
On Uniformity and Circuit Lower Bounds

Rahul Santhanam
University of Edinburgh

Ryan Williams
Stanford University

Abstract

We explore relationships between circuit complexity, the complexity of generating circuits, and al-
gorithms for analyzing circuits. Our results can be divided into two parts:

1. Lower Bounds Against Medium-Uniform Circuits. Informally, a circuit class is “medium uniform”
if it can be generated by an algorithmic process that is somewhat complex (stronger than LOGTIME)
but not infeasible. Using a new kind of indirect diagonalization argument, we prove several new uncon-
ditional lower bounds against medium uniform circuit classes, including:

• For all k, P is not contained in P-uniform SIZE(nk). That is, for all k there is a language Lk ∈ P
that does not have O(nk)-size circuits constructible in polynomial time. This improves Kannan’s
lower bound from 1982 that NP is not in P-uniform SIZE(nk) for any fixed k.

• For all k, NP is not in PNP
|| -uniform SIZE(nk). This also improves Kannan’s theorem, but in a

different way: the uniformity condition on the circuits is stronger than that on the language itself.

• For all k, LOGSPACE does not have LOGSPACE-uniform branching programs of size nk.

2. Eliminating Non-Uniformity and (Non-Uniform) Circuit Lower Bounds. We complement these
results by showing how to convert any potential simulation of LOGTIME-uniform NC1 in ACC0/poly
or TC0/poly into a medium-uniform simulation using small advice. This lemma can be used to simplify
the proof that faster SAT algorithms imply NEXP circuit lower bounds, and leads to the following new
connection:

• Consider the following task: given a TC0 circuit C of nO(1) size, output yes when C is unsatisfi-
able, and output no when C has at least 2n−2 satisfying assignments. (Behavior on other inputs
can be arbitrary.) Clearly, this problem can be solved efficiently using randomness. If this problem
can be solved deterministically in 2n−ω(logn) time, then NEXP 6⊂ TC0/poly.

Another application is to derandomize randomized TC0 simulations of NC1 on almost all inputs:

• Suppose NC1 ⊆ BPTC0. Then for every ε > 0 and every language L in NC1, there is a
LOGTIME-uniform TC0 circuit family of polynomial size recognizing a language L′ such that
L and L′ differ on at most 2n

ε

inputs of length n, for all n.

1 Introduction
An important problem at the interface of machine-based computational complexity and circuit complex-

ity is to understand the relationship between the complexity of circuits for solving problems, and the com-
plexity of algorithmic processes that can generate those circuits from scratch. In the non-uniform setting,
we put no computable bounds on the complexity of generating circuits, and in this case it is extraordi-
narily difficult to prove lower bounds even against “simple” circuit classes. In low-uniform1 settings like

1Note that somewhat counter-intuitively, the conventional meaning of “low-uniform” is very uniform.

1

LOGTIME-uniformity ([Bus87, BIS90]), the circuits are extremely easy to construct – circuit complexity
in this regime falls in line with standard machine-based complexity classes. The “medium-uniformity” set-
tings, where the circuit-generating process is neither too easy nor too hard, is a middle ground that is less
understood, and it is quite plausible that exploring it will help us better understand the two extremes. In this
paper, we study this middle ground and make concrete progress that may translate to further progress on
low-uniform and non-uniform results in the future.

Lower bounds by amplifying uniformity In the first part of the paper, we prove new lower bounds
against “medium-uniform” circuits. Our key insight is that, if we assume that a “medium complexity”
class has small medium-uniform circuits, this assumption can be applied in multiple ways: not only is it
applicable to a language L in the medium complexity class, but it is also applicable to another (medium
complexity) language encoding circuits for L. Applying the hypothesis multiple times allows us to simulate
medium-uniformity with a very small amount of non-uniform advice, and diagonalize against the small-
advice simulation to derive a contradiction.

This strategy leads to new lower bounds against notions of uniformity for which it is not possible to
directly obtain lower bounds by diagonalization. Consider for example, the class of linear-size circuits. If a
LOGTIME-uniformity condition is imposed on the class, then it can be simulated in nearly-linear determin-
istic time, and we can easily diagonalize to find a function in (for example) n2 time that does not have such
circuits. However, suppose we wish to find a function in P that does not have small circuits constructible
via a “medium” uniformity notion, such as P-uniformity. Then, the notion of uniformity (which allows
for an arbitrary polynomial-time bound) can be more powerful than the function itself (which must lie in
some fixed polynomial time bound), so it is no longer possible to directly diagonalize. Nevertheless, we can
“indirectly” diagonalize, by reducing the assumption that P has small P-uniform circuits to another time
hierarchy result.

To describe our results, let us first set up some notation informally (definitions are in Section 1.1). Given
a class C of languages, recall a language L is said to have C-uniform circuits of size s(n) if there is a size-
s(n) circuit family {Dn} such that the description of Dn is computable in C. (There are several possible
choices about what “description” means; in this paper, our notions of uniformity will be so powerful that
these choices are all essentially equivalent.) Our first main result strengthens both the deterministic time
hierarchy theorem and the result of Kannan [Kan82] that for any k, NP is not in P-uniform SIZE(nk).2

Theorem 1.1 For every k, P 6⊂ P-uniform SIZE(nk).

That is, for all k, there is an L ∈ P such that any algorithm generating nk-size circuits for L must run
in super-polynomial time. (Of course, the common belief is that for all k, there is an L ∈ P that does not
have nk-size circuits at all, but this is an extremely hard problem: resolving it would imply EXP 6⊂ P/poly,
for example.) The ideas in the proof of Theorem 1.1 can also be applied to smaller classes. Note that the
best non-uniform branching program size lower bounds known have the form Ω(n2/poly(log n)) [Nec66].
However, for branching programs constructible in logarithmic space, we can prove superpolynomial lower
bounds:

Theorem 1.2 For every k, LOGSPACE does not have LOGSPACE-uniform branching programs of size
O(nk).

2Kannan’s work [Kan82] is primarily known for proving that Σ2P 6⊂ SIZE(nk) for all constants k. The statement NP 6⊂
P-uniform SIZE(nk) is a corollary, because its negation implies that P = NP ⊂ SIZE(nk), hence Σ2P = NP ⊂ SIZE(nk),
contradicting the lower bound for Σ2P.

2

We are also able to strengthen Kannan’s lower bound for NP in a different direction, by relaxing the
notion of uniformity used. To prove this result, we combine the uniformity trade-off idea used in the results
above with ideas of Fortnow, Santhanam and Williams [FSW09] to show that fixed-polynomial size lower
bounds can be “amplified”.

Theorem 1.3 For every k, NP 6⊆ PNP
|| -uniform SIZE(nk).

Reducing non-uniformity for “simple” circuit classes The above lower bounds work by simulating
medium-uniform circuits with low-uniformity and a little advice. In the second part of the paper, we study
situations where non-uniform circuits can be simulated by “medium-uniform” ones with a little advice.
We show how to translate non-uniform constant-depth circuits for NC1 into subexponential-time uniform
constant-depth circuits for NC1:

Lemma 1.1 Suppose NC1 is contained in C/poly, where C ∈ {ACC,TC0}.3 For every ε, k > 0, there is
a 2O(nε) time and O(nε) space algorithm that, given any circuit C of size n and depth k log n, prints an
O(k/ε)-depth, nO(k)-size C-circuit that is equivalent to C.

That is, a non-uniform inclusion of NC1 in TC0 implies small-space uniform (and hence subexponential-
time uniform) TC0 circuits for NC1. We remark that Lemma 1.1 holds for any constant-depth circuit class
over any basis (with arbitrary fan-in): ACC0 and TC0 just happen to be the most popular such classes.

An interesting consequence of Lemma 1.1 is that, for simulations of NC1 in smaller classes, non-
uniformity can be simulated by low-uniformity with small advice:

Corollary 1.1 For C ∈ {ACC,TC0}, NC1 ⊂ C/poly if and only if for all ε > 0, NC1 ⊂ C/nε.

Another consequence of Lemma 1.1 is that randomized simulations based on constant-depth circuits can
be meaningfully derandomized, assuming they are powerful enough. For a (LOGTIME-uniform) complexity
class C, we define BPC to be its randomized version with two-sided error in the standard way.

Theorem 1.4 Suppose NC1 ⊆ BPTC0. Then for every ε > 0 and every language L in NC1, there is a
(LOGTIME uniform) TC0 circuit family of polynomial size recognizing a language L′ such that L and L′

differ on at most 2n
ε

inputs of length n, for all n.

That is, if NC1 can be solved with uniform probabilistic TC0 circuits, then the circuits can be made
deterministic while preserving uniformity, at the expense of making errors on a small fraction of inputs.
This is somewhat surprising, and it is reasonable to think that Theorem 1.4 may be applied to prove lower
bounds against BPTC0 in the future. (Currently, EXPNP = BPTC0 is open!) The idea is to combine the
ideas of Lemma 1.1 with prior work of Goldreich and Wigderson [GW02], who show how to derandomize
algorithms in generic settings when the random bits used are both “small” with respect to the input length
and “oblivious” to the input.

Lemma 1.1 can also be applied to simplify and strengthen a key component of the proof that faster C-SAT
algorithms imply NEXP 6⊂ C/poly (for many circuit classes C) [Wil10, Wil11]. In particular, a necessary
intermediate theorem says that, if (a) there are SAT algorithms for all polynomial-size C-circuits with n
inputs running in O(2n/n10) time and (b) NEXP ⊂ C/poly, then there is a nondeterministic o(2n) time

3In this paper, the default assumption (unless otherwise specified) is that a complexity class C defined with respect to some
polynomial-size class of circuits is LOGTIME-uniform , and we use C/poly to denote the non-uniform version of the class. This
notation makes it clear when we are discussing uniform versus non-uniform classes.

3

algorithm that, given an unrestricted circuit D of polynomial size, can generate a polynomial-sized C-circuit
equivalent to D.4 By exploiting the structure of NC1, Lemma 1.1 can be used to deterministically generate
an equivalent TC0 (respectively, ACC) circuit from a given NC1 circuit in subexponential (2n

ε
) time, without

assuming any algorithmic improvement on circuit satisfiability.
Finally, we weaken the conditions necessary to prove lower bounds like NEXP 6⊂ TC0/poly. Consider

the following problem.

DERANDOMIZE-TC0: given a TC0 circuit C of nO(1) size, output yes when C is unsatisfiable, and
output no when C has at least 2n−2 satisfying assignments. (Behavior on other inputs can be arbitrary.)

This problem can be trivially solved with high probability, by simply trying random assignments. We
prove that a deterministic 2n−ω(logn) time algorithm for the problem is sufficient for NEXP 6⊂ TC0/poly:

Theorem 1.5 Suppose for all k, there is anO(2n/nk) time deterministic algorithm for solving DERANDOMIZE-
TC0 on all TC0 circuits of n inputs, nk size, and depth k. Then NEXP 6⊂ TC0/poly.

Goldreich and Meir (personal communication) have observed that the existing framework for proving
NEXP circuit lower bounds from SAT algorithms also extends to derandomization problems which seem
much “simpler” than SAT: for example, 2n−ω(logn) time algorithms for approximating the acceptance prob-
ability of a given circuit to within 1/10 is already enough to yield NEXP 6⊂ P/poly. The above theorem
strengthens their observation even further: we may focus on the case of distinguishing unsatisfiable circuits
from “very satisfiable” circuits.

1.1 Preliminaries and Notation

We assume basic knowledge of computational complexity [AB09]. Along with that, we will need stan-
dard notions of uniformity for circuits. The direct connection language for a sequence of circuitsC = {Cn},
where Cn is on n input bits, is the language LC consisting of all tuples of the form 〈1n, g, h, r〉, where g
and h are indices of gates, r is the type of g (AND/OR/NOT/INPUT, and in case of INPUT, which of the
n input bits g is, with an additional bit to specify whether g is the designated output gate), and h is a gate
feeding in to g in case the type r is not INPUT. Other encodings of the direct connection language are of
course possible, but for the large classes C we will consider, this encoding will not affect the results.

Given a class C of languages, a language L is said to have C-uniform circuits of size s(n) if there is
a size-s(n) circuit family {Cn} such that its direct connection language LC is computable in C. By a
description of a circuit Cn, we mean the list of tuples in LC corresponding to gates in Cn. A language L
is said to have LOGTIME-uniform circuits of size s(n) if there is a size-s(n) circuit family {Cn} such that
the “compressed” direct connection language

L′C = {〈n, g, h, r〉 | 〈1n, g, h, r〉 ∈ LC}

is computable in linear time. (Note that a linear time algorithm for L′C runs in time logarithmic in n and the
size of the circuit.)

Given a size function s : N→ N and depth function d : N→ N, SIZE(s) is defined to be the class of lan-
guages with non-uniform circuits of size O(s(n)), DEPTH(d) the class of languages with non-uniform cir-
cuits of depth d(n), and SIZEDEPTH(s, d) the class of languages which simultaneously have size O(s(n))

4Recently, Jahanjou, Miles, and Viola [JMV13] gave a succinct AC0 version of the Cook-Levin theorem, which also simplifies
the proof of the original SAT-to-circuit-lower-bounds connection, but does not imply Lemma 1.1.

4

and depth d(n) non-uniform circuits. (The class LOGTIME-uniform SIZEDEPTH(s, d) has the usual in-
terpretation: the “compressed” direct connection language for such a family of such circuits is in linear
time.)

For more robust circuit complexity classes C ∈ {ACC,TC0,NC1,NC} defined with polynomial-size
circuits, we use C to denote the uniform version of the complexity class (with LOGTIME-uniformity being
the default, unless otherwise specified), and C/poly to denote the non-uniform version. For instance, in this
notation, we would say that prior work has established that NEXP 6⊂ ACC/poly [Wil11]. This notation
makes it clear when we are discussing uniform versus non-uniform classes.

Given a language L, Ln is the “slice” of L at length n, i.e., Ln = L ∩ {0, 1}n.
In one of our results, we also require the notion of a direct connection language for a branching program.

This is defined in analogously as for a circuit, and for the notions of uniformity we use, the precise encoding
will not matter.

For a uniform complexity class defined using machines or circuits, and given an advice length function
a : N → N, we incorporate advice into the class in the standard way: the machines or circuits defining the
class receive an additional advice input, which depends only on the input length n, and is of length at most
a(n).

2 Lower Bounds against Medium Uniformity
We will use a folklore result about a time hierarchy for deterministic time, where the lower bound holds

against sublinear advice.

Proposition 1 DTIME(nd+1) 6⊆ DTIME(nd)/n, for all d ≥ 1.

Proof. Let {Mi} be a list of machines running in time nd. We will construct a machine M ′ running in
nd+1 time that differs from every Mi and infinite sequence of advice strings {an} where |an| ≤ n: given an
input x, M ′(x) simulates M|x|(x) augmented with advice string x′, where x′ is the first |a|x|| bits of x. �

The following result simultaneously strengthens the hierarchy theorem that P 6⊂ DTIME(nk) for every
fixed k [HS65, HS66] and Kannan’s result [Kan82] that NP 6⊆ P-uniform SIZE(nk) for every fixed k.

Reminder of Theorem 1.1 P 6⊆ P-uniform SIZE(nk), for all k.

Proof of Theorem 1.1. Assume P ⊆ P-uniform SIZE(nk). Let L ∈ P be arbitrary. We will show that L
can be simulated in a fixed deterministic time bound with o(n) advice, which will yield a contradiction to
Proposition 1.

By assumption, L ∈ P-uniform SIZE(nk), so there is a circuit family {Cn} for L of size at most c · nk
for some constant c. Furthermore, by P-uniformity, the direct connection language Ldc for {Cn} (see
Section 1.1 for the definition) is in P. We consider a “succinct” version Lsucc of the language Ldc, defined
as follows. Letting Bin(n) be the binary representation of n, define

Lsucc = {〈Bin(n)01dn
1/(3k)e, g, h, r〉 | 〈1n, g, h, r〉 ∈ Ldc}.

Intuitively, Lsucc is an “unpadded” version of Ldc.
Observe that Lsucc ∈ P. Given an input y for Lsucc, our polynomial-time algorithm first checks if y can

be parsed as a “valid” tuple 〈z, g, h, r〉, where z = Bin(n)01dn
1/(3k)e for some positive integer n, g and h

are valid gate indices between 1 and c · nk, and r is a valid gate type. If this check fails, reject. Otherwise,
the algorithm runs the polynomial-time machine deciding Ldc on 〈1n, g, h, r〉, and accepts if and only if this

5

machine accepts. Note that this algorithm for Lsucc runs in time polynomial in |y|, since we only simulate
the machine for Ldc when n1/(3k) ≤ |y| ≤ n and the machine for Ldc runs in time polynomial in n.

Now we apply the assumption P ⊆ P-uniform SIZE(nk) for a second time. Since Lsucc ∈ P, there
is a circuit family {Dm} of O(mk) size for Lsucc. Given an integer n, let m(n) be the least integer such
the size of the tuple 〈Bin(n)01dn

1/(3k)e, g, h, r〉 is at most m(n) for any valid gate indices g and h for Cn
and any valid gate type r. Using a standard encoding of tuples, we can assume, for large enough n, that
m(n) ≤ n1/(2k), since g, h, r can all be encoded with O(log n) bits each. (Note that this step in fact only
requires the assumption P ⊂ SIZE(nk).)

We now describe a simulation of L in time O(n2k+2) with o(n) bits of advice. Let M be an advice-
taking machine which operates as follows. On input x of length n, M receives an advice string of length
O(n1/2 log n). It interprets this advice as a circuit Dm for the language Lsucc on inputs of length m(n) ≤
n1/(2k). For every possible pair of gate indices g and h ofCn and every possible gate type r,M simulates the
circuitDm on 〈Bin(n)01dn

1/(3k)e, g, h, r〉 to decide whether gate h is an input to gate g and whether the type
of gate g is r. Each such simulation can be done in time O(n), as the size of Dm is O(n1/2). There are at
mostO(n2k+1) such simulations thatM performs, since there are at most that many relevant triples 〈g, h, r〉.
Once all these simulations are performed, M has a full description of the circuit Cn. It then simulates Cn on
x, and accepts if and only if Cn(x) outputs 1. This simulation can be done in time O(n2k) since the circuit
Cn is of size O(nk). The total time taken by M is O(n2k+2), and M uses O(n1/2 log n) bits of advice. By
our assumptions on Cn and Dm, the simulation is correct. Thus L ∈ DTIME(n2k+2)/O(n1/2 log n).

However, as L ∈ P was chosen to be arbitrary, we have P ⊆ DTIME(n2k+2)/O(n1/2 log n), which
contradicts Proposition 1. �

Note that for every L ∈ P, there is some k such that L ∈ P-uniform SIZE(nk); Theorem 1.1 shows that
for every k, there are languages that not in P-uniform SIZE(nk).

A significant property of Theorem 1.1 is that the lower bound holds for a notion of uniformity which
we cannot directly diagonalize against in polynomial time. Indeed, the following proposition shows that for
each d, the class we prove a lower bound against contains a language that is not in DTIME(nd).

Proposition 2 For every d ≥ 1, there is a language in P-uniform SIZE(O(n)) that is not in DTIME(nd).

Proof. The standard proof of the deterministic time hierarchy theorem [HS65, HS66] can be adapted to
show that for each d, there is a unary language L which is in DTIME(nd+1) but not in DTIME(nd). This
unary language L can be recognized by P-uniform circuits of linear size – for each n, decide whether 1n ∈ L
in time O(nd+1), outputting the trivial circuit which outputs the AND of its input bits if yes and the trivial
circuit which outputs 0 on all inputs if no. �

The proof ideas of Theorem 1.1 can be adapted to prove lower bounds for other classes. We next show
that there for each k, there are languages in NC which do not have NC-uniform formulas of size nk, or
indeed NC-uniform circuits of fixed polynomial size and fixed polylogarithmic depth. Note that the best-
known formula size lower bound in NC against non-uniform formulas is Ω(n3−o(1)) [Has98].

We will require a hierarchy theorem for NC, which can again be shown using standard diagonalization.

Proposition 3 For every k, NC is not contained in LOGTIME-uniform SIZEDEPTH(nk, (log n)k)/o(n).

Proof. Ruzzo [Ruz81] characterized LOGTIME-uniform SIZEDEPTH(nO(1), (log n)k) as the class of
languages decided by alternating Turing machines operating simultaneously in time O((log n)k) and space
O(log n). His simulation extends to the following: there is a universal constant c such that every language in

6

LOGTIME-uniform SIZEDEPTH(nk, (log n)k) can be decided by an alternating machine usingO((log n)k)
time and c · k log n+ o(log n) space. (Note the LOGTIME machine for the direct connection language runs
in time linear in the gate indices; by known simulations of time with alternations [DT85] this machine can
be simulated in O(log n/ log logn) alternating time and space.)

The result then follows using the same proof as of Proposition 1, but applied to simultaneously time and
space bounded alternating Turing machines. �

Theorem 2.1 For every k ≥ 1, NC is not contained in NC-uniform SIZEDEPTH(nk, (log n)k)).

Proof. Assume for a contradiction that there is a k such that NC ⊆ NC-uniform SIZEDEPTH(nk, (log n)k).
Let L ∈ NC be arbitrary. Let {Cn} be a sequence of circuits of size O(nk) and depth (log n)k solving L,
and Ldc ∈ NC be the direct connection language of {Cn}. Define the succinct version Lsucc of Ldc as in
the proof of Theorem 1.1, with the same parameter m(n). Observe that Lsucc ∈ NC since checking whether
a “succinct” tuple is valid, and then converting to a full tuple that can be offered as input to Ldc are both
procedures that can be implemented in polylogarithmic depth. Hence Lsucc has circuits of depthO(mk) and
depth O((logm)k), by assumption.

Now we will define a family of LOGTIME-uniform SIZEDEPTH(nk
′
, (log n)k

′
) circuits taking o(n)

bits of advice which decide if x ∈ L, where k′ is a fixed constant depending on k. The circuits interpret the
advice as small-depth circuits for Lsucc on inputs of length m(n). The circuits simulate Cn on x implicitly,
running the small-depth circuit for Lsucc to retrieve any bit of Cn that is required. Since m(n) ≤ n1/(2k),
each run of the small-depth circuit for Lsucc incurs a depth cost at most O((log n)k) and size cost at most
n2/3. Simulating a circuit of depth O((log n)k) and size O(nk) on an input can be done uniformly in size
O(n2k) and depthO((log n)k). Because the circuit is being simulated implicitly, we incur an additional cost
in size and depth, but the overall size is at most O(n3k) and depth at most O((log n)k

2
). Thus, by setting

k′ = k2, we have the required simulation. But this contradicts Proposition 3, since L is arbitrary. �

Similarly, the following can be shown. We omit the proof because of its similarity to the previous ones.

Reminder of Theorem 1.2 For any k, LOGSPACE does not have LOGSPACE-uniform branching programs
of size O(nk).

Theorem 1.1 improves Kannan’s old result that NP 6⊆ P-uniform SIZE(nk) by showing a better upper
bound for the hard language, i.e., P rather than NP. We can improve his result in a different way by relaxing
the uniformity condition instead to PNP

|| -uniformity. The main idea is to first relativize Theorem 1.1 to allow
parallel access to an NP oracle both in the upper bound and in the uniformity bound, and then to strengthen
the upper bound using an idea of Fortnow, Santhanam and Williams [FSW09].

Reminder of Theorem 1.3 Let k ≥ 1 be any constant. Then NP 6⊆ PNP
|| -uniform SIZE(nk).

Proof. First we claim that PNP
|| is not contained in PNP

|| -uniform SIZE(nk); the proof is completely anal-
ogous to that of Theorem 1.1. Then we claim that PNP

|| 6⊆ PNP
|| -uniform SIZE(nk) implies that NP 6⊆

PNP
|| -uniform SIZE(nk−1). This result was shown without the uniformity conditions by Fortnow, Santhanam

and Williams [FSW09]. An examination of their proof shows that a circuit Cn for any language in PNP
|| can

be constructed using fixed polynomial-time oracle access to circuits for two specific languages in NP. If
each of the circuit sequences for these languages is PNP

|| -uniform then so is the small circuit sequence for
the PNP

|| -uniform language, by converting the polynomial-time oracle machine to an oracle circuit and then
substituting the circuits for the two oracles. Since k is arbitrary, we are done. �

For E = DTIME(2O(n)), we do not get an unconditional lower bound, but rather a “gap result” in the
style of Impagliazzo and Wigderson [IW01] or Buresh-Oppenheim and Santhanam [BOS06]. The result

7

states that if we can diagonalize in E against an arbitrarily small exponential amount of advice, then we get
lower bounds against E-uniform circuits of size close to the best possible. The main idea is to use the proof
idea of Theorem 1.1 recursively.

Theorem 2.2 If E 6⊆ DTIME(22n)/2εn for some ε > 0, then E 6⊆ E-uniform SIZE(2δn) for any δ < 1.

Proof. Let δ < 1 be any constant. Assume that for any L ∈ E, L ∈ E-uniform SIZE(2δn). We will show
that it follows that L ∈ DTIME(22n)/2εn for any constant ε > 0.

We define a sequence of languages Li as follows. L0 = L. In general, Li will be a “succinct” version
of a connection language of circuits for Li−1. The direct connection language we used before will not be
succinct enough for our purposes, so we use instead what we call the indirect connection language Lic of
a sequence of circuits, where a tuple 〈1n, g, i, b1, b2, r〉 is in Lic iff the gate with index g has type r, and
moreover, if the type r is not INPUT, then if the bit b1 = 0, the ith bit of the index of the first input to g
is b2, and if the bit b1 = 1, the ith bit of the index of the second input to g is b2. For technical reasons,
we also require that all gate indices G of the circuit are encoded with the same number of bits. Essentially,
Lic encodes the adjacency list corresponding to the DAGs of the circuit sequence rather than the adjacency
matrix. Note that for any sequence of circuits of size 2O(n), Lic ∈ E iff Ldc ∈ E.

We now define L1 more precisely. By assumption, there is a sequence of circuits {Cn} for L such that
Cn is of size O(2δn) for each n, and the indirect connection language Lic,0 of the sequence of circuits
can be decided in E (since by assumption, the direct connection language can be decided in E). L1 is
the succinct version of Lic,0 defined as follows: a tuple 〈Bin(n), g, i, b1, b2, r〉 belongs to L1 iff the tuple
〈1n, g, i, b1, b2, r〉 belongs to Lic,0. Note that since the gate index of g requires at least δn bits to describe
(by definition), we can decide L1 in time 2O(n). Hence by assumption, L1 has E-uniform circuits of size
2δm, where m is the length of the input.

Let {C1
m} be an E-uniform sequence of circuits of size 2δm for L1. As a function of n, the size of C1

m is
at mostO(2δ(δn+O(logn))) = O(2δ

2npoly(n)). Let Lic,1 be the indirect connection language of the sequence
{C1

m}. We define L2 to be the succinct version of Lic,1 completely analogously to the previous paragraph.
Continuing in this way, we get a sequence of languages L1, L2 . . . such that Lk has E-uniform circuits

of size O(2δ
knpoly(n)). Let k be such that δk < ε. Since δ < 1, there exists such a k.

We now define a simulation of L in timeO(22n) withO(2εn) bits of advice. The advice is the description
of a circuit forLk. Given this description, we can recover in time 2(δk−1+δk+o(1))n the description of a circuit
for Lk−1. Again, from this description, we can recover in time 2(δk−1+δk−2+o(1))n the description of a circuit
for Lk−2. Continuing in this way, we can recover in total time 2(δ+δ2+o(1))n = O(22n) the circuit Cn for L,
whereupon we can run Cn on L to determine whether the input belongs to L or not.

�

Note that the conditional lower bound of Theorem 2.2 is close to best possible, as shown by the following
easy result.

Proposition 4 E has E-uniform circuits of size at most n2n.

Proof. For any language L in E, the truth table of L can be computed in linear exponential time, and from
the truth table it is easy to compute canonical DNFs or CNFs of size at most n2n for L. �

8

3 A Uniformization Lemma For NC1

We now turn to the problem of eliminating non-uniformity in low-complexity circuit classes. Recall the
FORMULA EVAL problem: given a formula F and input v to it, determine whether F (v) = 1. Buss [Bus87]
showed that FORMULA EVAL is complete under LOGTIME-reductions for NC1.

Theorem 3.1 Suppose NC1 ⊂ C/poly, where C ∈ {ACC,TC0}. For every ε > 0, there is a 2O(nε) time and
O(nε) space algorithm that, given 1n, prints an O(1/ε)-depth, nO(1)-size C-circuit that solves FORMULA

EVAL on formulas of size n.

The following lemma is an immediate corollary:

Reminder of Lemma 1.1 Suppose NC1 ⊂ C/poly, where C ∈ {ACC,TC0}. For every ε, k > 0, there is
a 2O(nε) time and O(nε) space algorithm that, given any circuit C of size n and depth k log n, prints an
O(k/ε)-depth, nO(k)-size C-circuit that is equivalent to C.

The proof is inspired by Allender and Koucký [AK10] who showed that if NC1 ⊂ C/poly, then the
problem BALANCED FORMULA EVALUATION has n1+ε size C-circuits, for C ∈ {ACC,TC0}. Rather than
focusing on reducing circuit sizes, we focus on reducing non-uniformity.

Proof of Theorem 3.1. Assuming NC1 ⊂ C/poly, let k ≥ 1 be such that the FORMULA EVAL problem on
formulas of size n has C-circuits of nk size. Recall that FORMULA EVAL can be solved in (logtime uniform)
NC1. Applying this algorithm, we can generate (in polynomial time) an nc size formula G(F, x) such that
G(F, x) = 1 ⇐⇒ F (x) = 1, for all formulas F of size n and all potential inputs x of length up to n.
WLOG, G has depth at most c log n, for some fixed c ≥ 1.

PartitionG into t = nc−ε/k subformulas F1, . . . , Ft of at most nε/k gates each. More precisely, we break
the c log n levels of G into kc/ε groups, where each group contains (ε/k) log n adjacent levels. Each group
consists of subformulas of depth (ε/k) log n and size at most nε/k. WLOG, we may assume each Fi has the
same number of inputs (roughly nε/k).

Next, we “brute force” a small C circuit for small instances of FORMULA EVAL. Try all possible C
circuits of size nε for FORMULA EVAL on all formula-input pairs of length up to nε/k. For each trial circuit
T , we try all possible 2Õ(nε/k) formula-input pairs, and check that T correctly evaluates the input on the
formula. By our choice of k, at least one T will pass this check on all of its inputs.

Once a suitable T has been found, we replace every subformula Fi(y1, . . . , yq) in G with the C circuit
T (Fi, y1, . . . , yq). By our choice of T , the resulting circuit is equivalent to G, has size O(nc−ε/k · nε) ≤
O(nc+ε), and has depth dkc/ε, where d is the depth of T .

It is clear that the algorithm can run in 2O(nε) time for any ε > 0. Furthermore, it can also be imple-
mented to run in O(nε) space: any desired bit of the nc size formula G for FORMULA EVAL instance can be
generated in LOGTIME, so the brute-force search for an nε size C circuit T equivalent to FORMULA EVAL

can be carried out in O(nε) space. Given T , the rest of the C can easily be generated in O(nε) space by
reading the appropriate bits from G. �

Note that, rather than brute-forcing the small C circuit for FORMULA EVALUATION, we could have
simply provided it as advice. This implies:

Reminder of Corollary 1.1 For C ∈ {ACC,TC0}, NC1 ⊂ C/poly ⇐⇒ for all ε > 0, NC1 ⊂ C/nε.
Note that when the direct connection language of the C-circuit of size O(nε) is provided as advice in the

proof of Theorem 3.1, the resulting C-circuits for Formula Evaluation are LOGTIME-uniform (given the
advice).

9

Lemma 1.1 and Corollary 1.1 have consequences for lower bounds as well as algorithms. We first give
a consequence for lower bounds, showing that either TC0 computations cannot be speeded up in general
using logarithmic depth and bounded fan-in, or NC1 does not have non-uniform polynomial-size threshold
circuits of bounded depth.

We need a hierarchy theorem for TC0, which can be shown analogously to Proposition 1 and Proposi-
tion 3.

Proposition 5 For every constant k and d and all ε < 1, there is a language in TC0 which cannot be
decided by (logtime uniform) TC0 circuits of size nk and depth d with nε bits of advice.

Proof. The result follows using the proof idea of Proposition 1, and applying it to the threshold Turing
machine characterization of TC0 [PS88, All99]. �

Theorem 3.2 At least one of the following holds:

• For all constants k, there is a language in TC0 which does not have LOGTIME-uniform circuits of
depth k log n.

• NC1 6⊂ TC0/poly.

Proof. Assume that NC1 ⊂ TC0/poly and that there is a constant k such that each language in TC0 has
LOGTIME-uniform circuits of depth k log(n). We derive a contradiction.

Let L ∈ TC0. By the second assumption, L has LOGTIME-uniform circuits of depth k log(n). From
the first assumption and using Corollary 1.1 with ε = 1/(2k), we have that there exists constants c and d
such that FORMULA EVAL can be decided by uniform threshold circuits of size mc and depth d with mε

bits of advice on inputs of length m. This implies that any language with LOGTIME-uniform circuits of
depth k log(n) can be decided by uniform threshold circuits of size O(nkc) and depth d with O(n1/2) bits
of advice, and hence so can L. Since L is an arbitrary language in TC0, this contradicts Proposition 5. �

We can also use Lemma 1.1 to derive algorithmic consequences of NC1 ⊂ ACC/poly. Practically
anything computable in subexponential time on ACC circuits can be extended to NC1 circuits, under the
assumption. For instance:

Corollary 3.1 If NC1 ⊂ ACC/poly then for all c, satisfiability of nc size formulas with n variables can be
computed (deterministically) in O(2n−n

ε
) time, for some ε > 0 depending on c.

Proof. Given a formula F of size nc, apply Lemma 1.1 to generate an equivalent nO(c/δ) size ACC circuit
of depth O(1/δ), in 2O(nδ) time, for some δ < 1. Satisfiability of the ACC circuit can be determined in
2n−n

ε
time via an ACC-SAT algorithm [Wil11]. �

3.1 Derandomizing TC0 by Assuming Randomized TC0 is Powerful

Next, we prove that if NC1 can be simulated in randomized TC0, then we can derive a non-trivial deter-
ministic TC0 simulation of NC1 as well.

Reminder of Theorem 1.4 Suppose NC1 ⊆ BPTC0. Then for every ε > 0 and every language L in NC1,
there is a (LOGTIME uniform) TC0 circuit family of polynomial size recognizing a language L′ such that L
and L′ differ on at most 2n

ε
inputs of length n, for all n.

Proof. Assume NC1 ⊆ BPTC0. It follows that NC1 ⊂ TC0/poly, and therefore by the arguments of
Lemma 1.1, by providing nε advice (namely, a small TC0 circuit for evaluating arbitrary formulas of size

10

nε/k) we can translate any nc size NC1 circuit into a nO(c) size TC0 circuit of depth O(1/ε), in polynomial
time.

However, the assumption that NC1 ⊆ BPTC0 yields more: rather than nε bits of non-uniform advice,
the inclusion provides a LOGTIME-uniform TC0 circuit C(F, x, r) of size nε, which takes a formula F of
size nε/k, an input x of size nε/k and at most nε bits of randomness r as input, such that for every F and x,

Pr
r∈{0,1}nε

[C(F, x, r) = F (x)] > 3/4.

We first need to amplify the success probability of the circuit C. Let t be a parameter, and define a new
TC0 circuit C ′(F, x, r1, . . . , rt) which takes the MAJORITY of C(F, ri) for i = 1, . . . t. By standard
probabilistic arguments, for every F and x we have

Pr
r1,...,rt∈{0,1}nε

[C ′(F, x, r1, . . . , rt) = F (x)] > 1− 2Ω(t).

Choose t = d · nε for sufficiently large d, so that the probability of agreement is greater than 1 − 1/23nε .
Then by a union bound, we have that random choices of r1, . . . , rt are simultaneously good for all F and x
of at most nε/k size, i.e.,

Pr
ri∈{0,1}nε

[(∀ F, x) C ′(F, x, r1, . . . , rt) = F (x)] > 1− 2n
ε
.

Now for a given NC1 circuit N of size nc, after converting N into a formula FN of size S = nO(c) there
will be at most 2S/nε/k subformulas of FN , each of nε/k size, which need to be accurately modeled by the
TC0 circuit C ′. Replace each nε/k-size subformula F ′(x′) of FN with C ′(F ′, x′, r1, . . . , rt), and let D be
the TC0 circuit that results from this replacement. Since C ′ succeeds against all formulas F and inputs x of
size at most nε/k with high probability, we conclude that in fact our circuit D works for all inputs (of length
n) with high probability, i.e.,

Pr
r1,...,rt∈{0,1}nε

[(∀ x of length n) D(x, r1, . . . , rt) = N(x)] > 1− 2n
ε
.

Therefore, using only d ·n2ε random bits r1, . . . , rt, we can efficiently construct a TC0 circuit D that agrees
with N on a given input. That is, we are in a situation where short, sublinear-length and randomly chosen
“advice” (chosen prior to receiving the input x) succeeds against all inputs x simultaneously, with high
probability.

This is precisely the situation described in a paper of Goldreich and Wigderson [GW02] who prove that in
such situations, one can generically provide, for every ε > 0, a deterministic simulation which is successful
on all but 2n

ε
inputs of length n, by extracting additional randomness from the input itself. In more detail,

say that a function En : {0, 1}n × {0, 1}m → {0, 1}` is a k-extractor if, for every random variable X over
{0, 1}n that puts probability mass at most 1/2k on all inputs,5 the random variable E(X,Um) has statistical
distance at most 1/10 from U` (where Uq denotes the uniform distribution on {0, 1}q). Given a randomized
algorithm R using ` bits of randomness, and an extractor En which takes n bits and e log n bits and outputs
` bits, Goldreich and Wigderson’s deterministic simulation of R is simply:

Given an input x of length n, output the majority value ofR(x,En(x, r)) over all binary strings
r of length e log n.

5More formally, for all x ∈ {0, 1}n, Pr[X = x] ≤ 1/2k.

11

Goldreich and Wigderson (Theorem 3, [GW02]) prove that, when we use a family of functions

{En : {0, 1}n × {0, 1}e logn → {0, 1}`(n)}n

such that En is a k(n)-extractor for all n, the above algorithm agrees with R on all but 2k(n) of the n-bit
inputs. To complete the proof, it suffices for us to exhibit an extractor family {En} that is computable
in LOGTIME-uniform TC0 and has k(n) = `(n)c for a fixed constant c. Then, our final uniform TC0

simulation of C will compute the MAJORITY value of D(x,E|x|(x, r)) over all O(ne) random seeds r. In
our case, the amount of randomness needed can be made `(n) = nε for any desired ε > 0, so this simulation
will err on at most 2k(n) ≤ 2n

cε
inputs for a fixed c and arbitrarily small ε > 0.

Finally, we observe that such extractors do exist: by using Theorem 4.6 in Viola [Vio05], the extrac-
tors corresponding to Impagliazzo-Wigderson pseudorandom generators provided by Theorem 5 in Tre-
visan [Tre01] are computable in LOGTIME-uniform TC0. �

3.2 Very Weak Derandomization For TC0 Lower Bounds

Lemma 1.1 also has bearing on the emerging connections between circuit satisfiability algorithms and
circuit lower bounds. We can give a much simpler proof that faster TC0 SAT algorithms imply NEXP 6⊂
TC0/poly (originally proved in [Wil11] with a more involved argument):

Theorem 3.3 Suppose for all k, there is an O(2n/n10) time algorithm for solving satisfiability of TC0

circuits with n inputs, nk size, and depth k. Then NEXP 6⊂ TC0/poly.

Proof. In their work on succinct PCPs, Ben-Sasson et al. [BGH+05] also gave a very efficient proof of the
Cook-Levin theorem, showing that for any L ∈ NTIME[2n] and instance x of length n, one can generate
(in poly(n) time) an NC1 circuit Cx with n + c log n inputs and nc size for a universal c < 10, such that
x ∈ L if and only if the truth table of Cx encodes a satisfiable constraint satisfaction problem, where each
constraint has O(1) variables.

Williams [Wil10] (Theorem 3.4) applies this result to prove that if NC1 circuit satisfiability on all n-
input nk-size circuits is solvable in O(2n/n10) time (for all k), then NEXP 6⊂ NC1/poly. In brief, the proof
assumes that the circuit SAT algorithm exists and that NEXP ⊂ NC1/poly, and uses the two assumptions to
nondeterministically simulate an arbitrary L ∈ NTIME[2n] in nondeterministic o(2n) time (a contradiction
to the nondeterministic time hierarchy).6 This simulation of an arbitrary L can be done by constructing
the aforementioned NC1 circuit Cx on the input x, guessing an NC1 circuit C ′ that encodes a satisfying
assignment (i.e., a witness) to the constraint satisfaction problem, then composing Cx and C ′ to form an
NC1 circuit D which is unsatisfiable if and only if the truth table of C ′ is a satisfying assignment. An NC1

circuit SAT algorithm that takes O(2n+c logn/(n+ c log n)10) = o(2n) time results in a contradiction.
Assume now that NEXP ⊂ TC0/poly and we have an algorithmA for TC0 circuit satisfiability according

to the hypothesis of the theorem. We wish to derive a contradiction. The first assumption, along with
Lemma 1.1, implies there is a deterministic 2O(nε)-time algorithm Bε which, given an arbitrary NC1 circuit
D, can generate an equivalent TC0 circuit E that is only polynomially larger than D, where the degree of
this polynomial is linear in 1/ε. Therefore, we can solve NC1 circuit SAT in O(2n/n10) time as well, by
applying the algorithm Bε to convert a given NC1 circuit into TC0 for some ε < 1, then applying algorithm

6Technically speaking, Theorem 3.4 in [Wil10] only shows the consequence ENP 6⊂ NC1/poly, but this can be easily improved
to NEXP 6⊂ NC1/poly, by extending work of Impagliazzo, Kabanets, and Wigderson [IKW02] to show that NEXP ⊂ NC1/poly
implies every problem in NEXP has witnesses that can be encoded as truth tables of NC1 circuits.

12

A for TC0 circuit SAT. By the previous paragraph, this implies that NEXP 6⊂ NC1/poly, a contradiction (as
TC0 is contained in NC1). �

Recently, Jahanjou, Miles, and Viola [JMV13] showed that the result of Ben-Sasson et al. cited above
can be implemented with the NC1 circuits replaced by AC0 circuits. This stronger result also implies Theo-
rem 3.3.

Using succinct PCPs instead of a succinct Cook-Levin reduction, we can also show that very weak
derandomization of TC0 suffices for such lower bounds. For C ∈ {P,NC1,TC0}, define DERANDOMIZE-C
to be the problem:

Given a C/poly circuit C, output yes when C is unsatisfiable and no when C has at least 2n−2

satisfying assignments, with arbitrary behavior otherwise.
(We choose this version of the problem rather than the version where C has either a high fraction of

satisfying assignments or a small fraction, as that problem is in PromiseBPP while the problem is “merely”
in PromiseRP.)

We say that a nondeterministic algorithm A solves DERANDOMIZE-C if for every infinite family of
circuits {C} from the class,
• every computation path of A(C) leads to one of three possible final states: don’t know, yes, or no,
• at least one path of A(C) does not lead to don’t know,
• if C has at least 2n−2 satisfying assignments, then no path of A(C) leads to yes, and
• if C is unsatisfiable, then no path of A(C) leads to no.

Reminder of Theorem 1.5 Suppose for all k, there is anO(2n/nk) time algorithm for solving DERANDOMIZE-
TC0 on all TC0 circuits of n inputs, nk size, and depth k. Then NEXP 6⊂ TC0/poly.
Proof. The proof is by contradiction, as in Theorem 3.3. Briefly, we first follow Williams [Wil10] and apply
a succinct version of the PCP theorem proved by Ben-Sasson et al. [BGH+05] to argue how to reduce the
question of proving NEXP 6⊂ P/poly to that of solving DERANDOMIZE-P faster. That reduction involves
guessing a poly-size circuit D encoding an alleged witness for an NTIME[2n] computation, then using the
succinct PCP and the faster DERANDOMIZE-P algorithm to verify the witness in nondeterministic o(2n)
time. In order to replace P with TC0¡ we have to guess D and guess a “helper” TC0 circuit D′ which is
intended to give output information on every gate of D. Verifying D′ is correct will imply that D is correct.
We then show how to reduce the problem of verifying D′ to calls to DERANDOMIZE-TC0.

The succinct PCP work of Ben-Sasson et al. [BGH+05] also shows that for any L ∈ NTIME[2n] and
input x of length n, one can generate (in poly(n) time) an NC1 circuit Cx with n + c log n inputs and nc

size such that:
• if x ∈ L, then the truth table of Cx encodes a satisfiable CSP, where each constraint has poly(n)

variables, and
• if x /∈ L, then the truth table of Cx encodes such a CSP, where every variable assignment satisfies at

most 10% of the constraints.
(Contrast this with the Cook-Levin result used in Theorem 3.3, which only distinguishes satisfiable and

unsatisfiable instances, but each constraint has only O(1) variables.) This can be applied to show that if
DERANDOMIZE-P on all n-input nk-size circuits can be solved in O(2n/n10) time, then NEXP 6⊂ P/poly
([Wil10]). An improvement of Ben-Sasson et al.’s construction given by Mie [Mie09] yields succinct PCPs
with only O(1) queries (instead of poly(n)). That is, given any L ∈ NTIME[2n] and instance x of length n,
one can generate (in poly(n) time) a circuit Cx with n+ c log n inputs and nc size7 such that

7We believe that the circuit Cx in Mie’s construction can be made to have O(logn) depth as well, which would simplify our
argument: we could assume that Cx is NC1, then apply the strategy of Theorem 3.3. Indeed, an earlier version of this work [SW12]

13

• if x ∈ L, then the truth table of Cx encodes a satisfiable k-CSP (for some constant k), and
• if x /∈ L, then the truth table of Cx encodes a k-CSP such that every variable assignment satisfies at

most 10% of the constraints.
Say that a circuit is at most ρ-satisfiable (respectively, at least ρ-satisfiable) if it has at most (at least)

ρ · 2n satisfying assignments. Analogously to the proof of Theorem 1.3 in Williams [Wil10], Mie’s PCPs
can be used to show that a nondeterministic o(2n)-time algorithm that can distinguish unsatisfiable circuits
from circuits which are at least 9/10-satisfiable would imply NEXP 6⊂ P/poly.

Let us first outline that proof. We construct a new nondeterministic algorithm for L, which given an
instance x guesses a |x|O(1)-size circuit D intended to encode a satisfying assignment S to the k-CSP
encoded by Cx. (Assuming NEXP ⊂ P/poly, such a circuit D exists when x ∈ L.) The algorithm verifies
the guessed D by constructing a circuit C ′ of polynomially larger size which contains copies of Cx and k
copies of D, such that C ′(i) = 0 if and only if the ith constraint of the k-CSP is satisfied by the assignment
S. (This construction appears in [Wil10] and is straightforward, so we will not repeat it here.) By properties
of the PCP, this circuit C ′ is either:
• unsatisfiable (i.e., all constraints of the k-CSP are satisfied) or
• at least 9/10-satisfiable (i.e., every variable assignment satisfies at most 10% of the constraints).

With anO(2n/n10) time algorithm that can distinguish the two cases,N can recognizeL in nondeterministic
o(2n) time; this is a contradiction.

We now extend the above argument to show that a slightly faster algorithm for DERANDOMIZE-TC0

is enough to yield a contradiction to NEXP 6⊂ TC0/poly. The argument has similarities to those found in
Williams [Wil11], so we shall keep the discussion at a high level, emphasizing those places where the proof
differs.

Assuming P ⊂ TC0/poly, the generated circuits C ′ in the above argument have equivalent TC0 circuits
D of polynomially larger size. Just as above, we will construct a nondeterministic o(2n) time algorithm N
recognizing an arbitrary L ∈ NTIME[2n]. The algorithm N begins by guessing a circuit D as described
above, constructing the circuit C ′, then guessing a TC0 circuit D′(x, i) which prints the output of the ith
gate of C ′(x), where i ranges from 1 to the size of C ′. (It is easy to see that, if P ⊂ TC0/poly, then such
a D′ also exists.) Next, N uses polynomially many copies of D′ to construct a TC0 circuit E (of poly(n)
size) such that E(x) = 0 if and only if for all gates i of C ′, D′(x, i) is consistent: that is, if i1 and i2 are the
two gate indices whose outputs are the inputs to gate i, then E(x, i) outputs 0 if and only if the output value
D′(x, i) is consistent with the input values D′(x, i1) and D′(x, i2), and the gate type of i. (The construction
of E is analogous to Lemma 3.1 in [Wil11].) Letting i? be the index of the output gate of C ′, we have that
E(x) = 0 implies D′(x, i?) = C ′(x).

Let A be a nondeterministic algorithm solving DERANDOMIZE-TC0, as defined earlier (i.e., A outputs
no on some computation path if a given TC0 circuit is at least 1/4-satisfiable, and yes on some path if the
circuit is unsatisfiable, but never outputs yes on some path and no on another path). Our nondeterministic N
runs A on E, and rejects if A returns no. Next, N runs A on the circuit E′(x) := D′(x, i?), and accepts if
and only if A returns yes. This concludes the description of N .

To see that the algorithm N correctly recognizes L, first suppose x ∈ L. Then there is a circuit D such
that the resulting circuit C ′ is unsatisfiable. If N guesses D and a TC0 circuit D′ consistent with C ′, then E
is unsatisfiable and A returns yes on E. The circuit E′ must be unsatisfiable as well, so the nondeterministic
A returns yes on E′ and N accepts on some path.

states that such a construction follows from Ben-Sasson et al.. However, verifying this is indeed true is quite technically involved,
so we leave it as an interesting open problem here, and provide an alternative argument. It appears that, very recently, this open
problem has been resolved [BSV14].

14

For the other case, suppose x 6∈ L. Then regardless of the D that is guessed, the resulting circuit C ′ is
at least 9/10-satisfiable. N guesses some TC0 circuit D′ and constructs E. If A returns no on E then the
computation path rejects. Otherwise, ifA returns yes onE, then by assumption, E is at most 1/4-satisfiable,
so we have E(x) = 1 on at most 1/4 of all possible x. Therefore, C ′(x) = D′(x, i?) on at least 3/4 of all
x. In the worst case, D′(x, i?) = 1 on at least (9/10 − 1/4) of the possible inputs x. Therefore E′ is at
least (9/10− 1/4)-satisfiable, the algorithm A returns no on E′, and N rejects on these computation paths
as well. �

Acknowledgements We thank Eli Ben-Sasson for useful discussions on the nice properties of known
succinct PCPs. R.W. was supported in part by a David Morgenthaler II Faculty Fellowship at Stanford, and
NSF CCF-1212372. Any opinions, findings and conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the views of the NSF.

References
[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity - A Modern Approach. Cambridge

University Press, 2009.

[AK10] Eric Allender and Michal Koucký. Amplifying lower bounds by means of self-reducibility. J.
ACM, 57(3):14:1–14:36, 2010.

[All99] Eric Allender. The permanent requires large uniform threshold circuits. Chicago Journal of
Theoretical Computer Science, 1999.

[BGH+05] Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil P. Vadhan. Short
PCPs verifiable in polylogarithmic time. In IEEE Conference on Computational Complexity,
pages 120–134, 2005.

[BIS90] David Barrington, Neil Immerman, and Howard Straubing. On uniformity withinNC1. Journal
of Computer and System Sciences, 41, 1990.

[BOS06] Joshua Buresh-Oppenheim and Rahul Santhanam. Making hard problems harder. In Proceed-
ings of 21st Annual IEEE Conference on Computational Complexity, pages 73–87, 2006.

[BSV14] Eli Ben-Sasson and Emanuele Viola. Short pcps with projection queries. Electronic Colloquium
on Computational Complexity (ECCC), 21:17, 2014.

[Bus87] Samuel R. Buss. The Boolean formula value problem is in ALOGTIME. In STOC, pages
123–131, 1987.

[DT85] Patrick W. Dymond and Martin Tompa. Speedups of deterministic machines by synchronous
parallel machines. Journal of Computer and System Sciences, 30(2):149–161, 1985.

[FSW09] Lance Fortnow, Rahul Santhanam, and Ryan Williams. Fixed polynomial size circuit bounds.
In Proceedings of 24th Annual IEEE Conference on Computational Complexity, pages 19–26,
2009.

[GW02] Oded Goldreich and Avi Wigderson. Derandomization that is rarely wrong from short advice
that is typically good. In Proceedings of the 6th International Workshop on Randomization and
Approximation Techniques in Computer Science, pages 209–223, 2002.

15

[Has98] Johan Hastad. The shrinkage exponent of de Morgan formulas is 2. SIAM Journal on Comput-
ing, 27(1):48–64, 1998.

[HS65] Juris Hartmanis and Richard Stearns. On the computational complexity of algorithms. Trans.
Amer. Math. Soc. (AMS), 117:285–306, 1965.

[HS66] Frederick Hennie and Richard Stearns. Two-tape simulation of multitape Turing machines.
Journal of the ACM, 13(4):533–546, October 1966.

[IKW02] Russell Impagliazzo, Valentine Kabanets, and Avi Wigderson. In search of an easy witness:
Exponential time vs. probabilistic polynomial time. Journal of Computer and System Sciences,
65(4):672–694, 2002.

[IW01] Russell Impagliazzo and Avi Wigderson. Randomness vs time: derandomization under a uni-
form assumption. Journal of Computer and System Sciences, 63(4):672–688, 2001.

[JMV13] Hamidreza Jahanjou, Eric Miles, and Emanuele Viola. Local reductions. CoRR, abs/1311.3171,
2013.

[Kan82] Ravi Kannan. Circuit-size lower bounds and non-reducibility to sparse sets. Information and
Control, 55(1):40–56, 1982.

[Mie09] Thilo Mie. Short PCPPs verifiable in polylogarithmic time with o(1) queries. Annals of Mathe-
matics and Artificial Intelligence, 56(3–4):313–338, 2009.

[Nec66] Eduard Neciporuk. On a boolean function. Doklady of the Academy of the USSR, 169(4):765–
766, 1966.

[PS88] Ian Parberry and Georg Schnitger. Parallel computation with threshold functions. Journal of
Computer and System Sciences, 36(3):278–302, 1988.

[Ruz81] Walter Ruzzo. On uniform circuit complexity. Journal of Computer and System Sciences,
22(3):365–383, 1981.

[SW12] Rahul Santhanam and Ryan Williams. Uniform circuits, lower bounds, and qbf algorithms.
Electronic Colloquium on Computational Complexity (ECCC), 19:59, 2012.

[Tre01] Luca Trevisan. Extractors and pseudorandom generators. Journal of the ACM, 48(4):860–879,
2001.

[Vio05] Emanuele Viola. The complexity of constructing pseudorandom generators from hard functions.
Computational Complexity, 13(3):147–188, 2005.

[Wil10] Ryan Williams. Improving exhaustive search implies superpolynomial lower bounds. In Pro-
ceedings of the 42nd Annual ACM Symposium on Theory of Computing, pages 231–240, 2010.

[Wil11] Ryan Williams. Non-uniform ACC circuit lower bounds. In Proceedings of 26th Annual IEEE
Conference on Computational Complexity, pages 115–125, 2011.

16

	Introduction
	Preliminaries and Notation

	Lower Bounds against Medium Uniformity
	A Uniformization Lemma For NC1
	Derandomizing TC0 by Assuming Randomized TC0 is Powerful
	Very Weak Derandomization For TC0 Lower Bounds

