
Tight Hardness for Shortest Cycles and Paths in Sparse Graphs

Andrea Lincoln∗ Virginia Vassilevska Williams† Ryan Williams‡

Abstract
Fine-grained reductions have established equivalences between
many core problems with Õ(n3)-time algorithms on n-node
weighted graphs, such as Shortest Cycle, All-Pairs Shortest Paths
(APSP), Radius, Replacement Paths, Second Shortest Paths, and so
on. These problems also have Õ(mn)-time algorithms on m-edge
n-node weighted graphs, and such algorithms have wider applica-
bility. Are these mn bounds optimal when m� n2?

Starting from the hypothesis that the minimum weight (2`+
1)-Clique problem in edge weighted graphs requires n2`+1−o(1)

time, we prove that for all sparsities of the form m = Θ(n1+1/`),
there is no O(n2 +mn1−ε ) time algorithm for ε > 0 for any of the
below problems
• Minimum Weight (2` + 1)-Cycle in a directed weighted

graph,
• Shortest Cycle in a directed weighted graph,
• APSP in a directed or undirected weighted graph,
• Radius (or Eccentricities) in a directed or undirected weighted

graph,
• Wiener index of a directed or undirected weighted graph,
• Replacement Paths in a directed weighted graph,
• Second Shortest Path in a directed weighted graph,
• Betweenness Centrality of a given node in a directed weighted

graph.
That is, we prove hardness for a variety of sparse graph problems
from the hardness of a dense graph problem. Our results also lead
to new conditional lower bounds from several related hypothesis
for unweighted sparse graph problems including k-cycle, shortest
cycle, Radius, Wiener index and APSP.

∗andreali@mit.edu. Supported by the EECS Merrill Lynch Fellowship.
†virgi@csail.mit.edu. Supported by an NSF CAREER Award, NSF

Grants CCF-1417238, CCF-1528078 and CCF-1514339, and BSF Grant
BSF:2012338.
‡rrw@mit.edu. Supported by an NSF CAREER Award.

1 Introduction
The All-Pairs Shortest Paths (APSP) problem is among the most
basic computational problems. A powerful primitive, APSP can
be used to solve many other problems on graphs (e.g. graph
parameters such as the girth or the radius), but also many non-
graph problems such as finding a subarray of maximum sum [TT98]
or parsing stochastic context free grammars (e.g. [Aku99]). Over
the years, many APSP algorithms have been developed. For edge
weighted n node, m edge graphs, the fastest known algorithms run
in n3/2Θ(

√
logn) time [Wil14] for dense graphs, and in O(mn +

n2 log logn) time [Pet02] for sparse graphs.
These running times are also essentially the best known for many

of the problems that APSP can solve: Shortest Cycle, Radius,
Median, Eccentricities, Second Shortest Paths, Replacement Paths,
and so on1. For dense graphs, this was explained by Vassilevska
Williams and Williams [VW10] and later Abboud et al. [AGV15]
who showed that either all of {APSP, Minimum Weight Triangle,
Shortest Cycle, Radius, Median, Eccentricities, Second Shortest
Paths, Replacement Paths, Betweenness Centrality} have truly
subcubic algorithms (with runtime O(n3−ε ) for constant ε > 0), or
none of them do. Together with the popular hypothesis that APSP
requires n3−o(1) time on a word-RAM (see e.g. [AV14, AGV15,
Vas15, BGMW17]), these equivalences suggest that all these graph
problems require n3−o(1) time to solve.

However, these equivalences no longer seem to hold for sparse
graphs. The running times for these problems still match: Õ(mn)
is the best running time known for all of these problems. In
recent work, Agarwal and Ramachandran [AR16] show that some
reductions from prior work can be modified to preserve sparsity.
Their main result is that if Shortest Cycle in directed weighted
graphs requires man2−a−o(1) time for some constant a, then so do
Radius, Eccentricities, Second Shortest Paths, Replacement Paths,
Betweenness Centrality and APSP in directed weighted graphs2.

Unfortunately, there is no known reduction that preserves spar-
sity from APSP (or any of the other problems) back to Short-
est Cycle, and there are no known reductions to Shortest Cy-
cle from any other problems used as a basis for hardness within
Fine-Grained Complexity, such as the Strong Exponential Time
Hypothesis [IP01, IPZ01], 3SUM [GO95] or Orthogonal Vec-
tors [Wil05, Vas15]. Without a convincing reduction, one might
wonder:

Can Shortest Cycle in weighted directed graphs be solved in, say,
Õ(m3/2) time?

Can APSP be solved in Õ(m3/2 +n2) time?

1For Shortest Cycle, an O(mn) time algorithm was recently developed
by Orlin and Sedeño-Noda [OS17]. For a full discussion of the best known
running times of these problems see Appendix A.

2This is analogous to the dense graph regime of [VW10], where the
main reductions went from Minimum Weight 3-Cycle (i.e. triangle). The
key point of [AR16] is that one can replace Minimum Weight 3-Cycle by
Minimum Weight Cycle, and preserve the sparsity in the reduction.

Copyright c© 2018
Copyright for this paper is retained by authors



Such runtimes are consistent with the dense regime of m = Θ̃(n2).
Minimum Weight Triangle, which is the basis of many reductions in
the dense case, can be solved in O(m3/2) time (e.g. [IR78]). What
prevents us from having such running times for all the problems that
are equivalent in the dense regime to Minimum Weight Triangle?
Why do our best algorithms for these other problems take Õ(mn)
time, and no faster? In fact, we know of no ε > 0 for which
problems like Shortest Cycle can be solved in Õ(m1+ε n1−2ε ) time.
Such a running time is Θ(n3) for m = Θ(n2) and o(mn) for m ≤
o(n2). Notice that m3/2 is the special case for ε = 1/2. Is there
a good reason why no Õ(m1+ε n1−2ε ) time algorithms have been
found?

Our results. We give compelling reasons for the difficulty
of improving over Õ(mn) for Shortest Cycle, APSP and other
problems. We show for an infinite number of sparsities, any
sparsity m = n1+1/` where ` ∈ N, obtaining an O(n2 + mn1−ε )
time algorithm for Shortest Cycle (or any of the other fundamental
problems) in weighted graphs for any constant ε > 0 would refute
a popular hypothesis about the complexity of weighted k-Clique.

HYPOTHESIS 1.1. (MIN WEIGHT k-CLIQUE) There is a constant
c > 1 such that, on a Word-RAM with O(logn)-bit words, finding
a k-Clique of minimum total edge weight in an n-node graph with
nonnegative integer edge weights in [1,nck] requires nk−o(1) time.

The Min Weight k-Clique Hypothesis has been considered for
instance in [BT16] and [AVW14] to show hardness for improving
upon the Viterbi algorithm, and for Local Sequence Alignment. The
(unweighted) k-Clique problem is NP-Complete, but can be solved
in O(nωk/3) time when k is fixed [NP85]3 where ω < 2.373 [Vas12,
Gal14] is the matrix multiplication exponent. The problem is W[1]-
complete and under the Exponential Time Hypothesis [IP01] it
cannot be solved in no(k) time [FHRV09]. Finding a k-Clique
of minimum total weight (a Min Weight k-Clique) in an edge-
weighted graph can also be solved in O(nωk/3) if the edge weights
are small enough. However, when the edge weights are integers
larger than nck for large enough constant c, the fastest known
algorithm for Min Weight k-Clique runs in essentially O(nk) time
(ignoring no(1) improvements). The special case k = 3, Min Weight
3-Clique is the aforementioned Minimum Weight Triangle problem
which is equivalent to APSP under subcubic reductions and is
believed to require n3−o(1) time.

Theorems 1.1 and F.4 of Vassilevska Williams and
Williams [VW10], and Theorem 1.1 and Lemma 2.2 of Ab-
boud et al. [AGV15] give sub-cubic dense reductions from
APSP to many fundamental graph problems. Agarwal and
Ramachandran [AR16] build on these reductions to show many
sparsity-preserving reductions from Shortest Cycle to various
fundamental graph problems.

They thus identify Shortest Cycle as a fundamental bottleneck to
improving upon mn for many problems. However, so far there is no
compelling reason why Shortest Cycle itself should need mn time.

THEOREM 1.1. ([AR16]) Suppose that there is a constant ε > 0
such that one of the following problems on n-node, m-edge weighted
graphs can be solved in O(mn1−ε +n2) time:
• APSP in a directed weighted graph,
• Radius (or Eccentricities) in a directed weighted graph,
• Replacement Paths in a directed weighted graph,
• Second Shortest Path in a directed weighted graph,
• Betweenness Centrality of a given node in a directed weighted

graph.

3When k is divisible by 3; slightly slower otherwise.

Then, the Min Weight Cycle Problem is solvable in O(mn1−ε ′ +n2)
for some ε ′ > 0 time.

Our main technical contribution connects the complexity of
small cliques in dense graphs to that of small cycles in sparse
graphs:

THEOREM 1.2. Suppose that there is an integer ` ≥ 1 and a
constant ε > 0 such that one of the following problems on n-node,
m = Θ(n1+1/`)-edge weighted graphs can be solved in O(mn1−ε +
n2) time:
• Minimum Weight (2`+1)-Cycle in a directed weighted graph,
• Shortest Cycle in a directed weighted graph,

Then, the Min Weight (2`+1)-Clique Hypothesis is false.

Combining our main Theorem 1.2 with the results from previous
work in Theorem 1.1 gives us new conditional lower bounds for
fundamental graph problems. We also create novel reductions from
the k-Cycle problem, in Section B, and these give us novel hardness
results for many new problems. The main new contributions are
reductions to Radius in undirected graphs (the result in [AR16] is
only for directed) and to the Wiener Index problem which asks for
the sum of all distances in the graph. Together all these pieces give
us the following theorem.

THEOREM 1.3. Suppose that there is an integer ` ≥ 1 and a
constant ε > 0 such that one of the following problems on n-node,
m = Θ(n1+1/`)-edge weighted graphs can be solved in O(mn1−ε +
n2) time:
• Minimum Weight (2`+1)-Cycle in a directed weighted graph,
• Shortest Cycle in a directed weighted graph,
• APSP in a directed or undirected weighted graph,
• Radius (or Eccentricities) in a directed or undirected

weighted graph,
• Wiener index of a directed or undirected weighted graph,
• Replacement Paths in a directed weighted graph,
• Second Shortest Path in a directed weighted graph,
• Betweenness Centrality of a given node in a directed weighted

graph.
Then, the Min Weight (2`+1)-Clique Hypothesis is false.

So, either min weighted cliques can be found faster, or Õ(mn+
n2) is the optimal running time for these problems, up to no(1)

factors, for an infinite family of edge sparsities m(n).
Another intriguing consequence of Theorem 1.3 is that, as-

suming Min Weight Clique is hard, running times of the form
Õ(m1+ε n1−2ε ) for ε > 0 are impossible! If Shortest Cycle had
such an algorithm for ε > 0, then for every integer L > 1 and
δ = (1−1/L)ε > 0 we have that for m = Θ(n1+1/L), m1+ε n1−2ε ≤
mn1−δ and hence the Min Weight (2L+ 1)-Clique Hypothesis is
false.

Our reduction from Minimum Weight (2L+ 1)-Clique to Mini-
mum Weight (2L+1)-Cycle produces a directed graph on nL nodes
and m = O(nL+1) edges, and hence if directed Minimum Weight
(2L+ 1)-Cycle can be solved in O(m2−1/(L+1)−ε ) time for some
ε > 0, then the Min Weight (2L+ 1)-Clique Hypothesis is false.
We present an extension for weighted cycles of even length as well,
obtaining:

COROLLARY 1.1. If Minimum Weight k-Cycle in directed m-edge
graphs is solvable in O(m2−2/(k+1)−ε ) time for some ε > 0 for k
odd, or in O(m2−2/k−ε ) time for k even, then the Minimum Weight
`-Clique Hypothesis is false for `= 2dk/2e−1.

Copyright c© 2018
Copyright for this paper is retained by authors



Weighted Problem Lower Bnd LB from LB source
Min k-clique nk−o(1) k-clique conj. By Def

Min k-cycle (k odd) mn1−o(1) Min k-clique Thm 4.1
Shortest cycle mn1−o(1) odd min k-cycle Thm 6.1

Directed Radius mn1−o(1) Shortest Cycle [AR16]
Undirected Radius mn1−o(1) odd min k-cycle Thm B.1

Directed APSP mn1−o(1) Shortest Cycle [AR16]
Undirected APSP mn1−o(1) odd min k-cycle Cor B.2
Undirected APSP mn1−o(1) Und. Shortest Cycle [AR16]

Und. Wiener Index mn1−o(1) odd min k-cycle Thm B.2
Dir. 2nd Shortest Path mn1−o(1) Shortest Cycle [AR16]

Dir. Repl. Paths mn1−o(1) Shortest Cycle [AR16]

Table 1: Weighted graph lower bounds. Our results are in bold. Und stands for undirected and Dir stands for directed. Repl
stands for replacement.

Directed k-cycles in unweighted graphs were studied by Alon,
Yuster and Zwick [AYZ97] who gave algorithms with a runtime
of O(m2−2/(k+1)) for k odd, and O(m2−2/k) for k even. We show
that their algorithm can be extended to find Minimum Weight k-
Cycles with only a polylogarithmic overhead, proving that the
above conditional lower bound is tight.

THEOREM 1.4. The Minimum Weight k-Cycle in directed m-edge
graphs can be solved in Õ(m2−2/(k+1)) time for k odd, and in
Õ(m2−2/k) time for k even.

Our lower bound results compared to prior work are presented
in Table 1. The upper bounds for the considered problems are
as follows: Min k-Clique is easily solvable in O(nk) time. The
best algorithms for all other problems in the table take Õ(mn)
time [AYZ16, OS17, Pet02, Dij59, GL09].

Sparse Unweighted Problems. We have proven tight con-
ditional lower bounds for weighted graphs. However, for sparse
enough (m = O(nω−1)) unweighted graphs, the best algorithms for
APSP and its relatives also run in Õ(mn) time (see Section A for
the relevant prior work on APSP). We hence turn our attention to
the unweighted versions of these problems.

Our reduction from Min Weight k-Clique to Min Weight k-Cycle
still works for unweighted graphs just by disregarding the weights.
We can get super-linear lower bounds for sparse unweighted prob-
lems from three different plausible assumptions.

As mentioned before, the fastest algorithm for k-Clique (for k
divisible by 3) runs in O(nωk/3) [NP85, EG04]. This algorithm has
remained unchallenged for many decades and lead to the following
hypothesis (see e.g. [ABV15]).

HYPOTHESIS 1.2. (THE k-CLIQUE HYPOTHESIS) Detecting a k-
Clique in a graph with n nodes requires Ω(nωk/3−o(1)) time on a
Word RAM.

From this we get super-linear lower bound for the shortest cycle
problem. We get an analogous result to the one we had before:

THEOREM 1.5. If the k-Clique Hypothesis is true, Shortest Cycle
in undirected or directed graphs requires m2ω/3−o(1) time.

We get super-linear lower bounds for various graph problems as
a corollary of Theorem 1.5.

COROLLARY 1.2. If the k-Clique Hypothesis is true, the following
problems in unweighted graphs require m2ω/3−o(1) time:
• Betweenness Centrality in a directed graph,
• APSP in an undirected or directed graph,
• Radius in an undirected or directed graphs, n
• Wiener Index in an undirected or directed graph.

The reader may notice that the matrix multiplication exponent
shows up repeatedly in the unweighted cases of these problems.
This is no coincidence. The best known combinatorial4 algorithms
for the unweighted k-clique algorithm take Θ̃(nk) time. This has
led to a new hypothesis.

HYPOTHESIS 1.3. (COMBINATORIAL k-CLIQUE) Any combina-
torial algorithm to detect a k-Clique in a graph with n nodes re-
quires nk−o(1) time on a Word RAM [ABV15].

Our reduction from k-clique to k-cycle is combinatorial. Thus,
an O(mn1−ε ) time (for ε > 0) combinatorial algorithm for the di-
rected unweighted k-cycle problem for odd k and m = n(k+1)/(k−1)

would imply a combinatorial algorithm for the k-clique problem
with running time O(nk−ε ′) for ε ′ > 0. Any algorithm with a com-
petitive running time must use fast matrix multiplication, or give an
exciting new algorithm for k-clique.

Currently, the best bound on ω is ω < 2.373 [Gal14, Vas12],
and the m2ω/3−o(1) lower bound for Shortest Cycle and related
problems might conceivably be m1.58 which is not far from the
best known running time O(m1.63) for 5-cycle [YZ04]. Yuster
and Zwick gave an algorithm based on matrix multiplication for
directed k-Cycle, however they were unable to analyze its running
time for k > 5. They conjecture that if ω = 2, their algorithm runs
faster than the best combinatorial algorithms for every k, however
even the conjectured runtime goes to m2, as k grows. In contrast, for
ω = 2, our lower bound based on the k-Clique Hypothesis is only
m4/3−o(1)5. We thus search for higher conditional lower bounds
based on different and at least as believable hypotheses.

4Informally, combinatorial algorithms are algorithms that do not use fast
matrix multiplication.

5Of course, the Yuster and Zwick running time for k-cycle might not be
optimal, and it might be that O(m2−δ ) time is possible for k-cycle for some
δ > 0 and all k.

Copyright c© 2018
Copyright for this paper is retained by authors



Figure 1: A depiction of a network of reductions related to sparse weighted graph problems and the dense Minimum k-clique
problem. The bold edges represent a subset of the reductions in this paper. The dashed edges are reductions from Agarwal
and Ramachandran [AR16].

To this end, we formalize a working hypothesis about the
complexity of finding a hyperclique in a hypergraph. An `-
hyperclique in a k-uniform hypergraph G is composed of a set of
` nodes of G such that all k-tuples of them form a hyperedge in G.

HYPOTHESIS 1.4. ((`,k)-HYPERCLIQUE HYPOTHESIS) Let ` >
k > 2 be integers. On a Word-RAM with O(logn) bit words, finding
an `-hyperclique in a k-uniform hypergraph on n nodes requires
n`−o(1) time.

Why should one believe the hyperclique hypothesis? There are
many reasons: (1) When k > 2, there is no O(n`−ε ) time algorithm
for any ε > 0 for `-hyperclique in k uniform hypergraphs. (2)
The natural extension of the techniques used to solve `-clique in
graphs will NOT solve `-hyperclique in k-uniform hypergraphs
in O(n`−ε ) time for any ε > 0 when k > 2. We prove this
in Section 8. (3) There are known reductions from notoriously
difficult problems such as Exact Weight k-Clique, Max k SAT and
even harder Constrained Satisfaction Problems (CSPs) to (`,k)-
Hyperclique so that if the hypothesis is false, then all of these
problems have exciting improved algorithms. For these and more,
see the Discussion in Section 7.

Now, let us state our results for unweighted Shortest Cycle based
on the (`,k)-Hypothesis. The same lower bounds apply to the other
problems of consideration (APSP, Radius etc.).

THEOREM 1.6. Under the (`,k)-Hypothesis, the Shortest Cycle
problem in directed unweighted graphs requires mk/(k−1)−o(1) time
on a Word RAM with O(logn) bit words.

The theorem implies in particular that, Shortest Cycle in un-
weighted directed graphs requires (a) m3/2−o(1) time, unless Max 3-
SAT (and other CSPs) have faster than 2n algorithms, (b) m4/3−o(1)

time, unless Exact Weight k-Clique has a significantly faster than
nk algorithm. The latter is the same lower bound as from k-Clique
when ω = 2 but it is from a different and potentially more believ-
able hypothesis. Finally, Shortest Cycle and its relatives are not in
linear time, unless the (`,k)-Hypothesis is false for every constant
k.

Our new lower bounds for sparse unweighted graph problems
are summarized in Table 2. Odd k-cycle is conjectured to run in
time Õ(m(k+1)ω/(2ω+k+1)) by [YZ04]. The fastest algorithms for
all other problems in the table run in time O(min{mn,nω}) [IR78,
Sei95].

Overview See Figure 1 for a depiction of our core reductions.
In Sections 3 to 6 we cover the core reductions and show

they are tight to the best known algorithms. The reduction from
hyperclique to hypercycle is covered in Section 3. The reduction
from hypercycle to directed cycle in Section 4. The algorithms
for weighted minimum k-cycle which match the conditional lower
bounds are discussed in Section 5. The reduction from minimum
weight clique to shortest cycle is in Section 6.

In Sections 7 to 9 we give justification for the hardness of the
unweighted versions of these problems. In Section 7 we discuss
the hyper-clique hypothesis and give justification for it. In Section
8 we show that the generalized matrix product related to finding
hypercliques in k-uniform hypergraphs can not be sped up with
a Strassen like technique. In Section 9 we reduce Max-k-SAT to
Tight Hypercycle.

In Appendix A we discuss the prior work getting fast algorithms
for the sparse graph problems we study. In Appendix B we
present the reductions from minimum k-cycle and minimum cycle
to Radius, Weiner Index and APSP. In the full version we reduce
general CSP to the Hyperclique problem, and we extend our lower
bounds to make improved but non-matching lower bounds for graph
densities between n1+1/` and n1+1/(`+1).

2 Preliminaries
In this section we define various notions that we will be using and
prove some simple lemmas.

Definitions and notation. Throughout this paper will be
discussing problems indexed by k and `. For example, k-cycle, k-
clique, (`,k)-Hyperclique. We will treat the k and ` values as being
constant in these problems. A hypergraph G = (V,E) is defined by
its vertices V and its hyperedges E where each e ∈ E is a subset of
V . G is a k-uniform hypergraph if all its hyperedges are of size k.

Graphs are just 2-uniform hypergraphs. Unless otherwise stated,
the variables m and n will refer to the number of hyperedges and
vertices of the hypergraph in question. Unless otherwise stated,
the graphs in this paper will be directed. Hypergraphs will not be
directed. We will use node and vertex interchangeably.

An `-hypercycle in a k-uniform hypergraph is an ordered
`-tuple of vertices v1, . . . ,v` such that for every i ∈ 1, . . . , `,
(vi,vi+1, . . . ,vi+k−1) is a hyperedge (where the indices are mod k).

We will be dealing with simple hypercycles, so that all vi are
distinct. These types of hypercycles are known as tight hypercycles.
We will omit the term tight for conciseness.

An `-hyperclique in a k-uniform hypergraph is a set of ` > k
vertices v1, . . . ,v` such that all subsets of k of them vi1, . . . ,vik form
a hyperedge.

Copyright c© 2018
Copyright for this paper is retained by authors



Problem Lower Bound LB from LB src
k-cycle odd m(k−d(k+1)/3e+1)/k−o(1) Max 3-SAT Thm 9.1
k-cycle odd m(2ωk)/(3(k+1))−o(1) k-clique Lem 4.1
Shrt. cycle m2ω/3−o(1) k-clique Lem 6.1
Shrt. cycle m3/2−o(1) Max 3-SAT Lem 6.1
U. Radius m2ω/3−o(1) k-clique Lem B.2
U. Radius m3/2−o(1) Max 3-SAT Lem B.2

U. Wiener Ind. m2ω/3−o(1) k-clique Lem B.3
U. Wiener Ind. m3/2−o(1) Max 3-SAT Lem B.3

U. APSP m2ω/3−o(1) k-clique Cor B.2
U. APSP m3/2−o(1) Max 3-SAT Cor B.2

Table 2: Unweighted graph lower bounds. Our results are in bold. Upper bounds marked with ∗ are conjectured. U stands
for undirected. Src stands for source. Shrt stands for shortest. Ind stands for index.

A k-circle-layered graph is a k-partite directed graph G where
edges only exist between adjacent partitions. More formally the
vertices of G can be partitioned into k groups such that V = V1 ∪
. . .∪Vk and Vi∩V j = /0 if i 6= j. The only edges from a partition Vi
go to the partition Vi+1 mod k.

Hardness Hypotheses. We will state several hardness hy-
potheses that we will be using.

The first concerns the Min Weight k-Clique problem. Min
Weight 3-Clique is known to be equivalent to APSP and other
problems [VW10], and no truly subcubic algorithms are known
for the problem. This issue extends to larger cliques: if the
edge weights are large enough, no significantly faster algorithms
than the brute-force algorithm are known. This motivates the
following hypothesis used as the basis of hardness in prior work
(see e.g. [BT16, AVW14]).

REMINDER OF HYPOTHESIS 1.1 (Min Weight k-Clique Hypothe-
sis). There is a constant c such that, on a Word-RAM with O(logn)
bit words, finding a k-Clique of minimum total edge weight in an n-
node graph with nonnegative integer edge weights bounded by nck

requires nk−o(1) time.
The exact weight version of the k-clique problem is at least

as hard as Min Weight k-Clique [VW13], so that if the previous
hypothesis is true, then so is the following one. For k = 3, the Exact
3-Clique problem is known to be at least as hard as both APSP and
3-SUM, making the following hypothesis even more believable.

HYPOTHESIS 2.1. (EXACT WEIGHT k-CLIQUE) There is a con-
stant c such that, on a Word-RAM with O(logn) bit words, finding
a k-Clique of total edge weight exactly 0, in an n-node graph with
integer edge weights bounded in [−nck,nck] requires nk−o(1) time.

Let k ≥ 3 be an integer. The following hypothesis concerns
the Max-k-SAT problem. The brute-force algorithm for Max-k-
SAT on n variables and m clauses runs in O(2nm) time. There
have been algorithmic improvements for the approximation of
Max-k-SAT [AW02, ABZ05, FG95] and Max-2-SAT [Wil07]. No
O(2(1−ε)n) time algorithms are known for any ε > 0 for k ≥ 3.
Williams [Wil05, Wil07] showed that Max-2-SAT does have a
faster algorithm running in O(2ωn/3 · poly(mn)) time, however the
algorithm used can not extend to Max k SAT for k > 2 (see the
discussion in Section 8).

HYPOTHESIS 2.2. (MAX-k-SAT HYPOTHESIS) On a Word-RAM
with O(logn) bit words, given a k-CNF formula on n variables,
finding a Boolean assignment to the variables that satisfies a
maximum number of clauses, requires 2n−o(n) time.

The Max-k-SAT hypothesis implies the following hypothesis
about hyperclique detection, as shown by Williams [Wil07] for k =
3 (see Appendix for the generalization for k > 3). Williams [Wil07]
in fact showed that hyperclique detection solves even more difficult
problems such as Satisfiability of Constraint Satisfaction Problems,
the constraints of which are given by degree k polynomials defining
Boolean functions on the n variables. Thus if the following
hypothesis is false, then more complex MAX-CSP problems than
MAX-k-SAT can be solved in O(2(1−ε)n) time for ε > 0.

REMINDER OF HYPOTHESIS 1.4 ((`,k)-Hyperclique Hypothe-
sis). Let ` > k > 2 be integers. On a Word-RAM with O(logn)
bit words, finding an `-hyperclique in a k-uniform hypergraph on n
nodes requires n`−o(1) time.

Abboud et al. [ABDN17] have shown (using techniques from
[ALW14]) that if the (`,4)-Hyperclique Hypothesis is false for
some `, then the Exact Weight `-Clique Hypothesis is also false.
Thus, the Hyperclique Hypothesis should be very believable even
for k = 4. The hypergraphs we are considering are dense (m =
Θ(nk)). Hyperclique can be solved faster in hypergraphs where
m = o(n`/(`−1)) [GIKW17].

Simple k-Cycle Reductions. Note that throughout this paper
we will use the fact that the k-cycle and k-clique problems we
consider are as hard in k-partite graphs as they are in general graphs.
Furthermore, the k-cycle problems we consider are as hard in k-
circle layered graphs as they are in general graphs. Using the k-
partite or k-circle layered versions often makes reductions more
legible.

k-cycle has different behavior when k is even and odd. To get
some results we will use a simple reduction from k cycle to k+ 1
cycle.

LEMMA 2.1. Let G = (V,E) be an n node m edge k-circle-layered
graph. Suppose further that the edges have integer weights in
{−M, . . . ,M}. Then in O(m+ n) time one can construct a k+ 1-
partite directed graph G′ on ≤ 2n nodes and ≤ n+m edges with
weights in {−M, . . . ,M}, so that G′ contains a directed (k + 1)-
cycle of weight Y if and only if G contains a directed k-cycle of
weight Y .

Proof. Take V2, say, and split every node v ∈ V2 into v0 and v1,
placing a directed edge (v0,v1) of weight 0 and splitting the edges
incident to v among v0 and v1, so that v0 gets all edges incoming
from V1 and v1 gets all edges outgoing to V2.

An immediate corollary is:

Copyright c© 2018
Copyright for this paper is retained by authors



COROLLARY 2.1. Suppose that there is a T (n,m)-time algorithm
that can detect a (min-weight/ 0-weight/ unweighted) k+1-cycle in
a k+1-circle-layered directed n-node, m-edge graph, then there is
a O(m+ n)+T (2n,m+ n) time algorithm that can detect a (min-
weight/ 0-weight/ unweighted) k-cycle in a k-circle-layered n-node,
m-edge directed graph.

The following Lemma allows us to assume that all graphs that
we are dealing with are circle-layered.

LEMMA 2.2. Suppose that a (min-weight/ 0-weight/ unweighted)
k-cycle can be detected in T (n,m) time in a k-circle-layered di-
rected graph where the edges have integer weights in {−W, . . . ,W}.
Then in Õ(kk(m+n+T (m,n))) time one can detect a(min-weight/
0-weight/ unweighted) k-cycle in a directed graph G (not neces-
sarily k-circle-layered) on n nodes and m edges with weights in
{−W, . . . ,W}.

Proof. We use the method of color-coding [AYZ16]. We present
the randomized version, but this can all be derandomized using k-
perfect families of hash functions, resulting in roughly the same
runtime. Every node in the graph selects a color from {1, . . . ,k}
independently uniformly at random. We take the original graph
and we only keep an edge (u,v) if c(v) = c(u) + 1 mod k and
we remove edges that do not satisfy this condition. The created
subgraph G′ is k-partite - there is a partition for each color, and by
construction, the edges only go between adjacent colors, so that the
graph is k-circle-layered.

Since G′ is a subgraph of G, if G′ has a k-cycle C, then C is also a
k-cycle in G. Suppose now that G has a k-cycle C = {u1, . . . ,uk}. If
for each i, c(ui) = i, then C is preserved in G′. Thus, C is preserved
with probability at least 1/kk, and repeating O(kk logn) times, we
will find C whp.

3 Reduction from Hyperclique to Hypercycle
In this section we will reduce the problem of finding an `-
hyperclique in a k-uniform hypergraph to finding an `-hypercycle in
a γ(`,k)-uniform hypergraph for some function γ which is roughly
(k−1)`/k.

By a color-coding argument we can assume that the hypergraph
is k-partite- the vertex set is partitioned into k parts {Vi} so that no
hyperedge contains two nodes in the same Vi. The color-coding ap-
proach reduces the hyperclique problem to 2O(k) logn instances of
the k-partite hyperclique problem. A simple randomized approach
assigns each vertex a random color from {1, . . . ,k}, and then part
Vi includes the vertices colored i. One removes all hyperedges con-
taining two vertices colored the same and argues that any particular
k-hyperclique has all its vertices colored differently with probabil-
ity 1/(2e)k. Thus 2O(k) logn instances of the k-partite hyperclique
problem suffice with high probability. The approach can be deran-
domized with standard techniques.

In the following theorem an arc will refer to a valid partial list of
nodes from a hyperclique or hypercycle. This usage is attempting
to get across the intuition that a set of nodes in a hyperclique can
be covered by a small number of overlapping sets if those sets are
large enough. See Figure 2 for an image depiction.

We will hence prove the following theorem:

THEOREM 3.1. Let G be a k-uniform hypergraph on n vertices V ,
partitioned into ` parts V1, . . . ,V`. Let γ = `−d`/ke+1. In O(nγ )
time we can create a γ-uniform hypergraph G′ on the same node set
V as G, so that G′ contains an `-hypercycle if and only if G contains
an `-hyperclique with one node from each Vi.

If G has weights on its hyperedges in the range [−W,W ], then
one can also assign weights to the hyperedges of G′ so that a

minimum weight `-hypercycle in G′ corresponds to a minimum
weight `-hyperclique in G and every edge in the hyperclique has
weight between [−

(
γ

k

)
W,

(
γ

k

)
W ]. Notably,

(
γ

k

)
≤ O(`k).

Proof. Consider the numbers 1, . . . , ` written in order around a
circle and let i1 < i2 < .. . < ik be any k of them. We are interested
in covering all these k numbers by an arc of the circle. What is the
least number of numbers from 1 to ` an arc covers if it covers all
the i j?

It’s not hard to see that the arc starts at one of the i j, goes
clockwise and ends at i j−1 (indices mod k). Let s( j) be the number
of numbers strictly between i j−1 an i j. The number of numbers that
the arc contains is thus `−s( j), and that the best arc picks the j that
maximizes s( j).

Figure 2: A depiction of why hypercycle needs sets of size
`−d`/ke+1 to cover every choice of k elements.

The sum ∑
k
j=1 s( j) equals `− k, and hence the maximum s( j) is

at least the average and is thus ≥ d(`− k)/ke. Hence the best arc
has at most `−d`/ke+1 numbers. See Figure 2.

Now, let G be the given `-partite k-uniform hypergraph in which
we want to find an `-hyperclique. Let V1, . . . ,V` be the vertex
parts and let E be the set of k-hyperedges. We will build a new
hypergraph on the same set of nodes but with hyperedges of size
γ = `−d`/ke+1 as follows.

Consider each i ∈ [`] and every choice of nodes ui ∈ Vi,ui+1 ∈
Vi+1, . . . ,ui+γ−1 ∈Vi+γ−1 call the set of chosen nodes U , i.e. nodes
in γ consecutive parts (mod `). We need only consider the sets of γ

consecutive parts because every subset of size k will be contained in
one of these sets, by our choice of γ . We add a hyperedge between
the nodes in U if every size k subset of U forms a hyperedge in G.
That is, we create a big hyperedge in G′ if all the k-tuples contained
in it form a hyperedge in G. The runtime to create G′ is O(nγ ) as is
the number of hyperedges created. Clearly G′ is γ-uniform.

Now suppose that a1 ∈ V1, . . . ,a` ∈ V` is an `-hyperclique in G.
All the hyperedges (ai, . . . ,ai+γ−1) are present in G′ so a1, . . . ,a`
forms an `-hypercycle in G′.

Now suppose that a1 ∈ V1, . . . ,a` is an `-hypercycle in G′.
Consider A = {a1, . . . ,a`} in G. We will show that it is an `-
hyperclique. Let ai1 , . . . ,aik for i1 < i2 < .. . < ik be any k nodes
of A.

Copyright c© 2018
Copyright for this paper is retained by authors



Let t be the index that maximizes s(it) as in the beginning of the
proof. Then, {it , it +1, . . . , it−1} (which contains all i1, . . . , ik) con-
tains at most γ nodes and is thus contained in {it , it +1, . . . , it+γ−1}
which is a hyperedge in G′ since a1 ∈V1, . . . ,a` is an `-hypercycle
in G′. However by the way we constructed the hyperedges, it must
be that (ai1 , . . . ,aik ) is a hyperedge of G. Thus all k-tuples are hy-
peredges in G and {a1, . . . ,a`} is an `-hyperclique in G.

So far we have shown that we can construct a hypergraph so
that the `-hypercliques in G correspond to the `-hypercycles in G′.
Suppose now that G is a hypergraph with weights on its hyperedges.
We will define weights for the hyperedges of G′ so that the weight
of any `-hypercycle in G′ equals the weight of the `-hyperclique
in G that it corresponds to. To achieve this, we will assign each
hyperedge y of G to some hyperedges E(y) of G′ and we will say
that these hyperedges are responsible for y. Then we will set the
weight of a hyperedge e of G′ to be the sum of the weights of the
hyperedges of G′ that it is responsible for. We will guarantee that
for any hypercycle of G′, no two hyperedges in it are responsible
for the same hyperedge of G, and that every hyperedge of the
hyperclique that the hypercycle is representing is assigned to some
of the hypercycle hyperedges.

Consider any hyperedge of G, A = (ai1 , . . . ,aik ) with ai j ∈ Vi j .
Let it be the smallest index that maximizes s(it). We assign A to
every hyperedge of G′ contained in Vit ×Vit+1 × . . .×Vit+γ−1 that
intersects Vi j exactly at ai j . Then notice that any `-hypercycle
that contains ai1 , . . . ,aik contains exactly one of these hyperedges,
so that the weight of the hypercycle is exactly the weight of the
hyperclique that it corresponds to. Since every hyperedge of G′

contains
(

γ

k

)
hyperedges of G, the weights of the hyperedges lie in

[−W
(

γ

k

)
,W

(
γ

k

)
].

4 Reduction from Hypercycle to Cycle in Directed
Graphs

We have shown hardness for hypercycle from hyperclique. How-
ever, in order to get results on cycles in normal graphs we have to
show that hypercycle can be solved efficiently with cycles in graphs.
We do so below.

LEMMA 4.1. Given an n-node λ uniform hypergraph H with
nodes partitioned into V1, . . . ,Vk in which one wants to find a k-
hypercycle (v1,v2, . . . ,vk) with v j ∈V j for each j, one can in Õ(nλ )

time create a k-circle-layered directed graph G on O(nλ−1) nodes
and O(nλ ) edges, so that H contains a k-hypercycle with one node
in each partition Vi if and only if G contains a directed k-cycle.
Moreover, if H has integer weights on its edges bounded by M,
then one can add integer edge weights to the edges of the graph
G, bounded by M, so that the minimum weight k-cycle in G has the
same weight as the minimum weight k-hypercycle in H.

If k is odd, the G can be made undirected.

Proof. Recall that a k-hypercycle in a λ -uniform hypergraph is
formed by having a list of k nodes v1,v2, . . . ,vk and having a
hyperedge for all choices of i ∈ [1,k] formed by the set vi,vi+1, . . . ,
vi+λ−1 where we consider indices mod k.

We describe the construction of the directed graph G. It will be
k-circle-layered with node parts U1, . . . ,Uk. For each i ∈ {1, . . . ,k},
we will add a node in part Ui of G for every choice of λ −1 nodes
vi, . . . ,vi+λ−2 such that vi ∈Vi, vi+1 ∈Vi+1 , . . ., vi+λ−2 ∈Vi+λ−2.
This totals nλ−1 nodes. Call this node ((vi, . . . ,vi+λ−2)).

We will add a directed edge in G between nodes
((vi, . . . ,vi+λ−2)) and ((v′i+1, . . . ,v

′
i+λ−1)) if v′j = v j for

j ∈ [i + 1, i + λ − 2] and {vi, . . . ,vi+λ−2,v
′
i+λ−1} is a hyper-

edge in H. Assign this edge the weight of the hyperedge

{vi, . . . ,vi+λ−2,v
′
i+λ−1} in H. Every node in G can connect to a

maximum of n other nodes giving us |E|= O(nλ+1).
Now note that G is a k-circle-layered graph. Further note that if

a k-cycle exists in G then each of its edges corresponds to a hyper-
edge edge in H and the set of vertices represented in the k-cycle in
G corresponds to a choice of k nodes v1,v2, . . . ,vk. Further, every
edge of G covers λ adjacent vertices from v1,v2, . . . ,vk.

We also note that if k is odd, then the edges of G can be made
undirected: any k cycle in G must have a node from each Ui, as
removing any Ui from G makes it bipartite, and no odd cycles can
exist in a bipartite graph.

We immediately obtain the following corollaries:

COROLLARY 4.1. Let λ = ` − d`/ke + 1. Under the (`,k)-
Hyperclique Hypothesis, min weight `-cycle in directed graphs (or
in undirected graphs for ` odd) cannot be solved in O(m`/λ−ε ) time
for any ε > 0 for m = Θ(n1+1/(λ−1)) edge, n node graphs.

Proof. We start with a k-uniform hypergraph with nold nodes. The
number of edges in the graph produced by Lemma 4.1 when applied
to this hypergraph is (nold)

λ . By the (`,k)-Hyperclique Hypothesis
any algorithm to find a (`,k)-Hyperclique should take (nold)

` time.
Combining these facts we get a bound of Ω(m`/λ−o(1)).

The number of nodes produced by Lemma 4.1 is n = (nold)
λ−1,

the number of edges is m = (nold)
λ . Thus, m = n1+1/(λ−1)

COROLLARY 4.2. Let λ = k−dk/2e+ 1. Under the Min Weight
k-Clique Hypothesis, min weight k-cycle in directed graphs (or in
undirected graphs for k odd) cannot be solved in O(nmdk/2e/λ−ε )

time for any ε > 0 for m = Θ(n1+1/(λ−1)) edge, n node graphs.

Proof. The Min Weight k-Clique Hypothesis is equivalent to the
Min Weight (k,2)-Hyperclique Hypothesis. We can plug in these
numbers to get the result above.

When considering odd sizes of cliques and cycles, these results
become show O(mn) hardness for the cycle problems at certain
densities.

COROLLARY 4.3. Under the Min Weight (2k+1)-Clique Hypoth-
esis, min weight (2k + 1)-cycle in directed or undirected graphs
cannot be solved in O(mn1−ε ) time for any ε > 0 for m=Θ(n1+1/k)
edge, n node graphs.

Proof. The Min Weight (2k + 1)-Clique Hypothesis is equivalent
to the Min Weight ((2k+ 1),2)-Hyperclique Hypothesis. We can
plug in these numbers to get the result above. We then note
that directed (2k+ 1)-cycle is solved by undirected (2k+ 1)-cycle
because (2k+1) is odd.

COROLLARY 4.4. Under the Exact Weight (2k + 1)-Clique Hy-
pothesis, exact weight (2k + 1)-cycle in directed and undirected
graphs cannot be solved in O(mn1−ε ) time for any ε > 0 for
m = Θ(n1+1/k) edge, n node graphs.

Proof. The Exact Weight (2k+1)-Clique Hypothesis is equivalent
to the Exact Weight ((2k+1),2)-Hyperclique Hypothesis. We can
plug in these numbers to get the directed version of the above
corollary. We then note that directed (2k + 1)-cycle is solved by
undirected (2k+1)-cycle because (2k+1) is odd.

Copyright c© 2018
Copyright for this paper is retained by authors



5 Probably Optimal Weighted k-Cycle Algorithms
The reductions from `-hyperclique in k-uniform hypergraphs
(through hypercycle) to directed `-cycle produces graphs on
O(nγ−1) nodes and O(nγ ) edges where γ = `−d`/ke+1.

For the special case of the reduction from Min Weight `-Clique
(k = 2), one obtains a graph on O(nb`/2c+1) edges. Suppose that
` is odd. The number of edges in the graph is O(n(`+1)/2), and
solving the Shortest `-Cycle problem in this graph in O(n`−ε ) time
for any ε > 0 would refute the Min Weight `-Clique Hypothesis.
We immediately obtain that Min Weight `-Cycle on m edge graphs
requires m2−2/(`+1)−o(1) time.

Using Lemma 2.1, we can also conclude that if ` is even, then
solving Min Weight `-Cycle on m edge graphs requires m2−2/`−o(1)

time.

THEOREM 5.1. Assuming the Min Weight `-Clique Hypothesis, on
a Word RAM on O(logn) bit words, Min Weight `-Cycle on m edge
graphs requires m2−2/`−o(1) time if ` is even and m2−2/(`+1)−o(1)

time if ` is odd.

The rest of this section will show that the above runtime can be
achieved:

THEOREM 5.2. Min Weight `-Cycle on m edge graphs can be
solved in Õ(m2−2/`) time if ` is even and Õ(m2−2/(`+1)) time if
` is odd.

The proof proceeds analogously to Alon, Yuster and Zwick’s
algorithm [AYZ97] for `-Cycle in unweighted directed graphs. Let
us review how their algorithm works and see how to modify it to
handle weighted graphs. First, pick a parameter ∆ and take all
O(m/∆) nodes of degree ≥ ∆. Call the set of these nodes H. For
every v ∈ H, Alon, Yuster and Zwick use an Õ(m) time algorithm
by Monien [Mon85] to check whether there is an `-cycle going
through v. If no `-cycle is found, they consider the subgraph with
all nodes of H removed and enumerate all d`/2e-paths X and all
b`/2c-paths Y in it. The number of paths in X ∪Y is ≤ m∆d`/2e−1.
Then one sorts X and Y in lexicographic order of the path endpoints
and searches in linear time in |X |+ |Y | for a path in X from a to b
and a path in Y from b to a. To make sure that the cycle closed
by these paths is simple, one can first start by color coding in two
colors red and blue and let X contain only paths with red internal
nodes and Y only paths with blue internal nodes, or one can just
go through all paths that share the same end points. Either way,
the total runtime is asymptotically m2/∆+m∆d`/2e−1, and setting
∆ = m1/d`/2e gives a runtime of Õ(m2−1/(d`/2e)).

One can modify the algorithm to give a Shortest `-cycle in
an edge-weighted graph, as follows. First, we replace Monien’s
algorithm with an algorithm that given a weighted graph and a
source s can in Õ(m) time determine a shortest `-cycle C containing
s. To this end, we use color-coding: we give every node of G a
random color from 1 to ` and note that with probability at least
1/``, the ith node of C is colored i, for all i, whp; as s is the
first node of C, we can assume that s is colored 1. As usual, this
can be derandomized using `-perfect hash families. Now, in G,
only keep the edges (u,v) such that c(v) = c(u) + 1 (not mod `,
so there are no edges between nodes colored ` and nodes colored
1). This makes the obtained subgraph G′ `-partite and acyclic.
Now, run Dijkstra’s algorithm from s, computing the distances
d(s,v) for each v ∈ V . Then for every in-neighbor u of s in G
colored `, compute d(s,u)+w(u,s) and take the minimum of these,
W = minu d(s,u)+w(u,s). If the nodes of C are colored properly
(the ith node is colored i), then W is the weight of the shortest
`-cycle through s since the shortest path from s to any u colored
k, if the distance is finite, must have ` nodes colored from 1 to

`. Dijkstra’s algorithm runs in Õ(m) time, and one would want
to repeat O(`` logn) times to get the correct answer with high
probability (the same cost is obtained in the derandomization).

Now that we have a counterpart of Monien’s algorithm, let’s see
how to handle the case when the shortest k-cycle in the graph only
contains nodes of low degree. Similar to the original algorithm,
we again compute the set of paths X and Y , but we only consider
shortest paths together with their weights. Then one is looking for
two paths (one between a and b and the other between b and a) so
that their sum of weights is minimized. This can also be found in
linear time in |X | and |Y | when they are sorted by end points (a,b)
and by weight. The total runtime is again Õ(m2−1/(d`/2e)).

6 Hardness Results for Shortest Cycle
THEOREM 6.1. If Shortest cycle in an N node, M edge directed
graph can be solved in T (N,M) time, then the Minimum Weight k-
cycle in an n node, m edge directed graph is solvable in Õ(T (n,m))
time.

Proof. Let the weights of the k-cycle instance range between −W
and W . Use Lemma 2.2 to reduce the Min Weight k-cycle problem
to one in a k-circle-layered graph G with partitions A1,A2, . . . ,Ak.
Add the value 4W to each edge, which adds 4kW to the value of
every k-cycle. Every cycle in a directed k-circle-layered graph is
a ck-cycle when c is a positive integer since every cycle must go
around the graph circle some number of times. Due to the added
weight 4W , the Shortest cycle in the new graph will minimize
the number of edges: Any ck-cycle C for c ≥ 2 will have weight
≥ 4ckW +w(C)≥ 3ckW ≥ 6kW , where w(C)≥−Wck is the weight
of C in G. The weight of a k cycle, however is at most 4kW +kW =
5kW < 6kW . Thus, the weight of the Shortest Cycle in the new
graph is exactly the weight of the Min Weight k-Cycle in G, plus
4kW , and the Shortest Cycle will exactly correspond to the Min
Weight k-Cycle in G.

LEMMA 6.1. If Shortest Cycle can be solved in T (n,m) time
in an n-node, m-edge directed unweighted graph, then k-cycle
in a directed unweighted n-node, m-edge graph is solvable in
Õ(T (n,m)) time.

Proof. The proof is similar but simpler than that of Theorem 6.1.
We first reduce to k-cycle in a k-circle-layered graph, and then just
find the Shortest Cycle in it. Since the graph obtained is directed
and k-circle-layered, if it contains a k-cycle, then that cycle is its
shortest cycle.

COROLLARY 6.1. If Min Weight (2L + 1)-clique requires
n2L+1−o(1) time, then Shortest Cycle in directed weighted graphs
requires mn1−o(1) time whenever m = Θ(n1+1/L).

Directed Shortest Cycle in unweighted graphs requires
m3/2−o(1) time under the Max 3 SAT Hypothesis, m4/3−o(1) time
under the Exact Weight K Clique Hypothesis, and m2ω/3−o(1) time
under the K-Clique Hypothesis.

Proof. The first statement follows immediately from Lemma 6.1
and Corollary 4.2. We will focus on the second part of the corollary.

The reduction in Corollary 9.1 from Max 3 SAT on N variables to
`-cycle (for any ` > 3) produces a

(
n`−d`/3e

)
-node,

(
n`−d`/3e+1

)
-

edge graph (for n = 2N/`, so that solving `-cycle in it in O(n`−ε )
time for any ε > 0, then the Max 3 SAT Hypothesis is false. Now
suppose that Shortest cycle in a directed graph can be solved in
O(m3/2−ε ) time for some ε > 0. Set ` to be any integer greater than
3/ε and divisible by 3. Consider the `-cycle problem in n`−d`/3e+1-
edge graphs obtained via the reduction from Max 3 SAT. Reduce

Copyright c© 2018
Copyright for this paper is retained by authors



it to Shortest Cycle as in Lemma 6.1. As ` is divisible by 3, the
number of edges in consideration is O(n2`/3+1). Then, applying
the O(m3/2−ε ) time algorithm, we can solve the `-cycle instance in
O(n(2`/3+1)(3/2−ε)) time. As we set ` ≥ 3/ε , the exponent in the
running time is `+ 3/2− ε(2`/3+ 1) ≤ `+ 3/2− ε(2/ε + 1) ≤
`−1/2− ε , and hence we obtain a faster algorithm for `-cycle and
contradict the Max 3-SAT hypothesis.

A similar argument applies to show that m4/3−o(1) time is needed
under the Exact Weight K Clique Hypothesis, and m2ω/3−o(1) time
is needed under the K-Clique Hypothesis.

7 Discussion of the Hyperclique Hypothesis
In this section we discuss why the (`,k)-Hyperclique hypothesis is
believable.

First, when k > 2, the fastest algorithms for the `-hyperclique
problem run in n`−o(1) time, and this is not for lack of trying. Many
researchers [WBK+] have attempted to design a faster algorithm,
for instance by mimicking the matrix multiplication approach for
k-Clique. However, in doing this, one needs to design a nontrivial
algorithm for a generalized version of matrix multiplication. Un-
fortunately, in Section 8, we show that the rank and even the bor-
der rank of the tensor associated with this generalized product is
as large as possible, thus ruling out the arithmetic circuit approach
for the problem. Thus, if a faster than n` algorithm exists for k-
uniform hypergraphs with k > 2, then it must use radically different
techniques than the Strassen-like approach to regular matrix multi-
plication.

Another reason to believe the Hyperclique hypothesis is due
to its relationship to Maximum Constraint Satisfaction Problems
(CSPs). R. Williams [Wil07] showed that Max-3-SAT can be
reduced to finding a 4-Hyperclique in a 3-uniform hypergraph, so
that if the latter can be solved in O(n4−ε ) time for n node graphs
and ε > 0, then Max-3-SAT can be solved in O(2(1−δ )n) time for
formulas on n variables.

Max-3-SAT has long resisted attempts to improve upon the
brute-force 2n runtime. Recent results (e.g. [ACW16]) obtained
2n−o(n) time improvements, but there is still no O((2−ε)n) time al-
gorithm. Generalizing the reduction from [Wil07] (see Section 9),
one can reduce Max-k-SAT to `-hyperclique in a k-uniform hyper-
graph for any ` > k, so that if the latter problem can be solved in
O(n`−ε ) time for n node graphs and ε > 0, then Max-k-SAT can be
solved in O(2(1−δ )n) time for formulas on n variables. In fact, R.
Williams [Wil07] showed that even harder Constraint Satisfaction
Problems (CSPs) can be reduced to hyperclique. CSPs where the
constraints are degree 3 polynomials representing Boolean func-
tions over the n variables. In the full version we generalize this to
CSPs where the constraints are degree k polynomials. Such CSPs
include Max-k-SAT and also include some CSPs with constraints
involving more than k variables. In any case, the (`,k)-Hypothesis
captures the difficulty of this very general class of CSPs.

Another reason to believe the Hypothesis is due to its relation-
ship to the Exact Weight k-Clique Conjecture [VW13] which states
that finding a k-Clique of total edge weight exactly 0 in an n node
graph with large integer weights requires nk−o(1) time. The Ex-
act Weight k-Clique conjecture is implied by the Min Weight k-
Clique conjecture, so it is at least as believable. Furthermore, for
the special case k = 3, both 3SUM and APSP can be reduced to
Exact Weight 3-Clique, so that a truly subcubic algorithm for the
latter problem would refute both the APSP and the 3SUM conjec-
tures [Pat10, VW13, VW10]. Exact Weight k Clique is thus a very
difficult problem. Recent work by Abboud et al. [ABDN17] shows
how to use the techniques in [ALW14] to reduce the Exact Weight
k-Clique problem to (unweighted) k-Clique in a 4-uniform hyper-
graph. Thus, if one believes the Exact Weight k-Clique conjecture,

then one should definitely believe the (`,4)-Hyperclique Hypothe-
sis. (A generalization of this approach also shows that Exact Weight
`-Hyperclique in a k-uniform hypergraph can be tightly reduced to
(unweighted) `-hyperclique in a 2k-uniform hypergraph.)

We note that the hypothesis concerns dense hypergraphs. For
hyperclique in sparse hypergraphs, faster algorithms are known: the
results of Gao et al. [GIKW17] imply that an `-hyperclique in an m-
hyperedge, n-node k-uniform hypergraph (for ` > k) can be solved
in m`−1/2Θ(

√
logm).

8 No Generalized Matrix Multiplication for k>2
The fastest known algorithm for `-clique reduces `-clique to trian-
gle detection in a graph and then uses matrix multiplication to find a
triangle [NP85]. One might ask, is there a similar approach to find-
ing an `-hyperclique in a k-uniform hypergraph faster than O(n`)
time?

The first step would be to reduce `-hyperclique problem in a
k-uniform hypergraph to k + 1-hyperclique in a k-uniform hyper-
graph. This step works fine: Assume for simplicity that ` is divisi-
ble by (k+ 1) so that ` = c(k+ 1). We will build a new graph G′.
Take all c-tuples of vertices of G and create a vertex in G′ corre-
sponding to the tuple if it forms an c-hyperclique in G (if c < k,
any c-tuple is a hyperclique, and if c ≥ k, it is a hyperclique if all
of its k-subsets are hyperedges). For every choice of k distinct c-
tuples, create a hyperedge in G′ on them if every choice of k nodes
from their union forms a hyperedge in G. Now, k+1-hypercliques
of G′ correspond to `-hypercliques of G. G′ is formed in O(nck)
time and has O(nc) nodes. Hence if a (k+ 1)-hyperclique in a k-
uniform hypergraph on N nodes can be found in O(N(k+1)−ε ) time
for some ε > 0, then an `-hyperclique in a k-uniform hypergraph
on n nodes can be found in O(nck + nc(k+1)−εc) = O(n`−δ ) time
for δ = min{`/(k+1),cε}> 0.

Thus it suffices to just find k + 1-hypercliques in k-uniform
hypergraphs. Following the approach for finding triangles (the case
k = 2), we want to define a suitable matrix product.

In the matrix multiplication problem we are given two matrices
and we are asked to compute a third. Matrices are just tensors of
order 2. The new product we will define is for tensors of order k.
We will call these k-tensors for brevity. The natural generalization
of matrix multiplication for k-tensors of dimensions n× . . .× n (k
times) is as follows.

k-wise matrix product Given k k-tensors of dimensions n× . . .×
n, A1, . . . ,Ak, compute the k-tensor C given by

C[i1, . . . , ik] =

∏
`∈[n]

A1[i1, · · · , ik−1, `] ·A2[i2, · · · , ik−1, `, ik] · · ·

· · ·Ak[`, ik, i1, · · · , ik−2].

The special case of k = 3 was defined in 1980 by Mesner
et al. [MB90]: Given three 3-tensors A1,A2,A3 with indices
in [n]× [n]× [n] compute the product C defined as C[i, j,k] =
∏`∈[n] A

1[i, j, `] ·A2[ j, `,k] ·A3[`,k, i]. The more general definition
as above was defined later by [GER11] and its properties have been
studied within algebra and combinatorics, e.g. [Gna15].

Now, if one can compute the k-wise matrix product in T (n)
time, then one can also find a k + 1-hyperclique in a k-uniform
hypergraph in the same time: define A to be the adjacency tensor
of the hypergraph – it is of order k and has a 1 for every k-tuple
that forms a hyperedge; if the k-wise product of k copies of A
has a nonzero for some k-tuple that is also a hyperedge, then the
hypergraph contains a k+1-hyperclique.

Copyright c© 2018
Copyright for this paper is retained by authors



Now the question is: “Is there an O(nk−ε ) time algorithm for
(k−1)-wise matrix product for k ≥ 4 and ε > 0?”

A priori, it seems quite plausible that a faster than nk-time algo-
rithm exists for generalized matrix product, as all of the techniques
developed for matrix multiplication carry over to the general case:
tensor products, rank, border rank etc. The only thing missing is
a suitable base case algorithm. Many researchers have searched
for such an algorithm (e.g. [WBK+]). Williams asked in [Wil10]
whether an O(n4−ε ) time algorithm exists for k = 3 and ε > 0, and
this question has remained unanswered.

We will show that there is no smaller arithmetic circuit than the
trivial one for generalized matrix product. In other words, there can
be no analogue of the fast algorithms for clique that carry over to
hyperclique.

THEOREM 8.1. For every k ≥ 3, the border rank of the tensor of
k-wise matrix multiplication is exactly nk+1.

Proof. [Sketch.] We give a sketch of the proof for k = 3. The
general case is similar but requires more indices. Consider the
tensor t which is such that ti, j,k, j′,k′,l′,k′′,l′′,i′′,l′′′,i′′′, j′′′ is 1 whenever
i = i′′ = i′′′, j = j′ = j′′′,k = k′ = k′′ and 0 otherwise. Let t
be in A∗ ⊗ B∗ ⊗C∗ ⊗D∗. Define the flattening of t which is a
linear transformation T : A∗⊗B∗ → C⊗D that takes a(i, j,k)∗⊗
b( j′,k′, l)∗ to c(k, l, i)⊗d(l, i, j) if j = j′,k = k′ and to 0 otherwise.
The vectors c(k, l, i)⊗d(l, i, j) are n4 independent vectors that span
the image of T , and hence the map has rank n4. Since T is a linear
transformation it must also have border rank n4. Because T is a
flattening of t, t must have border rank at least n4.

Theorem 8.1 completely rules out the arithmetic circuit approach
for k > 2. Nevertheless, there might still be an O(nk+1−ε ) time
algorithm (at least for the Boolean version of the product) that
uses operations beyond +, ·,/, for instance by working at the bit
level. Obtaining such an algorithm is quite a challenging but very
interesting endeavor.

9 Max-k-SAT to Tight Hypercycle
We are dealing with graphs and SAT instances. For ease of reading
we will capitalize the variables associated with graphs (i.e. M = |E|
and N = |V |) and leave the variables associated with SAT instances
in lower case (i.e. m for number of clauses and n for number of
variables). The current fastest known algorithms for Max-k-SAT
come from Alman, Chan and Williams [ACW16].

LEMMA 9.1. For all integers L≥ 3 if we can detect L-hypercliques
in a k uniform hypergraph, G, with N nodes in time T (N) then we
can solve max-k-SAT in Õ((mnk)(

L
k)T (L2n/L)+mnk2nk/L) time.

Proof. Let n be the number of variables and m the number of
clauses in our max-3-SAT instance.

Notice that the clauses of k-SAT can be represented by a k degree
polynomial. Each clause only depends on k variables and x2

i = xi.
In the full version we prove the following:
Theorem Statement: When ` and k are constants, if the

unweighted `-hyperclique problem on a k-uniform hypergraph can
be solved in time T (n) then the maximum degree-k-CSP problem

can be solved in O((mnk)(
`
k)T (2n/`)+mnk2kn/`) time.

Simply replace ` with L.

COROLLARY 9.1. For all integers L ≥ 3 if we can detect a tight
L-hypercycle in a d = L−dL/3e+ 1 uniform hypergraph, G, with
N = L2n/L nodes in time T (N) then we can solve max-3-SAT in
Õ(m(L

3)T (2n/L)+2n(d/L)+m(L
3)23n/L) time.

Proof. Take Lemma 9.1 in the case of k = 3 to get a reduction from
max-3-SAT to m(L

k)T (N) instances of L-hyperclique in a k regular
graph. let d = L−dL/3e+1. We then use Theorem 3.1 to generate
a d-uniform hypergraph G′ on N = L2n/L nodes such that G has
a L-hypercycle only if the associated L-hyperclique instance has a
clique. The overhead of this reduction is O(2n(d/L) +m(L

3)23n/L)

time to create these graphs. It takes m(L
3)T (N) time to run L-

hypercycle on the m(L
3) instances. Giving us a total time of

Õ(m(L
3)T (2n/L)+2n(d/L)+m(L

3)23n/L).

COROLLARY 9.2. If directed L-cycle can be solved in a graph
G with N = 2n(d−1)/L nodes and M = 2nd/L, where d = L −
dL/3e+ 1, in time T (N,M) then max-3-SAT can be solved in time
Õ(m(L

3)T (N,M)+M+mn323n/L).

Proof. If directed L-cycle can be solved in a graph G with N =

2n(d−1)/L nodes and M = 2nd/L in time T (N,M) then by Lemma
4.1 we can solve tight L-hypercycle in a d regular graph in time
O(T (N,M)+M).

If we could detect a tight L-cycle in a d regular hypergraph, G,
with N = L2n(d−1)/L nodes in time O(T (N,M)+M) then we can
solve max-3-SAT in Õ(m(L

3)T (N,M)+m(L
3)M+23n/L) time.

THEOREM 9.1. If directed L-cycle, for L > 3, can be solved in a
graph G in time O(McL−ε ), where cL = L/d = L/(L−dL/3e+ 1)
then max-3-SAT can be solved in time Õ(2(1−ε ′)n).

Proof. We can plug in the running time O(McL−ε ) into Corollary
9.2. On a graph with N = 2n(d−1)/L nodes and M = 2nd/L this
running time gives

T (N,M) = 2(cL−ε)nd/L = 2(L/d−ε)nd/L = 2(1−εd/L)n.

We get that max 3-SAT is solved in time Õ((mnk)(
L
k)2(1−εd/L)n +

m(L
k)2nd/L + 2n/L). Note that d/L < 1 for L > 3 and d and L are

constants. Further note that (mnk)(
L
k) is a polynomial factor. Thus,

max 3-SAT is solved in Õ(2(1−ε ′)n) time.

This theorem gives us a lower bound for detecting L-cycles for
large constant values of L of Ω̃(M3/2) time.

COROLLARY 9.3. If directed L-cycle is solvable in time
O(M3/2−ε ) for all constant L then max-3-SAT is solvable in time
O(21−ε ′n).

Proof. We will use Theorem 9.1 and set L large enough that cL >
3/2− ε .

As L/(L−dL/3e+ 1) > L/(2L/3+ 1) = 3/2− 9/(4L+ 6). If
L > (9/ε − 6)/4 then cL > 3/2− ε . We can now invoke Theorem
9.1. If we can solve L-cycle in time O(M3/2−ε ) then we can L-cycle
in time O(McL−δ ) for some δ > 0. Thus we can solve max-3-SAT
in time O(2(1−ε ′)n).

What if you care about specifically solving directed cycle for a
particular constant L? Our result will garner improvements over the
previous result of Ω̃(M4/3) for many small cycle lengths. Notably
for 7-cycle we get the bound of Ω̃(M7/5) (and 7/5 > 4/3).

COROLLARY 9.4. If we can solve directed 7-cycle in a graph with
M = N5/4 in time O(M7/5−ε ) then we can solve max-3-SAT in time
O(2(1−ε ′)n).

Proof. Once again we will use Theorem 9.1 and we will plug in
L = 7 note that cL = 7/5 giving us the bound.

Copyright c© 2018
Copyright for this paper is retained by authors



Acknowledgments. V.V.W. would like to acknowledge J.M.
Landsberg and Mateusz Michalek for valuable discussions about
tensor rank lower bounds. We would like to thank the anonymous
reviewers whose suggestions we implemented.

References

[ABDN17] Amir Abboud, Karl Bringmann, Holger Dell, and
Jesper Nederlof. Personal communication, 2017.

[ABV15] Amir Abboud, Arturs Backurs, and Virginia Vassilevska
Williams. If the current clique algorithms are optimal, so
is valiant’s parser. In IEEE 56th Annual Symposium on
Foundations of Computer Science, FOCS 2015, Berkeley, CA,
USA, 17-20 October, 2015, pages 98–117, 2015.

[ABZ05] Adi Avidor, Ido Berkovitch, and Uri Zwick. Improved
approximation algorithms for MAX NAE-SAT and MAX
SAT. In Approximation and Online Algorithms, Third Inter-
national Workshop, WAOA 2005, Palma de Mallorca, Spain,
October 6-7, 2005, Revised Papers, pages 27–40, 2005.

[ACW16] Josh Alman, Timothy M. Chan, and R. Ryan Williams.
Polynomial representations of threshold functions and algo-
rithmic applications. In IEEE 57th Annual Symposium on
Foundations of Computer Science, FOCS 2016, 9-11 Octo-
ber 2016, Hyatt Regency, New Brunswick, New Jersey, USA,
pages 467–476, 2016.

[AGV15] Amir Abboud, Fabrizio Grandoni, and Virginia Vas-
silevska Williams. Subcubic equivalences between graph cen-
trality problems, APSP and diameter. In Proceedings of the
Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Al-
gorithms, SODA 2015, San Diego, CA, USA, January 4-6,
2015, pages 1681–1697, 2015.

[Aku99] Tatsuya Akutsu. Approximation and exact algorithms
for rna secondary structure prediction and recognition of
stochastic context-free languages. Journal of Combinatorial
Optimization, 3(2):321–336, 1999.

[ALW14] Amir Abboud, Kevin Lewi, and Ryan Williams. Losing
weight by gaining edges. In Algorithms - ESA 2014 - 22th
Annual European Symposium, Wroclaw, Poland, September
8-10, 2014. Proceedings, pages 1–12, 2014.

[AR16] Udit Agarwal and Vijaya Ramachandran. Fine-grained
complexity and conditional hardness for sparse graphs. arXiv
preprint arXiv:1611.07008v3, 2016.

[AV14] Amir Abboud and Virginia Vassilevska Williams. Popular
conjectures imply strong lower bounds for dynamic problems.
In Foundations of Computer Science (FOCS), 2014 IEEE 55th
Annual Symposium on, pages 434–443. IEEE, 2014.

[AVW14] Amir Abboud, Virginia Vassilevska Williams, and Oren
Weimann. Consequences of faster alignment of sequences.
In International Colloquium on Automata, Languages, and
Programming, pages 39–51. Springer, 2014.

[AW02] Takao Asano and David P. Williamson. Improved approx-
imation algorithms for MAX SAT. J. Algorithms, 42(1):173–
202, 2002.

[AYZ97] Noga Alon, Raphael Yuster, and Uri Zwick. Finding and
counting given length cycles. Algorithmica, 17(3):209–223,
1997.

[AYZ16] Noga Alon, Raphael Yuster, and Uri Zwick. Color
coding. In Encyclopedia of Algorithms, pages 335–338. 2016.

[BGMW17] Karl Bringmann, Pawel Gawrychowski, Shay Mozes,
and Oren Weimann. Tree edit distance cannot be com-

puted in strongly subcubic time (unless APSP can). CoRR,
abs/1703.08940, 2017.

[Bra01] U. Brandes. A faster algorithm for betweenness centrality.
Journal of Mathematical Sociology, 25(2):163–177, 2001.

[BT16] Arturs Backurs and Christos Tzamos. Improving viterbi is
hard: Better runtimes imply faster clique algorithms. CoRR,
abs/1607.04229, 2016.

[CGS15] Marek Cygan, Harold N. Gabow, and Piotr Sankowski.
Algorithmic applications of baur-strassen’s theorem: Shortest
cycles, diameter, and matchings. J. ACM, 62(4):28:1–28:30,
2015.

[Cha12] Timothy M Chan. All-pairs shortest paths for unweighted
undirected graphs in o (mn) time. ACM Transactions on
Algorithms (TALG), 8(4):34, 2012.

[Dij59] E. W. Dijkstra. A note on two problems in connection with
graphs. Numer. Math., pages 269–271, 1959.

[DKS17] Søren Dahlgaard, Mathias Bæk Tejs Knudsen, and
Morten Stöckel. Finding even cycles faster via capped k-
walks. CoRR, abs/1703.10380, 2017.

[EG04] Friedrich Eisenbrand and Fabrizio Grandoni. On the
complexity of fixed parameter clique and dominating set.
Theor. Comput. Sci., 326(1-3):57–67, 2004.

[FG95] Uriel Feige and Michel X. Goemans. Aproximating the
value of two prover proof systems, with applications to MAX
2sat and MAX DICUT. In Third Israel Symposium on Theory
of Computing and Systems, ISTCS 1995, Tel Aviv, Israel,
January 4-6, 1995, Proceedings, pages 182–189, 1995.

[FHRV09] Michael R. Fellows, Danny Hermelin, Frances A.
Rosamond, and Stéphane Vialette. On the parameterized
complexity of multiple-interval graph problems. Theor. Com-
put. Sci., 410(1):53–61, 2009.

[Fre77] L. Freeman. A set of measures of centrality based upon
betweenness. Sociometry, 40:35–40, 1977.

[Gal14] François Le Gall. Powers of tensors and fast matrix
multiplication. In International Symposium on Symbolic and
Algebraic Computation, ISSAC ’14, Kobe, Japan, July 23-25,
2014, pages 296–303, 2014.

[GER11] E. K. Gnang, A. Elgammal, and V. Retakh. A spectral
theory for tensors. Annales de la faculte des sciences de
Toulouse Mathematiques, 20(4):801–841, 7 2011.

[GIKW17] Jiawei Gao, Russell Impagliazzo, Antonina
Kolokolova, and R. Ryan Williams. Completeness for
first-order properties on sparse structures with algorithmic
applications. In Proceedings of the Twenty-Eighth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2017,
Barcelona, Spain, Hotel Porta Fira, January 16-19, pages
2162–2181, 2017.

[GL09] Zvi Gotthilf and Moshe Lewenstein. Improved algorithms
for the k simple shortest paths and the replacement paths
problems. Information Processing Letters, 109(7):352–355,
2009.

[Gna15] E. K. Gnang. A combinatorial approach to the alge-
bra of hypermatrices. Technical report, arXiv:1403.3134
[math.CO], 2015.

[GO95] A. Gajentaan and M. Overmars. On a class of o(n2) prob-
lems in computational geometry. Computational Geometry,
5(3):165–185, 1995.

[IP01] R. Impagliazzo and R. Paturi. On the complexity of k-sat.
J. Comput. Syst. Sci., 62(2):367–375, 2001.

[IPZ01] R. Impagliazzo, R. Paturi, and F. Zane. Which problems
have strongly exponential complexity? J. Comput. Syst. Sci.,

Copyright c© 2018
Copyright for this paper is retained by authors



63(4):512–530, 2001.
[IR78] Alon Itai and Michael Rodeh. Finding a minimum circuit

in a graph. SIAM Journal on Computing, 7(4):413–423, 1978.
[MB90] Dale M. Mesner and Prabir Bhattacharya. Association

schemes on triples and a ternary algebra. Journal of Combi-
natorial Theory, Series A, 55(2):204 – 234, 1990.

[MMG89] Kavindra Malik, Ashok K Mittal, and Santosh K Gupta.
The k most vital arcs in the shortest path problem. Operations
Research Letters, 8(4):223–227, 1989.

[Mon85] B. Monien. How to find long paths efficiently. Annals of
Discrete Mathematics, 25:239––254, 1985.

[MP88] Bojan Mohar and Tomaž Pisanski. How to compute the
wiener index of a graph. Journal of Mathematical Chemistry,
2(3):267–277, 1988.

[NP85] J. Nešetřil and S. Poljak. On the complexity of the sub-
graph problem. Commentationes Math. Universitatis Caroli-
nae, 26(2):415–419, 1985.

[NPW03] Enrico Nardelli, Guido Proietti, and Peter Widmayer.
Swapping a failing edge of a single source shortest paths tree
is good and fast. Algorithmica, 35(1):56–74, 2003.

[OS17] James B. Orlin and Antonio Sedeño-Noda. An O(nm)
time algorithm for finding the min length directed cycle
in a graph. In Proceedings of the Twenty-Eighth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2017,
Barcelona, Spain, Hotel Porta Fira, January 16-19, pages
1866–1879, 2017.

[Pat10] Mihai Patrascu. Towards polynomial lower bounds for
dynamic problems. In Proceedings of the forty-second ACM
symposium on Theory of computing, pages 603–610. ACM,
2010.

[Pet02] Seth Pettie. A faster all-pairs shortest path algorithm for
real-weighted sparse graphs. In International Colloquium
on Automata, Languages, and Programming, pages 85–97.
Springer, 2002.

[PR05] Seth Pettie and Vijaya Ramachandran. A shortest path
algorithm for real-weighted undirected graphs. SIAM J.
Comput., 34(6):1398–1431, 2005.

[RV11] Liam Roditty and Virginia Vassilevska Williams. Min-
imum weight cycles and triangles: Equivalences and algo-
rithms. In Foundations of Computer Science (FOCS), 2011
IEEE 52nd Annual Symposium on, pages 180–189. IEEE,
2011.

[RZ12] Liam Roditty and Uri Zwick. Replacement paths and k
simple shortest paths in unweighted directed graphs. ACM
Trans. Algorithms, 8(4):33:1–33:11, 2012.

[Sei95] Raimund Seidel. On the all-pairs-shortest-path problem
in unweighted undirected graphs. Journal of computer and
system sciences, 51(3):400–403, 1995.

[SZ99] Avi Shoshan and Uri Zwick. All pairs shortest paths
in undirected graphs with integer weights. In 40th Annual
Symposium on Foundations of Computer Science, FOCS ’99,
17-18 October, 1999, New York, NY, USA, pages 605–615,
1999.

[TT98] Hisao Tamaki and Takeshi Tokuyama. Algorithms for
the maxium subarray problem based on matrix multiplication.
In Proceedings of the Ninth Annual ACM-SIAM Symposium
on Discrete Algorithms, 25-27 January 1998, San Francisco,
California., pages 446–452, 1998.

[Vas08] Virginia Vassilevska. Efficient algorithms for path prob-
lems in weighted graphs. PhD thesis, Carnegie Mellon Uni-
versity, 2008.

[Vas12] Virginia Vassilevska Williams. Multiplying matrices
faster than coppersmith-winograd. In STOC, pages 887–898,
2012.

[Vas15] Virginia Vassilevska Williams. Hardness of easy prob-
lems: Basing hardness on popular conjectures such as the
strong exponential time hypothesis (invited talk). In 10th In-
ternational Symposium on Parameterized and Exact Compu-
tation, IPEC 2015, September 16-18, 2015, Patras, Greece,
pages 17–29, 2015.

[VW10] Virginia Vassilevska Williams and Ryan Williams. Sub-
cubic equivalences between path, matrix and triangle prob-
lems. In Foundations of Computer Science (FOCS), 2010 51st
Annual IEEE Symposium on, pages 645–654. IEEE, 2010.

[VW13] Virginia Vassilevska Williams and Ryan Williams. Find-
ing, minimizing, and counting weighted subgraphs. SIAM
Journal on Computing, 42(3):831–854, 2013.

[WBK+] Ryan Williams, Arnab Bhattacharyya, Mikko Koivisto,
Thore Husfeldt, and Michael Forbes. Personal communica-
tion.

[Wil05] Ryan Williams. A new algorithm for optimal 2-constraint
satisfaction and its implications. Theor. Comput. Sci., 348(2–
3):357–365, 2005.

[Wil07] Ryan Williams. Algorithms and Resource Requirements
for Fundamental Problems. PhD thesis, Carnegie Mellon
University, Computer Science Department, 8 2007. CMU-
CS-07-147.

[Wil10] R. Williams. A generalization of boolean matrix multipli-
cation for order 3 tensors. http://bit.ly/1HzfP3O, 2010.

[Wil11] Virginia Vassilevska Williams. Faster replacement paths.
In Proceedings of the Twenty-Second Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2011, San Fran-
cisco, California, USA, January 23-25, 2011, pages 1337–
1346, 2011.

[Wil14] Ryan Williams. Faster all-pairs shortest paths via circuit
complexity. In Proceedings of the 46th Annual ACM Sympo-
sium on Theory of Computing, pages 664–673. ACM, 2014.

[YZ97] Raphael Yuster and Uri Zwick. Finding even cycles even
faster. SIAM J. Discrete Math., 10(2):209–222, 1997.

[YZ04] Raphael Yuster and Uri Zwick. Detecting short directed
cycles using rectangular matrix multiplication and dynamic
programming. In Proceedings of the fifteenth annual ACM-
SIAM symposium on Discrete algorithms, pages 254–260.
Society for Industrial and Applied Mathematics, 2004.

[Zwi02] U. Zwick. All pairs shortest paths using bridging sets
and rectangular matrix multiplication. JACM, 49(3):289–317,
2002.

A Prior Work On Improved Running Times

In this section we provide some of the prior algorithmic work on the
various problems that we study. We limit our scope to algorithms
that compute the problems below exactly. We note that faster
approximation algorithms are known for many of them.

k-Cycle. The complexity of finding a k-Cycle in an n node,
m edge graph depends heavily on whether the graph is directed
and whether k is even or odd. In directed graphs, the fastest
algorithm for finding k-cycles run in Õ(nω ) time [AYZ16]. For
sparse graphs, [AYZ97] obtained faster algorithms using matrix
multiplicatin. When k is odd, the k-cycle problem in directed graphs
is equivalent to the k-cycle problem in undirected graphs (see e.g.
[Vas08]). When k is even, however, the problem is much easier in
undirected graphs. Yuster and Zwick [YZ97] showed that a k-cycle

Copyright c© 2018
Copyright for this paper is retained by authors

http://bit.ly/1HzfP3O


in an undirected graph can be found in Õ(n2) time for any even
constant k. Dahlgaard et al. [DKS17] recently extended this result,
giving an Õ(m2k/(k+2)) time algorithm for all even k.

Shortest Cycle. The Shortest Cycle problem in weighted
graphs was recently shown to be solvable in O(mn) time by
Orlin and Sedeño-Noda [OS17]. In directed or undirected graphs
with small integer weights in the interval {1, . . . ,M}, Roditty and
Vassilevska Williams [RV11] showed how to find a shortest cycle
in Õ(Mnω ) time, generalizing a result by Itai and Rodeh [IR78] that
obtained O(nω ) for unweighted graphs.

APSP. In directed or undirected weighted graphs, the fastest
algorithm for APSP runs in n3/2Θ(

√
logn) time [Wil14] for

dense graphs. For APSP in sparse the fastest algorithm
is O(mn + n2 log logn) time [Pet02] for directed graphs, and
O(mn lg(α(m,n))) in undirected graphs [PR05].

For undirected graphs with integer weights in {−M, . . . ,M},
Shoshan and Zwick [SZ99] provided an Õ(Mnω ) time algo-
rithm, generalizing Seidel’s O(nω logn) time algorithm for un-
weighted undirected graphs [Sei95]. Zwick [Zwi02] obtained an
O(M0.681n2.532) time algorithm for APSP in directed graphs with
integer weights in {−M, . . . ,M}; his algorithm for M = 1 gives the
best known running time for APSP in directed unweighted graphs.
Chan [Cha12] obtained O(mn log logn/ logn) time for sparse undi-
rected graphs, while for APSP in sparse directed graphs the O(mn)
BFS-based algorithm is currently the fastest.

Radius. The fastest known algorithm for Radius in directed or
undirected graphs with large edge weights just uses the best known
APSP algorithms above. For graphs with integer edge weights
in {−M, . . . ,M}, Cygan et al. [CGS15] provide an Õ(Mnω ) time
algorithm; when setting M = 1 one gets the fastest known runtime
of Õ(nω ) for unweighted graphs.

Wiener Index. The best algorithms for Wiener index compute
APSP and sum up all the pairwise distances. (See Mohar and
Pisanski [MP88] for versions of the Floyd-Warshall and other
algorithms for Wiener index.)

Replacement Paths (RP) and Second Shortest Path
(SSP). RP and SSP for undirected graphs can be solved very ef-
ficiently: Malik et al. [MMG89] presented an Õ(m) time algo-
rithm. Nardelli et al. [NPW03] improved this runtime to O(mα(n))
in the word-RAM model. The best runtime for both problems in
directed graphs with arbitrary edge weights is O(mn+n2 log logn)
by Gotthilf and Lewenstein [GL09]. For dense weighted graphs,
the best algorithm use the best algorithms for APSP. Vassilevska
Williams [Wil11] obtained an Õ(Mnω ) time algorithm for RP and
SSP for directed graphs with edge weights in {−M, . . . ,M}. For
unweighted directed graphs, Roditty and Zwick [RZ12] gave a
randomized combinatorial algorithm which computes replacement
paths Õ(m

√
n) time.

Betweenness Centrality. The notion of betweenness cen-
trality was introduced by Freeman [Fre77] in the context of so-
cial networks, and since then became one of the most impor-
tant graph centrality measures in the applications. Brandes’ algo-
rithm [Bra01] computes the betweenness centrality of all nodes in
time O(mn+ n2 logn) using a counting variant of Dijkstras algo-
rithm. Similar to other papers in the area, [Bra01] neglects the bit
complexity of the counters storing the number of pairwise short-
est paths. This is reasonable in practice since the maximum num-
ber N of alternative shortest paths between two nodes tends to be
small. By also considering N, the running time grows by a factor
O(logN) = O(n logn).

B Beating O(mn) for Many Graph Problems is
Probably Hard

B.1 Undirected k-cycle reduces to radius First we will
demonstrate a reduction from k-cycle to Radius in the undirected

weighted case. Radius will solve k-cycle at any graph density
and thus we will get a lower bound of mn1−o(1) for all densities
m = n1+1/L.

To make the reduction more readable we will first prove a lemma
that gives a reduction from minimum k-cycle to negative k-cycle in
a k-circle-layered graph. The latter problem is defined as follows:
given a directed weighted graph, find a k-cycle of negative total
edge weight.

LEMMA B.1. If the negative directed k-cycle problem on a k-
circle-layered graph, G with weights in the range [−R,R] can
be solved in time T (n,m,R) time then the directed minimum k-
cycle problem with weights in the range [−R,R] can be solved in
Õ(lg(R)T (n,m,R)) time.

Proof. We use the color coding lemma (Lemma 2.2) to reduce the
directed minimum k-cycle problem to directed minimum k-cycle in
a k-circle-layered graph. Let the partitions of this graph G be U1,
U2, . . . , Uk.

Now, given any weight T ∈ [−Rk,Rk], we can add −T to all
edges between U1 and U2, creating a new graph G(T ) , and ask
for a negative k-cycle in G(T ). If such a cycle C exists, then since
C must go around the circle of the k-circle-layered graph, then the
weight of C in G(T ) is its weight w(C) in G, minus T . Notice that
w(C)− T < 0 if and only if w(C) < T . Hence, for any T , using
one negative k cycle query we can check whether the Min Weight k
Cycle in G has weight < T or not.

We can now binary search over the possible cycle lengths
O(lg(R)) times to find the minimum cycle length in G.

THEOREM B.1. If Radius in an undirected weighted N node M
edge graph can be computed in f (N,M) time then the minimum
weight directed k-cycle problem in n node, m edge graphs with
weights in [−R,R] can be solved in Õ( f (O(n),O(m)) logR + m)
time.

Proof. We take the minimum weight k-cycle problem with edge
weights in the range [−R,R] and use our previous reduction (from
Lemma B.1) to the negative weight k-cycle problem in a k-circle-
layered graph, G, with partitions U1, U2, . . . , Uk. We will refer
to the jth node in Ui by u j

i . We will create a new graph G′ on
partitions V1, . . . ,Vk where Vi corresponds to the nodes in Ui of G.
In particular, v j

i corresponds to node u j
i of G. See Figure 3 for an

illustration of the construction.
Let F = 20kR. Let V ′1 be a copy of the nodes in V1.

Let the edges from v( j)
i ∈Vi to v(p)

i+1 ∈Vi+1 for i ∈ [1,k−1] exist

if there is an edge between u( j)
i ∈Ui and u(p)

i+1 ∈Ui+1. The weight

of the edge is given by w(v( j)
i ,v(p)

i+1) = w(u( j)
i ,u(p)

i+1)+F .

We will introduce edges between v( j)
k ∈Vk and v′(p)

1 ∈V ′1 if there

is an edge between u( j)
k ∈Uk and u(p)

1 ∈U1. The weight of the edge

is given by w(v( j)
k ,v′(p)

1 ) = w(u( j)
k ,u(p)

1 )+F .

Let V̂i be Vi∪{ui} where ui is a new node connected to all nodes
in Vi with edges of weight 3F/4 = 15kR.

Let B be a set of lg(n) + 1 nodes b0,b1, . . . ,blg(n) where each

bi is connected to every node v( j)
1 where the ith bit of j is a 1 and

connect bi to every node v′( j)
1 where the ith bit of j is a 0. Here the

weights of these edges are kF/2 between V1 and B and the weights
are kF/2− kR between V ′1 and B. Connect the node u′1 node to all
nodes in B.

We add a node x which has edges of weight kF −1 to all nodes
in V1, so only nodes in V1 or x could possibly have radius < kF .

Copyright c© 2018
Copyright for this paper is retained by authors



Figure 3: The Radius gadget.

Note that if k > 1 then the shortest path from x to nodes in V2 is at
least kF−1+20kR−R, making it impossible for it to be the center
if the radius is less than kF .

We add a node y which has edges of weight kF/2 to all nodes in
V1 and edges of weight kF/2−F/2 to every node in Vk.

So the shortest path between v(i)1 and v′( j)
1 when i 6= j is kF−kR.

The shortest path between v(i)1 and v′(i)1 has a length of the

shortest k-cycle, if one exists, through node u(i)1 plus kF . Because,
all other choices of paths use more than k edges (thus giving a
weight of at least (k+1/2)F) or go though y or B which will result
in a weight of (k+1/2)F or more. So, the shortest path will be the
shortest k-cycle through node u(i)1 plus kF .

Any node vt
1 in V1 whose copy is part of any k-cycle in G will

have a path of length < kF to all nodes in Vi where i < k. To see
this, first note that vt

1 can reach some node in Vi with a path of
length at most (i− 1)F +(i− 1)R = F(i− 1)(1+ 1/(20k)). Now,
since every two node in Vi are connected with a path of length 1.5F
through node ui, vt

1 can reach any node in Vi using a path of length
at most (i− 1+ 3/2+(i− 1)/(20k))F which for i < k is at max
(k−1/2+(k−2)/(20k))F < (k−0.48)F < kF .

We need to ensure that any node in V1 involved in a cycle has
a path of length < Fk to all nodes in Vk. The node y solves this
problem by providing a path of length (k−0.5)F between all nodes
in V1 and Vk.

So every node v(i)1 in V1 has shortest paths of length < kF to

every node in the graph except, possibly, to the node v′(i)1 . If v(i)1 is
involved in a negative k-cycle then there is a shortest path between
v′(i)1 and v(i)1 of length < Fk. Thus, if there is a negative k-cycle
then the radius of the graph will be < Fk.

We would like to show that radius in unweighted graphs is also
hard from (unweighted) k-cycle.

LEMMA B.2. If Radius in an undirected unweighted N node M
edge graph can be computed in f (N,M) time then a directed

k-cycle problem in n node, m edge graphs can be found in
Õ( f (O(n),O(m))+m) time.

Proof. If there is a k-cycle then the radius will be k and otherwise
the radius will be larger. The reduction is similar to before: we
start with a k-circle-layered graph G with partitions U1, . . . ,Uk and
reduce it to a new graph G′ with roughly the same number of nodes.
See Figure 4 for a depiction of this graph. In G′, we have partitions
V1, . . . ,Vk where Vi corresponds to Ui in G.

As before, let V ′1 be a copy of the nodes in V1.

Let the edges from v( j)
i ∈Vi to v(p)

i+1 ∈Vi+1 for i ∈ [1,k−1] exist

if there is an edge between u( j)
i ∈Ui and u(p)

i+1 ∈Ui+1.

We will introduce edges between v( j)
k ∈Vk and v′(p)

1 ∈V ′1 if there

is an edge between u( j)
k ∈Uk and u(p)

1 ∈U1.

Let V̂i be Vi ∪ui where ui is a node connected to all nodes in Vi.
We connect ui to ui+1 for all i in[1,k− 1] and connect uk and u′1.
We additionally add edges between u2 and every node in V1.

Let B be a set of lg(n)+1 nodes b0,b1, . . . ,blg(n) where each bi

is connected to every node v( j)
1 where the ith bit of j is a 1. Let B′ be

a set of lg(n)+1 nodes b′0,b
′
1, . . . ,b

′
lg(n) where each b′i is connected

to every node v′( j)
1 where the ith bit of j is a 0. We connect bi and

b′i with a path of k−2 nodes.
We add a node x which to all nodes in V1. We connect to x a path

P containing nodes p1, . . . , pk−1, so that nodes in V1 are distance k
from pk−1. So only nodes in V1 or x could possibly have radius < k.

The shortest path between v(i)1 and v′(i)1 has length k through B
and B′. There is a path to ui from any node in V1 is ≤ k. The
shortest path from nodes in V1 to nodes in x∪P is ≤ k.

The shortest path between a node in V1 and a node in Vi has
length at most i for i > 1. Thus, every node in v(i)1 ∈ V1 is distance

≤ k from every node except, possibly v(i)1
′
.

Copyright c© 2018
Copyright for this paper is retained by authors



Figure 4: The unweighted radius gadget.

If a k-cycle exists then that k-cycle corresponds to a node such

that v(i)1
′

and v(i)1 are at distance ≤ k. If a k-cycle does not exist
then there is no path from V1 to V2 to . . . to Vk and back to the
corresponding node in V ′1, thus the shortest path between the two
nodes has length > k. Paths through the nodes u require extra edges

and thus require at least k+1 edges to get to v(i)1
′

from v(i)1 .
We can detect a k-cycle by running radius and returning true if

the radius is k or less and false otherwise.

B.2 Undirected k-cycle reduces to Wiener index Infor-
mally, The Wiener index in a graph is the sum of all pairwise dis-
tances in the graph. Formally:

Definition Let d(v,u) be the (shortest path) distance between v and
u in G. Then the Wiener index is

W(G) = ∑
v∈V

∑
u∈V

d(v,u).

THEOREM B.2. If the Wiener index in an undirected weighted
graph on N nodes and M edges can be computed in f (N,M)
time then the minimum weight k-cycle problem in N node, M-edge
directed graphs can be solved in Õ( f (N,M)+M) time.

Proof. We take the minimum weight k-cycle problem with edge
weights in the range [−R,R] and use our previous reduction (from
Lemma B.1) to the negative weight k-cycle problem on a k-partite
graph, G, with partitions U1, U2, . . . , Uk such that edges only
exist between partitions Ui and U(i+1 mod k). We will describe the
reduction graph G′, see Figure 5 for a diagram of the gadget. G′
contains a part Vi for each part Ui of G, for each i ∈ {1, . . . ,k}. In
addition, there is a part V ′1 which contains copies of the nodes in V1.
For each i, call the jth node in Vi, v j

i .

Let F = 20kR. Let the edges from v( j)
i ∈Vi to v(p)

i+1 ∈Vi+1 for i ∈
[1,k−1] exist if there is an edge between u( j)

i ∈Ui and u(p)
i+1 ∈Ui+1.

The weight of the edge is given by w(v( j)
i ,v(p)

i+1)=w(u( j)
i ,u(p)

i+1)+F .

Figure 5: The Wiener Index gadget.

We will introduce edges between v( j)
k ∈Vk and v′(p)

1 ∈V ′1 if there

is an edge between u( j)
k ∈Uk and u(p)

1 ∈U1. The weight of the edge

is given by w(v( j)
k ,v′(p)

1 ) = w(u( j)
k ,u(p)

1 )+F .

Let V̂i be Vi ∪{ui} where ui is a node connected to all nodes in
Vi with edges of weight 3F/4 = 15kR. Let B be a set of lg(n)+ 1
nodes b0,b1, . . . ,blg(n) where each bi is connected to every node

v( j)
1 where the ith bit of j is a 1 and connect bi to every node v′( j)

1
where the ith bit of j is a 0. Where the weights of these edges are
kF/2 between V1 and B and the weights are kF/2− kR between
V ′1 and B. By construction, the shortest path between v(i)1 and v′( j)

1
when i 6= j is kF− kR.

Let H be the graph composed of V̂2∪ . . .∪V̂k.

Copyright c© 2018
Copyright for this paper is retained by authors



Let H ′ be the graph composed of V̂1 ∪H. Let H ′′ be the graph
composed of H ∪ V̂ ′1. Let G′ be the graph composed of H ∪ V̂ ′1 ∪B

where we add edges ∀i ∈ [1, |V1|] with weight w(v(i)1 ,v′(i)1 ) = kF .

Let the minimum k-cycle length in G going through u(i)1 be

of length ci. Note that dG′(v
(i)
1 ,v′(i)1 ) = kF + min(0,ci) by con-

struction. Note that dG′(v
(i)
1 ,v′( j)

1 ) = kF − kR for i 6= j. If we
could access the sum of all of the |V1|2 pairwise distances be-
tween the nodes in V1 and V ′1 and see if those distances are, in sum,
(kF − kR)|V1|2 + |V1|kR then we would know if a negative k-cycle
exists.

We need to remove all the other distances first. Most easily
we can calculate the distances to and from nodes in B. Let
wB = ∑b∈B ∑v∈G′ δG′(b,v), we compute this in time O(|B||G′|) =
O(lg(N)|G′|).

Next we can get the sum of the distances between any nodes in H
by computing W(H). The graph has M+N = O(M) edges in total.
After this, we want to find the distances to and from the nodes in V̂1
to G′/(V̂ ′1∪B). We can get this from W(H ′)−W(H). Next we want
to find the distances too and from the nodes in V̂ ′1 to G′/(V̂1 ∪B),
we can get this from W(H ′′)−W(H). Finally we need to account
for the distance between u1 and u′1, call this distance wu we can
run Dijstra’s algorithm and find this distance in Õ(M+N) = Õ(M)
time.

Therefore the sum of all the pairwise distances between nodes
in V1 and V ′1 is equal to W(G′)− (W(H ′)−W(H))− (W(H ′′)−
W(H))−W(H)−2wB−2wu.

Thus, if W(G′)−W(H ′)−W(H ′′) +W(H)− 2wB − 2wu <
(kF−kR)|V1|2+ |V1|kR then there is a negative k-cycle. If W(G′)−
W(H ′)−W(H ′′)+W(H)−2wB−2wu ≥ (kF−kR)|V1|2 + |V1|kR
then there is no negative k-cycle.

The total time to get all the sums we need is O( f (N,M +N)+
M lg(N)) = Õ( f (N,M)+M lg(N)).

We would like to show that unweighted Wiener Index is also hard
from k-cycle.

LEMMA B.3. If the Wiener Index can be computed in f (N,M)
time in an undirected unweighted graph then the directed k-cycle
problem can be solved in Õ( f (N,M)+M) time.

Proof. If there is a k-cycle then the Wiener Index will be lower and
otherwise the Wiener Index will be larger. We will form the graph
G′ similar to before. See Figure 6 for a depiction of this graph. Let
the Ui and Vi and V ′1 be as in the previous proof.

Let the edges from v( j)
i ∈Vi to v(p)

i+1 ∈Vi+1 for i ∈ [1,k−1] exist

if there is an edge between u( j)
i ∈Ui and u(p)

i+1 ∈Ui+1.

We will introduce edges between v( j)
k ∈Vk and v′(p)

1 ∈V ′1 if there is

an edge between u( j)
k ∈Uk and u(p)

1 ∈U1.
Let V̂i be Vi∪ui where ui is a node connected to all nodes in Vi. We
connect ui to ui+1 for all i in[1,k− 1] and connect uk and u′1. We
additionally add edges between u2 and every node in V1.
Let B be a set of lg(n)+ 1 nodes b0,b1, . . . ,blg(n) where each bi is

connected to every node v( j)
1 where the ith bit of j is a 1. Let B′ be

a set of lg(n)+1 nodes b′0,b
′
1, . . . ,b

′
lg(n) where each b′i is connected

to every node v′( j)
1 where the ith bit of j is a 0. We connect bi and

b′i with a path of k−2 nodes.

Figure 6: The unweighted Wiener Index gadget.

The shortest path between v(i)1 and v′(i)1 has length k through
B and B′. There is a path to ui from any node in V1 is ≤ k. The
shortest path from nodes in V1 to nodes in x∪P is ≤ k.
A the shortest path between a node in V1 and a node in Vi has
length at most i for i > 1. Thus, every node in v(i)1 ∈ V1 is distance

≤ k from every node except, possibly v(i)1
′
.

If a k-cycle exists then that k-cycle corresponds to a node such

that v(i)1
′

and v(i)1 are at distance ≤ k. If a k-cycle does not exist
then there is no path from V1 to V2 to . . . to Vk and back to the
corresponding node in V ′1, thus the shortest path between the two
nodes has length > k. Paths through the nodes u require extra edges

and thus require at least k+1 edges to get to v(i)1
′

from v(i)1 .

Let H ′ = G′/(V̂ ′1 ∪ V̂1 ∪ B ∪ B′), H ′′ = G′/(V̂ ′1 ∪ B ∪ B′) and
H ′′′ = G′/(V̂1∪B∪B′).

There are O(k lg(n)) nodes in B, B′ and the path between them.
We can calculate these distance in O(lg(n)m) time. Call these
distances dB.

Similarly calculate the distance from nodes u1 to V̂ ′1 and u′1 to V̂1
graph and call the sum of these two values du.

Note that W(H ′) captures the distances between nodes in H ′,
the shortest paths between them never use nodes outside of H ′.
Similarly W(H ′′) and W(H ′′′) each capture the distances between
the nodes contained in them .

W(G′)−W(H ′′)−W(H ′′′)+W(H ′)−2dB−2du is equal to the
sum of ∑u∈V1 ∑v∈V ′1 d(u,v).

Now let dx = ∑v(i)1 ∈V1
∑

v( j)
1

′
∈V ′1 and i 6= j

d(v(i)1 ,v( j)
1
′
). And note that

dx = |V1|(|V1|−1)k.

Next note that d(v(i)1 ,v(i)1
′
) = k+1 if there is no k-cycle through

v(i)1 .

So if there is no k-cycle then ∑u∈V1 ∑v∈V ′1 d(u,v) = |V1|2k+ |V1|
and if there is a k-cycle the sum is less.

There is a k-cycle if W(G′)−W(H ′′)−W(H ′′′) +W(H ′)−
2dB − 2du < |V1|2k + |V1| and there is no k-cycle if W(G′)−
W(H ′′)−W(H ′′′)+W(H ′)−2dB−2du = |V1|2k+ |V1|.

Copyright c© 2018
Copyright for this paper is retained by authors



COROLLARY B.1. If undirected (unweighted/weighted) Wiener
Index can be computed in f (N,M) time on a graph of density
M = Θ̃(N1+1/L) then the minimum weight (unweighted/weighted)
k-cycle problem can be solved in Õ( f (N,M)+M).

B.3 Undirected k-cycle reduces to APSP A folklore re-
duction reduces Shortest Cycle in directed graphs to APSP in di-
rected graphs as follows. Let G be the graph in which we want to
find the Shortest Cycle. Compute APSP in G, and then for every
edge add d(u,v)+w(v,u) and take the minimum - this is the weight
of the Shortest Cycle in G. Reducing directed Shortest Cycle to
APSP in undirected graphs seems more problematic, as noted by
Agarwal and Ramachandran [AR16]. In our paper, however, we
were able to reduce Min Weight k-Cycle in a directed graph to Ra-
dius in undirected graphs. Radius in an undirected graph of course
can easily be reduced to APSP: compute APSP and then set the
radius to minu maxv d(u,v). Because of this, we immediately get
the same lower bounds for APSP as for Radius and Min Weight
k-Cycle. This reduction also works for unweighted graphs.

COROLLARY B.2. If there is an O(n2 + mn1−ε ) time algorithm
for ε > 0 for APSP in m edge n node (directed/undirected,
weighted/unweighted) graphs, then there is also an O(n2 +mn1−ε )
time algorithm for Radius in m edge n node (directed/undirected,
weighted/unweighted) graphs.

Copyright c© 2018
Copyright for this paper is retained by authors


	Introduction
	Preliminaries
	Reduction from Hyperclique to Hypercycle
	Reduction from Hypercycle to Cycle in Directed Graphs
	Probably Optimal Weighted k-Cycle Algorithms
	Hardness Results for Shortest Cycle
	Discussion of the Hyperclique Hypothesis
	No Generalized Matrix Multiplication for k>2
	Max-k-SAT to Tight Hypercycle
	Prior Work On Improved Running Times
	Beating O(mn) for Many Graph Problems is Probably Hard
	Undirected k-cycle reduces to radius
	Undirected k-cycle reduces to Wiener index
	Undirected k-cycle reduces to APSP


