there exists a R ⊆ [n] be such that t =
∑

i∈R ai.

Proof. Let us first prove Property 1. By Lemma 7.4 the degree is bounded bymaxS∈S
∑

i∈S ai ≤ O(t log n).
By Lemma 7.4, Evaluate2(x,A, t) is a sum of monomials of the form xS where S ⊆ [n] and the coefficient
of xS is either 0 or 1. Hence for any a ∈ Z≥0 the coefficient of xa is non-negative and bounded above by the
number of subsets with sum equal to a which is always at most

(
n
a

)
≤ min{2n, na} as all ai ∈ Z>0. Using

a ≤ d the bound on the coefficients follows.
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As all monomials are of the form xS for S ⊆ [n] we can only have the monomial xt if there exists a set
R ⊆ [n] be such that t =

∑
i∈R ai. Conversely, if there exists a set R ⊆ [n] be such that t =

∑
a∈R a then

P (x) contains the monomial xt by Property 2 of Lemma 7.4.

7.1 Implementation

Now we describe in more detail how to implement the procedures Evaluate2 and ApproxCount with low
time and space.

Lemma 7.6. The procedure Evaluate2 (where arithmetic operations are over Fq with q = Ω(t)) can be
implemented in O(n · poly log(qn)) time and O(log q · log3 n) working space.

Proof. Recall A = {a1, . . . , an} is the set of input integers. In Evaluate2(x,A, t), we do not have enough
space to collect all elements of Li and pass them to ApproxCount. Instead, we will pass the list A (i.e., our
input). To correct this, in ApproxCount(x, L, z) when we encounter an ai 6∈ L we just ignore it by setting
F (i, i+ 1, x) = 1.

By Property 1 of Lemma 7.2, any polynomial of the form F (i, j, x) computed in ApproxCount(x, L, z)
has degree at most 1 + log1+ε(m) + log2(m), where ε = 1/ log2(m). Thus, the space needed to store a
single polynomial is

O(log q · (1 + log1+ε(m) + log2(m))) ≤ O(log q · log2m).

To compute F (0,m, x) in ApproxCount(x, L, z), we perform the recursion in a depth-first way, with recur-
sion depth at most log n. At any point in time, we will have only stored (at most) one polynomial at every
level of the recursion tree, so the total space usage of ApproxCount(x, L, z) is O(log q · log3 n).

In ApproxCount(x, L, z), we compute the approximate counting productO(m) times, where eachmulti-
plication takes poly(log q, logm, ε−1) time. So the running time of ApproxCount(x, L, z) isO(n·poly log(qn)).
It follows that the total running time and space requirements of Evaluate2(x,A, t) are O(n ·poly log(qn))
and O(log q · log3 n), respectively.

Finally, we can complete the proof of Theorem 1.2 and give the final deterministic algorithm.

Proof of Theorem 1.2. By Lemma 3.3, we have a deterministic algorithm for checking if the monomial xt
has a nonzero coefficient in P (x) = Evaluate2(x,A, t), in time Õ((d+ w)(T + w)w), where:

• d denotes the degree of P (x) and d ≤ O(t log n) by Corollary 7.5,

• 2w denotes the largest coefficient of P (x) and w ≤ min{n, d log(n)} by Corollary 7.5, and

• T denotes the time to calculate P (x) for a given x ∈ Fq for q ≤ O(d+ w) = Õ(t · poly log n).

By Lemma 7.6, we have T ≤ O(n · poly log(qn)) ≤ Õ(n · poly log(nt)). Plugging in the upper bounds for
d, T, w, the total running time is

Õ((d+ w)(T + w)w) ≤ Õ((d log n) · (n poly log(nt)) · n)

≤ Õ(n2t).

By Lemma 3.3 the space of the deterministic algorithm is O(S + log(d + w)) where S is the space
required to calculate P (x) for a given x ∈ Fq for q ≤ O(d + w) ≤ Õ(t poly log n). By Lemma 7.6, S =
O(log q · log3 n). Hence, assuming t ≥ log(n), we have log q = O(log t) and the overall space complexity
isO(log t · log3 n). In the case of t < log n, we simply use the deterministicO(nt)-timeO(t+ log n)-space
dynamic programming algorithm instead.

21



8 Approximation Algorithms

In this section, we present a fast low-space randomized algorithm for the following Weak Subset Sum Ap-
proximation Problem (a.k.a. WSSAP):

Definition 8.1 (WSSAP). Given a list of positive integers A = [a1, a2, . . . , an], target t, 0 < ε < 1 with the
promise that they fall into one of the following two cases:

• YES: There exists a subset S ⊆ [n] such that (1− ε/2)t ≤
∑

i∈S ai ≤ t.

• NO: For all subsets S ⊆ [n] either
∑

i∈S ai > (1 + ε)t or
∑

i∈S ai < (1− ε)t.

decide whether it is a YES instance or a NO instance.

The search version of the above definitionwas introduced byMucha,Węgrzycki, andWłodarczyk [MWW19]
as a “weak” notion of approximation. They gave a Õ(n+ 1/ε5/3) time and space algorithm.

Note the usual decision notion of “approximate subset sum” distinguishes between the two cases of
(1) there is an S ⊆ [n] such that

∑
i∈S ai ∈ [(1− ε/2)t, t], and

(2) for all S ⊆ [n],
∑

i∈S ai < (1− ε)t or
∑

i∈S ai > t.
This is, in principle, a harder problem.

Reminder of Theorem 1.5 There is a Õ(min{n2/ε, n/ε2})-time and O(poly log(n, t))-space algorithm
for WSSAP.

Proof. Our algorithm runs two different algorithms, and takes the output of the one that stops first. Algorithm
1 will use Õ(n2/ε) time and poly log(nt) space; Algorithm 2 will use Õ(n/ε2) and poly log(nt) space.

Algorithm 1: Define bi = baiN c whereN = εt/(2n). First we will prove that (A, t) is a YES instance if and
only if there is a subset S ⊆ [n] such that N

∑
i∈S bi ∈ [t− εt, t].

Assume (A, t) is a YES instance. We have ai − N ≤ Nbi ≤ ai; hence for set S ⊆ [n] such that∑
i∈S ai ∈ [t(1 − ε/2), t], we have N

∑
i∈S bi ∈

[∑
i∈S ai −Nn,

∑
i∈S ai

]
⊆ [t(1 − ε/2) − Nn, t] =

[t− εt, t].
On the other hand, suppose there is an S ⊆ [n] such that N

∑
i∈S bi ∈ [t− εt, t]. Then as Nbi ≤ ai ≤

Nbi + N we have that
∑

i∈S ai ∈ [t − εt, t + εt/2], which implies that the original instance was a YES
instance.

Therefore, (A, t) is a YES instance if and only if there is a set S such that N
∑

i∈S bi ∈ [t − εt, t], i.e.,∑
i∈S bi ∈ [2n(1− ε)/ε, 2n/ε] = [t′(1− ε), t′] for t′ = 2n/ε.
So we have reduced the original problem to a subset sum instance on a list B = [b1, b2, . . . , bn] where

we want to know if there is a subset with sum in the range [t′(1 − ε), t′]. Our algorithm (Theorem 1.1) can
also handle this modification, as all we need to change is that we need to detect if there is a monomial of
the form xd for some d ∈ [t′(1 − ε), t′] instead of d = t′. This change can be handled in Corollary 3.2 by
multiplying with

t′∑
i=t′(1−ε)

xq−1−i = xq−1−t
′
(1− xεt′+1)/(1− x),

instead of xq−1−t′ . Alternatively, one could also use the reduction described in Remark 1.4. By Lemma 3.3,
Algorithm 1 runs in Õ(nt′) = Õ(n2/ε) time and poly log(nt) space.

Now we describe Algorithm 2.

Algorithm 2: Let Sbig = {i | ai > εt}, Abig = {ai | ai > εt} and Ssmall = {i | ai ≤ εt}, Asmall = {ai |
ai ≤ εt}. Let h =

∑
i∈Ssmall

ai.
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If there is a subset of Abig with sum in [(1 − ε)t − h, (1 + ε)t], then we can add elements from Asmall
to the set, until our sum is in the range [(1− ε)t, (1 + ε)t]. Hence the input must be a YES instance. On the
other hand, if some subset of A has a sum in the range [(1 − ε/2)t, t], the restriction of this subset on Abig
has a sum in the range [(1 − ε/2)t − h, t]. Therefore, deciding if (A, t) is a YES-instance is equivalent to
deciding if there exists a subset of Abig with sum in [(1− ε)t− h, (1 + ε)t].

As all elements in Abig have values greater than εt, the number of elements in a subset of Abig with sum
in [(1− ε)t− h, (1 + ε)t] is at most (1 + ε)t/(εt) ≤ 2/ε.

Define bi = baiN c where N = ε2t/8.
We claim that (A, t) is a YES instance if and only if there exists a set S ⊆ Sbig such that N(

∑
i∈S bi) ∈

[t(1− ε)− h, (1 + ε/2)t].
We have ai − N ≤ Nbi ≤ ai. If (A, t) is a YES instance, then there is a subset S ⊆ Sbig with∑
i∈S ai ∈ [(1 − ε/2)t − h, t] which implies that N

∑
i∈S bi ∈

[∑
i∈S ai −N |S|,

∑
i∈S ai

]
⊆ [(1 −

ε/2)t− h− (ε2t/8)(2/ε), t] ⊆ [t(1− ε)− h, t].
For the other direction, suppose there exists a set S ⊆ Sbig such that N

∑
i∈S bi ∈ [t(1− ε)− h, t(1 +

ε/2)]. For all i ∈ Sbig, bi ≥ (ai − N)/N ≥ (εt − ε2t/8)/(ε2t/8) ≥ 6/ε, and hence |S| ≤
(
t(1 +

ε/2)/N
)/

(6/ε) = 2(2 + ε)/(3ε) ≤ 2/ε. Then as Nbi ≤ ai ≤ Nbi + N we have that
∑

i∈S ai ∈
[t(1− ε)− h, t(1 + ε/2) +N |S|] ⊆ [t(1− ε)− h, t(1 + ε)], which implies that the original instance (A, t)
was a YES instance. This completes the proof of our claim above.

We have now reduced the original problem to a listBbig = {bi | ai ≥ εt}where we want to know if there
is a subset with sum in the range [t′(1− ε/2)− h/N, t′(1 + ε/2)] for t′ = t/N = 8/ε2. As in Algorithm 1,
we can solve this in time Õ(nt′(1 + ε/2)) ≤ Õ(n/ε2) and poly log(nt) space.

Combining Algorithms 1 and 2, we obtain an algorithm running in Õ(min{n2/ε, n/ε2}) time and
O(poly log(nt)) space.

9 Conclusion

In this paper, we have given novel Subset Sum algorithmswith about the same running time as Bellman’s clas-
sic O(nt) time algorithm, but with radically lower space complexity. We have also provided algorithms giv-
ing a general time-space tradeoff for Subset Sum. The algorithms apply several interesting number-theoretic
and algebraic tricks; we believe these tricks ought to have further applications.

We conclude with some open problems. First, the fastest known pseudopolynomial algorithm for Subset
Sum runs in Õ(n+ t)-time [Bri17, JW19]. The fastest known O(poly log(nt))-space algorithm is given in
this work. Is there an algorithm running in Õ(n + t) time and poly(n, log t) space? Perhaps some kind of
conditional lower bound is possible, but this may require a new kind of fine-grained hypothesis.

Second, can the time-space tradeoff in our algorithm (Theorem 1.3) be improved to work all the way to
poly log(nt) space? Currently it only works down to Õ(t/min{n, t}) space.

Finally, another interesting open problem is whether our efficiently invertible hash families have further
applications. They should be particularly useful for constructing randomized algorithms using low space.
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A Proof of the load-balancing property

We will utilize a tail bound for 2k-wise δ-dependent random variables.

Lemma A.1 ([CRSW13, Lemma 2.2], [BR94, Lemma 2.2]). Let X1, . . . , Xn ∈ {0, 1} be 2k-wise δ-
dependent random variables, for some k ∈ N and 0 ≤ δ < 1, and let X =

∑n
i=1Xi and µ = E[X].

Then, for any t > 0 it holds that

Pr[|X − µ| > t] ≤ 2

(
2nk

t2

)k
+ δ

(n
t

)2k
.

Now we analyze the load-balancing guarantee of this construction as in [CRSW13]. We follow the dis-
cussion in Remark 5.6 and view the evaluation of h(x) as tracing the tree path along which xmoves from root
to leaf. For i ∈ [d], recall that gi : [ni] → [2`i ] is sampled from a ki-wise δ-dependent family, and bijection
fi : [2`i ]× [ni]→ [ni−1] is defined by

fi(b, u) = (b⊕ gi(u)) ◦ u.

For a nodeB at level (i−1), the u-th element of its b-th child equals the fi(b, u)-th element of arrayB. That
is, the s-th element of array B is assigned to its hi(s)-th child, where hi : [ni−1]→ [2`i ] is defined by

s = bs ◦ us, hi(s) := bs ⊕ gi(us).

Lemma A.2 (Similar to Lemma 3.2 in [CRSW13]). For any i ∈ {0, 1, . . . , d − 2}, α ≥ Ω(1/ log logn),
0 < αi < 1, and set Si ⊆ [ni] of size at most (1 + αi)mi,

Pr
hi

[
max

y∈{0,1}`i+1

|h−1i+1(y) ∩ Si| ≤ (1 + α)(1 + αi)mi+1

]
is at least 1− 1

nc+1 .
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Proof. Fix y ∈ {0, 1}`i+1 , letX = |h−1i+1(y)∩Si|. Without loss of generality, we assume |Si| ≥ b(1+αi)mic
(otherwise we could add dummy elements).

Each element from Si can be expressed as bs ◦ us, where bs ∈ [2`i+1 ], us ∈ [ni+1], and hi+1(bs ◦ us) =
bs ⊕ gi+1(us). Group Si’s elements according to us. Then each group has at most one element such that
h(bs ◦us) = y. Assign each group a random variable from {0, 1}, indicating whether it contains an element
being hashed to y. ThenX equals the sum of these ki+1-wise δ-dependent (since gi+1 is) random variables.
And E[X] = |Si|/2`i+1 . Then by the tail lemma (Lemma A.1) we have

Pr[X > (1 + α)µ] ≤ 2

(
|Si|ki+1

(αµ)2

)ki+1/2

+ δ

(
|Si|
αµ

)ki+1

= 2

(
22`i+1ki+1

α2|Si|

)ki+1/2

+ δ

(
2`i+1

α

)ki+1

.

Since |Si| ≥ mi ≥ 24`i+1 and α = Ω(1/ log log n), the first summand

2

(
22`i+1ki+1

α2|Si|

)ki+1/2

≤ 2

(
ki+1

α222`i+1

)ki+1/2

≤ 1

nc+2
, (1)

where the last inequality follows from the choice of ki+1 and `i+1 such that ki+1`i+1 = Ω(log n). This also
enables us to upper bound the second summand, noting that for an appropriate choice of δ = poly(1/n) it
holds that

δ

(
2`i+1

α

)
≤ 1

2nc+2
. (2)

Therefore, by combining Equations (1) and (2), and recalling thatmi+1 = mi/2
`i+1 we obtain

Pr[X > (1 + α)(1 + αi)mi+1] = Pr[X > (1 + α)(1 + αi)
mi

2`i+1
]

≤ Pr[X > (1 + α)µ]

≤ 1

nc+2
.

The lemma now follows by a union bound over all y ∈ {0, 1}`i+1 ; note there are at most n such values.

The rest of the proof follows in almost the same way as in [CRSW13].10

Proof of Theorem 5.1. Fix a set S ⊆ [n] of sizem, and let α = Ω(1/ log log n). We inductively argue that
for every level i ∈ {0, 1, . . . , d − 1}, with probability at least 1 − i/nc+1 the maximal load in level i is at
most (1 + α)imi elements per bin. For i = 0 this follows from definition. For inductive step, we assume
the claim holds for level i. Now we apply Lemma A.2 for each bin in level i with (1 + αi) = (1 + α)i. By
union bound, with probability at least 1 − (i/nc+1 + 1/nc+1), the maximal load in level i + 1 is at most
(1 + α)i+1mi+1, which shows the inductive step. In particular, this guarantees that with probability at least
1− (d−1)/nc+1, the maximal load in level d−1 is (1+α)d−1md−1 ≤ 2md−1, for some appropriate choice
of d = O(log log n).

In order to bound the numbermd−1, we note that for every i ∈ [d−1] it holds that `i ≥ (logmi−1)/4−1,
somi = mi−1/2

`i ≤ 2m
3/4
i−1. By induction, we have

mi ≤ 2
∑i−1

j=0(3/4)
j

n(3/4)
i ≤ 16n(3/4)

i
.

10Since we only need to prove a load-balancing parameter of O(logn), we omit the last step of the proof from [CRSW13] which
aims for proving a stronger O(logn/ log logn) bound.
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Thus for an appropriate choice of d = O(log log n) it holds thatmd−1 ≤ log n. The proof directly follows.

Proof of Corollary 5.7. (Sketch) Let ε > 0 be given. We simply modify the previous construction by
reducing the depth d to a (sufficiently large) constant. Then, as in the proof of Theorem 5.1, for an appropriate
choice of d = O(1), we havemd−1 ≤ nε. The rest of the proof is the same as in Theorem 5.1.

B Proof of Lemma 6.2

We use the Bombieri-Vinogradov theorem [Bom65, Vin65] from analytic number theory.

Theorem B.1 (Bombieri-Vinogradov). Fixing A > 0, there is a constant C > 0 such that for all x ≥ 2 and
Q ∈ [x1/2 log−A x, x1/2],∑

q≤Q
max
y≤x

max
1≤a≤q,

gcd(a,q)=1

∣∣∣∣ψ(y; q, a)− y

φ(q)

∣∣∣∣ ≤ Cx1/2Q log5 x.

Here φ(q) is the Euler totient function11, and

ψ(y; q, a) :=
∑
n≤y

n≡a (mod q)

Λ(n),

where Λ(n) denotes the von Mangoldt function12.

Lemma B.2. For sufficiently large R and 4 ≤ S ≤ R1/2 log−7R, there exists Ω(R/ log2R) many prime
powers r = pk ∈ (R/2, R] such that r − 1 has an integer divisor in interval [S/2, S].

Proof. Applying the Bombieri-Vinogradov theorem with A := 7, x := R,Q := R1/2 log−7R, a := 1, we
have ∑

q≤R1/2 log−7R

max
y≤R

∣∣∣∣ψ(y; q, 1)− y

φ(q)

∣∣∣∣ ≤ CR/ log2R.

As S ≤ R1/2 log−7R, we can restrict q to the primes in the interval [S/2, S]. By the prime number
theorem and the Bertrand-Chebyshev theorem, the number of primes in [S/2, S] is at least C ′ · S/ logS for
some positive constant C ′ > 0. Therefore there are at least 2C′

3 · S/ logS primes q ∈ [S/2, S] such that

max
y≤R

∣∣∣∣ψ(y; q, 1)− y

φ(q)

∣∣∣∣ ≤ CR/ log2R
C′

3 · S/ logS
<

3CR/ logR

C ′S
.

Setting y = R/2 and y = R, we get

ψ(R; q, 1)− ψ(R/2; q, 1) =
R/2

φ(q)
+

(
ψ(R; q, 1)− R

φ(q)

)
−
(
ψ(R/2; q, 1)− R/2

φ(q)

)
≥ R/2

S
− 2 · 3CR/ logR

C ′S

≥ R

4S
,

11φ(q) is the number of integers 1 ≤ a ≤ q that are coprime with q.
12Λ(n) = ln p if n = pk for a prime p and a positive integer k; otherwise Λ(n) = 0
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for sufficiently large R. Hence there are at least R/(4S) many r ∈ (R/2, R] such that r ≡ 1 (mod q) and
Λ(r) > 0, i.e., r is a prime power.

Since the number of choices for prime q is at least 2C′

3 · S/ logS, there exist at least (2C
′

3 · S/ logS) ·
R/(4S) = (C ′/6) · R/ logS pairs of such (q, r). As each r − 1 has at most log(r − 1) prime factors, the
the number of distinct r is at least Ω(R/(logS logR)).

Corollary B.3. For sufficiently large R and 4 ≤ S ≤ R/4, there exists Ω(R/ log2R) many prime powers
r = pk ∈ (R/2, R] such that r − 1 has an integer divisor in interval [S/2, 2S · log15 S].

Proof. Let S0 := R1/2 log−7R. The case S ∈ [4, S0] follows from Lemma B.2. Now we assume S ∈
(S0, R/8]. Note that r − 1 has a divisor in (S/2, 2S · log15 S] iff it has a divisor in interval[

r − 1

2S · log15 S
,
r − 1

S/2

]
.

For r ∈ (R/2, R] we have (r − 1)/(S/2) ≥ R/S and (r − 1)/(2S · log15 S) ≤ R/(2S · log15 S), so it
suffices to let r − 1 have a divisor in interval

I :=

[
R

2S log15 S
,
R

S

]
.

Note that R/(2S) ≥ 4, and
R

2S log15 S
<

R

2S0 log15 S0
< S0/2

for sufficiently large R. So there exists 4 ≤ S′ ≤ S0 such that [S′/2, S′] ⊆ I . We then apply Lemma B.2
with S′ in place of S.
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