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Non-Uniform ACC Circuit Lower Bounds

RYAN WILLIAMS, Stanford University

The class ACC consists of circuit families with constant depth over unbounded fan-in AND, OR, NOT, and
MODm gates, where m > 1 is an arbitrary constant. We prove:

— NEXP, the class of languages accepted in nondeterministic exponential time, does not have non-uniform
ACC circuits of polynomial size. The size lower bound can be slightly strengthened to quasi-polynomials
and other less natural functions.

— ENP, the class of languages recognized in 2O(n) time with an NP oracle, doesn’t have non-uniform ACC

circuits of 2n
o(1)

size. The lower bound gives an exponential size-depth tradeoff: for every d, m there is a
δ > 0 such that ENP doesn’t have depth-d ACC circuits of size 2n

δ
with MODm gates.

Previously, it was not known whether EXPNP had depth-3 polynomial size circuits made out of only MOD6

gates. The high-level strategy is to design faster algorithms for the circuit satisfiability problem over ACC
circuits, then prove that such algorithms entail the above lower bounds. The algorithms combine known
properties of ACC with fast rectangular matrix multiplication and dynamic programming, while the second
step requires a strengthening of the author’s prior work.
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1. INTRODUCTION
Non-uniform computation allows the sizes of programs to grow with the sizes of in-
puts. A non-uniform computation can be naturally represented as an infinite family of
Boolean circuits, one for each possible input length. A long-term goal of complexity the-
ory is to understand how non-uniform computations compare with the usual uniform
models, which have fixed-size programs. Non-uniform circuit families can recognize ar-
bitrary (even undecidable) languages, by having a large enough circuit for each input
length. Non-uniformity becomes much more interesting when we restrict the sizes of
computations: are there interesting uniform computations that cannot be simulated by
small non-uniform circuit families? For instance, could every exponential-time uniform
computation be simulated using circuit families of only polynomial size? Amazingly,
this question is still open. For another example, P 6= NP follows if one could provide an
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NP problem that cannot be solved by any circuit family where the size of the nth circuit
is at most polynomial in n. Lower bounds against non-uniform computation establish
impossibility results for computation in the physical world: it could be that P 6= NP, yet
NP-complete problems can still be efficiently solved using “bloated” programs with suf-
ficiently many lines of code for large inputs. Non-uniform circuit size lower bounds for
NP would rule out this possibility. (However, the best known circuit size lower bound
for any NP problem is only 5n − o(n) [Lachish and Raz 2001; Iwama and Morizumi
2002].)

In the early 1980’s, researchers began to carefully study the power of non-uniform
low depth circuits. Intuitively, such circuits correspond to extremely fast parallel com-
putations. The initial hope was that if some functions in NP were proved to require
large, restricted circuit families, then by gradually lifting the restrictions over time,
superpolynomial size unrestricted lower bounds for NP could be attained, proving
P 6= NP. Furst et al. [1984] and independently Ajtai [1983] showed that functions such
as the parity of n bits cannot be computed by polynomial size AC0 circuits, i.e., poly-
nomial size circuit families of constant depth over the usual basis of AND, OR, and
NOT gates, where each AND and OR may have arbitrarily many inputs. Yao [1985]
improved the lower bounds to exponential size, and Håstad [1986] proved essentially
optimal AC0 lower bounds for parity. Around the same time, Razborov [1985] proved
superpolynomial lower bounds for solving clique with monotone circuits (i.e., general
circuits without NOT gates), and the bound was improved to exponential size by Alon
and Boppana [1987]. However, it was later shown [Razborov 1989] that these tech-
niques probably would not extend to general circuits.

Encouraged by the progress on AC0, attention turned to lower bounds for what
seemed to be minor generalizations. The most natural generalization was to grant
AC0 the parity function for free. Razborov [1987] proved an exponential lower bound
for computing the majority of n bits with constant-depth circuits made up of AND,
OR, NOT, and MOD2 gates. (A MODm gate outputs 1 iff m divides the sum of its in-
puts.) Then Smolensky [1987] proved exponential lower bounds for computing MODq

with constant-depth circuits made up of AND, OR, NOT, and MODp gates, for distinct
primes p and q. Barrington [1989] suggested the next step would be to prove lower
bounds for the class ACC, which consists of constant-depth circuit families over the ba-
sis AND, OR, NOT, and MODm for arbitrary constant m > 1.1 It is here that progress
on strong circuit lower bounds began to falter (although there has been progress on
further restricted cases, cf. the Preliminaries). Although it was conjectured that the
majority of n bits cannot have polynomial-size ACC circuits, strong ACC lower bounds
remained elusive.

After some years of failing to prove a superpolynomial lower bound, the primary
questions were weakened. Rather than trying to find simple functions that cannot be
computed with weak circuits, perhaps we could rule out weak circuits for complicated
functions. Could one prove that nondeterministic exponential time (NEXP) doesn’t have
polynomial size circuits? A series of papers starting with Nisan and Wigderson [Nisan
and Wigderson 1994; Babai et al. 1993; Klivans and van Melkebeek 2002; Impagliazzo
et al. 2002] showed that even this sort of lower bound would imply derandomization
results: in the case of NEXP lower bounds, it would imply that Merlin-Arthur games
can be non-trivially simulated with nondeterministic algorithms. This indicated that
proving good circuit lower bounds for NEXP would already require significantly new
ideas.

1The class is also called ACC0 in the literature. However, as ACCi is hardly studied at all, for any i > 0, at
the present time it makes sense to drop the superscript.
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In this paper, we address two frontier questions concerning non-uniform circuit com-
plexity:

(1) Does nondeterministic 2O(n) time have non-uniform polynomial size ACC circuits?
(Is NTIME[2O(n)] in non-uniform ACC?)

(2) Does exponential time with an NP oracle have non-uniform polynomial size circuits?
(Is EXPNP ⊆ P/poly?)

Over the years, these questions have turned into notorious and somewhat embar-
rassing open problems, because it seems so obvious that the answers should be no. It
was open if EXPNP could be recognized with depth-3 polynomial size circuits made out
of only MOD6 gates.2 We make headway on these frontiers, giving a strong no answer
to the first question.

THEOREM 1.1. NTIME[2n] does not have non-uniform ACC circuits of polynomial
size.

Stronger size lower bounds hold (e.g. quasi-polynomial size) but the results are not
very clean; see Section 5.1 for details. For EXPNP, we can prove exponential lower
bounds.

THEOREM 1.2 (EXPONENTIAL SIZE-DEPTH TRADEOFF). For every d and m, there
is a δ > 0 and a language in ENP that fails to have non-uniform ACC circuits of depth d

and size 2n
δ

with MODm gates.

Recall that the smallest complexity class for which we know exponential-size (un-
restricted) circuit lower bounds is EXPNPNP

, the third level of the exponential hierar-
chy [Miltersen et al. 1999].

Extending the approach of this paper to settle the second frontier question may be
difficult, but this prospect does not look as implausible as it did before. If polynomial
unrestricted circuits could be simulated by subexponential ACC circuits, or if one could
improve just a little on the running time of algorithms for the circuit satisfiability
problem, the second question would be settled.

1.1. An Overview of the Proofs
Let us sketch how these new lower bounds are proved, giving a roadmap for the rest
of the paper. In recent work [Williams 2013], the author suggested a research program
for proving non-uniform circuit lower bounds for NEXP. It was shown that for many
circuit classes C, sufficiently faster satisfiability algorithms for C-circuits would entail
non-uniform lower bounds for C-circuits. The objective of this paper is to carry out the
proposed research program in the case of ACC circuits.

The proof of the lower bound for ENP (Theorem 1.2) is a combination of complexity-
theoretic ideas (time hierarchies, compression by circuits, the local checkability of com-
putation) and algorithmic ideas (fast matrix multiplication, dynamic programming,
table lookup).

1. First, we show that satisfiability algorithms for subexponential size n-input ACC
circuits with running time O(2n/nk) imply exponential size ACC lower bounds for ENP

(Theorem 3.2), where k is sufficiently large. (The model of computation for the sat-
isfiability algorithm is flexible; we may assume the multitape Turing machine or a
random access machine. See the Preliminaries.) This step considerably strengthens

2Note that slightly larger classes such as MAEXP and NEXPNP are known to not have polynomial size
circuits; see the Preliminaries.
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earlier work, which could only show that an o(2n/3) time algorithm for ACC circuit sat-
isfiability implies lower bounds [Williams 2013]. The idea is to prove that, if there is
a faster algorithm for ACC Circuit SAT, and there are subexponential (2n

o(1)

) size ACC
circuits for ENP, then every L ∈ NTIME[2n] can be accepted by a nondeterministic al-
gorithm in O(2nn10/nk) time. (Here, 10 is a substitute for a small universal constant.)
When k > 10 this contradicts the nondeterministic time hierarchy theorem [Seiferas
et al. 1978; Žák 1983], so one of the assumptions must be false.

Two known facts are applied in the proof. First, there is a polynomial-time reduction
from any L ∈ NTIME[2n] to the NEXP-complete problem SUCCINCT 3SAT such that
every instance x of length n (for sufficiently large n) is reduced to a (unrestricted, not
ACC) circuit Cx of size O(n5) with at most n+ 5 log n inputs (Fact 1). That is, the string
obtained by evaluating Cx on its O(2nn5) possible assignments (in lex order) encodes
a 3CNF formula FCx that is satisfiable iff x ∈ L. Informally, this says that languages
L ∈ NTIME[2n] have “succinct” reductions to exponentially long 3SAT instances.

Second, if ENP is in subexponential-size ACC, then (given an x) there is some sat-
isfying assignment to the formula encoded by Cx that can be described by an ACC
circuit W of subexponential size (Fact 2). That is, the string obtained by evaluating W
on all possible assignments encodes a satisfying assignment to the exponentially long
FCx . Informally, this means that, if ENP has subexponential ACC circuits, then every
“succinct” satisfiable 3SAT instance has at least one “succinct” satisfying assignment:
compressible satisfiable formulas have compressible satisfying assignments.

We can try to combine these two facts, as follows. If Cx were an ACC circuit, then any
L ∈ NTIME[2n] could be accepted in O(2nn5/nk) nondeterministic time, by guessing a
subexponential ACC circuit W and constructing an ACC circuit satisfiability instance
D built of Cx andW , whereD is satisfiable if and only ifW does not encode a satisfying
assignment to FCx (as shown in the author’s prior paper [Williams 2013]). The circuitD
has at most n+5 log n inputs and 2n

o(1)

size, so the assumed ACC satisfiability algorithm
can handle D in O(2nn5/nk) time.

The aforementioned argument does not quite work, because we do not know how
to produce a Cx that is an ACC circuit (indeed, it may not be possible). An ACC SAT
algorithm will not work on D, because D contains a copy of an unrestricted circuit Cx.
However, assuming P has subexponential ACC circuits, we show how to guess and ver-
ify an equivalent ACC circuit C ′x in nondeterministic O(2nn10/nk) time using a slightly
faster ACC SAT algorithm (Lemma 3.4). This makes it possible to prove ACC lower
bounds even with weak ACC satisfiability algorithms. Furthermore, this part of the
proof does not use specific properties of ACC, so it may be useful for proving stronger
lower bounds in the future.

2. Next, we show how satisfiability of subexponential ACC circuits of depth d and n

inputs can be determined in 2n−Ω(nδ) time, for a δ > 0 that depends on d (Theorem 4.5).
Given any such circuit C, replace it with C ′ which is an OR of 2n

δ

copies of C, where
the first nδ inputs of each copy are substituted with a variable assignment. This ACC

circuit C ′ has n − nδ inputs, 2O(nδ) size, and C is satisfiable if and only if C ′ is. Ap-
plying a powerful result of Yao, Beigel-Tarui, and Allender-Gore (Lemma 4.1), C ′ can
be replaced by an equivalent depth-2 circuit C ′′ of 2n

δ2O(d)

size, which consists of an
efficiently computable symmetric function at the output gate and AND gates below
it. Setting δ � 1/2O(d), and exploiting the structure of the depth-2 circuit, C ′′ can be
evaluated on all of its possible assignments in 2n−n

δ

poly(n) time (Lemma 4.2). This
concludes the sketch of the ENP lower bound.

The only use of the full assumption “ENP has ACC circuits” is in Fact 2. The lower
bound for NEXP (Theorem 1.1) applies the result (which follows from work of Impagli-
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azzo, Kabanets, and Wigderson [Impagliazzo et al. 2002]) that if NEXP has polyno-
mial size (unrestricted) circuits then satisfiable instances of SUCCINCT 3SAT already
have polynomial size (unrestricted) circuits W encoding satisfying assignments (The-
orem 5.2). But if P has ACC circuits, it is easy to see that these unrestricted circuits
must have equivalent ACC circuits as well (Lemma 5.4). This helps extend the ENP

lower bound to NEXP. However, the resulting size lower bound is not exponential: from
S(n)-size circuits for NEXP one only obtains S(S(S(n)c)c)c-size ACC circuits encoding
satisfying assignments. This allows for some “half-exponential” type improvements in
the size lower bounds against NEXP.

Perhaps the most interesting aspect of the proofs is that only the satisfiability algo-
rithm for ACC circuits relies on specific properties of ACC. Improved exponential-time
algorithms for satisfiability are the only barrier to further progress on circuit lower
bounds for NEXP. In general, this paper weakens the algorithmic assumptions neces-
sary to prove lower bounds, and strengthens the lower bounds obtained. Let C be a
class of circuit families that is closed under composition (the composition of two circuit
families from C is also a family in C) and contains AC0. Possible C include constant-
depth threshold circuits, Boolean formulas, and unrestricted Boolean circuits. The ar-
guments of Section 3 and Section 5 imply the following metatheorem.

THEOREM 1.3. There is a k > 0 such that, if satisfiability of C-circuits with n vari-
ables and nc size can be solved in O(2n/nk) time for every c, then NTIME[2n] doesn’t
have non-uniform polysize C-circuits.

2. PRELIMINARIES
We presume the reader has background in circuit complexity and complexity theory
in general. The textbook of Arora and Barak [Arora and Barak 2009] covers all the
necessary material; in particular, Chapter 14 gives an excellent summary of ACC and
the frontiers in circuit complexity.

On the machine model. An important point about this paper is that the choice
of uniform machine model is not crucial to the arguments. We show that if large
classes have small non-uniform ACC circuits, then NTIME[2n] ⊆ NTIME[o(2n)] (in fact,
NTIME[2n] ⊆ NTIME[o(2n/nk)] for sufficiently large k), which is a contradiction in all
computational models we are aware of. Moreover, Gurevich and Shelah proved that the
nondeterministic machine models are tightly related in their time complexities. For ex-
ample, let NTIMERTM [t(n)] be the languages recognized by nondeterministic t(n) time
random-access Turing machines, and let NTIMETM [t(n)] be the class for multitape Tur-
ing machines.

THEOREM 2.1 (GUREVICH AND SHELAH [1989]).⋃
c>0 NTIMERTM [n logc n] =

⋃
c>0 NTIMETM [n logc n].

As a consequence, even if we showed NTIMETM [2n] ⊆ NTIMERTM [2n/nk] for suffi-
ciently large k, we would still obtain the desired contradiction. (Note that such a result
is not known for the deterministic setting.) A random access Turing machine can also
simulate a standard random access machine with only constant factor overhead [Paul
and Reischuk 1980]. Hence in our proof by contradiction, we may assume that the
source algorithm we’re simulating is only a multitape TM, while the target algorithm
has all the power we need to perform typical computations from the literature.

Notation. Inside of an algorithm description, the integer n refers to the length of the
input to the algorithm. For a function f : N→ N, we use poly(f(n)) to denote a growth
rate of the form cf(n)c for a constant c.
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The size of a circuit refers to the number of wires in it. However, since attention
shall be restricted to circuits with at least polynomially many gates, the distinction
between the number of wires and gates does not matter. In this paper, an unrestricted
circuit has gate types AND/OR/NOT, unrestricted depth, and each gate has fan-in two.
(That is, an unrestricted circuit is the generic variety used in the definition of P/poly.)
All circuit size functions S considered in this paper are assumed to be monotone non-
decreasing, i.e., S(n+ 1) ≥ S(n) for all n.

We say that a circuit class C is a collection of circuit families that (a) contains AC0 (for
every circuit family in AC0, there is an equivalent circuit family in C) and (b) is closed
under composition: if {Cn} and {Dn} are families in C, then for every c, the circuit
family consisting of circuits which take n bits of input, feed them to nc + c copies of
circuits from Cn, and feed the outputs to the inputs of Dnc+c, is also a circuit family in
C. Essentially all classes studied extensively in the literature (AC0, ACC, TC0, NC1, NC2,
P/poly, etc.) are circuit classes in this sense. For classes that allow for superpolynomial
size circuits, the polynomial “nc + c” in the above may be relaxed appropriately.

For a complexity class C, the class i.o.-C consists of languages L ⊆ Σ? such that there
is a language L′ ∈ C where L ∩ Σn = L′ ∩ Σn holds for infinitely many n.

When the expression “O(1)” appears inside of the time bound for a complexity class,
this is shorthand for the union of all classes where the O(1) is substituted by a fixed
constant. For example, the class TIME[2n

O(1)

] is shorthand for
⋃
c≥0 TIME[2n

c

].

Other Prior Work. Kannan [1982] showed in 1982 that for any superpolynomial con-
structible function S : N → N, the class NTIME[S(n)]NP does not have polynomial
size circuits. Another somewhat small class known to not have unrestricted poly-
nomial size circuits is MAEXP [Buhrman et al. 1998]. Later it was shown that the
MAEXP lower bound can be improved to half-exponential size functions f which sat-
isfy f(f(n)) ≥ 2n [Miltersen et al. 1999]. Kabanets and Impagliazzo [2004] proved that
NEXPRP either doesn’t have polynomial size Boolean circuits (over AND, OR, NOT), or
it doesn’t have polynomial size arithmetic circuits (over the integers, with addition and
multiplication gates). Note that NEXPRP ⊆ MAEXP.

A line of work stemming from Toda’s Theorem [Toda 1991] has studied ways of repre-
senting low-depth ACC circuits by certain depth-two circuits which will play a critical
role in this paper. Define a SYM+ circuit to be a depth-two circuit which computes
some symmetric function at the output gate, and computes ANDs of input variables
on the second layer.3 Extending work on AC0 by Allender [1989], Yao [1990] showed
that every ACC circuit of s size can be represented by a probabilistic SYM+ circuit of
sO(logc s) size, where c depends on the depth, and the ANDs have poly(log s) fan-in.
Beigel and Tarui [1994] showed how to remove the probabilistic condition. Allender
and Gore [1991] showed that every subexponential uniform ACC circuit family can be
simulated by subexponential uniform SYM+ circuits. This was applied to show that the
Permanent does not have uniform ACC circuits of subexponential size. Later, Allender
[1999] improved the Permanent lower bound to polynomial size uniform TC0 circuits.
However, these proofs require uniformity, and the difference between uniformity and
non-uniformity may well be vast (e.g., it is clear that P 6= NEXP, but open whether
NEXP ⊆ P/poly). Green et al. [1995] showed that the symmetric function can be as-
sumed to be the specific function which returns the middle bit of the sum of its inputs.
This representation may also be used in the lower bounds of this paper.

3Some have defined SYM+ circuits differently, allowing the ANDs to take negated variables as input. In
Appendix B we sketch why there is no essential difference between the two definitions (for our purposes, at
least).
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There has also been substantial work on representing ACC in other interesting
ways [Barrington and Thérien 1988; Agrawal et al. 2000; Hansen 2006; Hansen and
Koucký 2010] as well as many lower bounds in restricted cases [Barrington et al.
1990; Thérien 1994; Yan and Parberry 1994; Krause and Pudlák 1997; Barrington
and Straubing 1995; Caussinus 1996; Grolmusz 1998; Grolmusz and Tardos 2000;
Chattopadhyay et al. 2006; Chattopadhyay and Wigderson 2009]. Significant work has
gone into understanding the constant degree hypothesis [Barrington et al. 1990] that
a certain type of low-depth ACC circuit requires exponential size to compute the AND
function. The hypothesis is still open.

All prior works on non-uniform ACC lower bounds attack the problem in a “bottom-
up” way. (The exceptions are the uniform results mentioned above [Allender and Gore
1991; Allender 1999].) Lower bounds have been proved for highly restricted circuits
and these restrictions have been very gradually relaxed over time. In this paper, the
strategy is “top-down”: the goal is to find the smallest complexity classes for which it
is still possible to prove superpolynomial ACC lower bounds. This is in line with the
overall goal of eventually proving large circuit lower bounds for NP.

As mentioned before, this paper builds on the author’s prior work which showed that
mild improvements over exhaustive search can sometimes imply lower bounds. Let us
briefly review the prior state-of-the-art for Circuit SAT algorithms. It is known that
CNF satisfiability can be solved in 2n−Ω(n/ ln(m/n))poly(m) time, where m is the number
of clauses and n is the number of variables [Schuler 2005; Calabro et al. 2006; Dantsin
and Hirsch 2009]. Recent work of Calabro-Impagliazzo-Paturi [Calabro et al. 2009]
and Impagliazzo-Matthews-Paturi [Impagliazzo et al. 2012] has culminated in a ran-
domized algorithm for depth-d AC0 circuit satisfiability that runs in 2n−Ω(n/(log s)d−1)

time on circuits with s gates. Santhanam [2010] has applied ideas inspired by formula
size lower bounds to show that for a fixed constant k, satisfiability of formulas over
AND, OR, and NOT can be determined in O(2n−n/c

k

) time on n-variable formulas of
size cn. Very recently, Seto and Tamaki [2013] have extended Santhanam’s results to
formulas over arbitrary two-bit Boolean-valued functions. Unfortunately, these upper
bounds are not yet strong enough to derive new circuit lower bounds for NEXP.

How do we avoid the barriers?. There are several well-known formal barriers to prov-
ing lower bounds. Let us say a little about their relation to this work. Intuitively, we
circumvent the natural proofs barrier [Razborov and Rudich 1997] because of the use
of diagonalization. More precisely, we rely heavily on strong completeness properties of
a specific NEXP language, namely SUCCINCT 3SAT, to prove that it cannot have small
ACC circuits. So it looks unlikely that one may extract any P-natural or NP-natural
properties from the proof. (Furthermore, there is little evidence that ACC contains
pseudorandom functions, so natural proofs may not be a barrier for ACC after all.) It
is hard to formally rule out that a proof cannot possibly be made natural, without
showing either an algorithmic lower bound (there is no efficient algorithm with cer-
tain properties) or a circuit upper bound (the circuit class under discussion has pseu-
dorandom functions). Nevertheless, statements like “Satisfiability of C circuits is in
O(2n/n10) time” do appear to be far weaker than statements like “There are no strong
pseudorandom functions implementable with C circuits”.

More conclusively, the approach of this work definitely avoids relativization [Baker
et al. 1975] and algebrization [Aaronson and Wigderson 2009] because there are ora-
cles A relative to which NEXPA ⊂ ACCA, and even NEXPÃ ⊂ ACCA (Scott Aaronson,
personal communication). Here the lower bounds rely on a more efficient ACC SAT
algorithm which uses non-relativizing properties of ACC circuits. In general, the ap-
proach of using slightly-faster SAT algorithms to prove lower bounds appears fruitful
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for circumventing oracle-based barriers, because all known improved SAT algorithms
break down when oracles (or algebraic extensions thereof) are added to the instance.
That is, significant improvements over exhaustive search necessarily exploit structure
in instances that black-box methods cannot see.

3. A STRENGTHENED CONNECTION BETWEEN SAT ALGORITHMS AND LOWER BOUNDS
In this section, we prove that if one can achieve a very minor improvement over ex-
haustive search in satisfying ACC circuits, then one can prove lower bounds for ACC.
The required improvement is so minor that we are able to achieve it, in the next sec-
tion. However, let us stress upfront that all the results in this section hold equally well
for other circuit classes as well: we only require basic properties of ACC that practically
all robust circuit classes satisfy.

Define the ACC CIRCUIT SAT problem to be: given an ACC circuit C, is there an
assignment of its inputs that makes C evaluate to 1? In recent prior work [Williams
2013], the author proved a relation between algorithms for ACC CIRCUIT SAT and
lower bounds for ACC circuits:4

THEOREM 3.1 ([WILLIAMS 2013]). Let s(n) = ω(nk) for every k. If ACC CIRCUIT
SAT instances with n variables and nk size can be solved in O(2n/3/s(n)) time for every
k, then ENP does not have non-uniform ACC circuits of polynomial size.

We shall sharpen this theorem considerably. Throughout the following, let S : N→ N
and d : N → N be monotone nondecreasing functions such that S(n) ≥ n and d(n) ≥ 1.
Let C be a circuit class as defined in the Preliminaries. (C can be ACC, TC0, NC1, P/poly,
etc.) Define the C-CIRCUIT SAT problem to be: given a circuit C from class C, is there
an assignment of its inputs that makes C evaluate to 1?

THEOREM 3.2. Let S(n) ≤ 2n/4. There is a c > 0 and b > 0 such that, if C-CIRCUIT
SAT instances with at most n + c log n variables, depth at most 2 · d(3n) + b, and O(n ·
S(2n) +S(3n)) size can be solved in O(2n/nc) time, then ENP does not have non-uniform
C circuits of depth d(n) and S(n) size.

The constant k depends on the model of computation in which the SAT algorithm is
implemented, but for all typical models, c is not large (less than 10). For us, the im-
portant corollary is this: if ACC satisfiability has a slightly faster algorithm on circuits
that are mildly larger than S(n), then ENP does not have ACC circuits of S(n) size. In
what follows, we prove Theorem 3.2 only for ACC circuits, but the proof also works for
any other circuit class. (The reader can verify that the only two properties of ACC used
are that the class contains AC0, and the class is closed under composition of circuit
families.)

To understand the difficulty behind proving Theorem 3.2, let us recall the proof of
Theorem 3.1 to see why it needed such a strong assumption. The generic proof idea
in [Williams 2013] for results such as Theorem 3.1 is to derive a contradiction from
assuming small circuits for ENP and a faster algorithm for CIRCUIT SAT. In particu-
lar, it is shown that under the two assumptions, every language L ∈ NTIME[2n] can
be recognized in NTIME[o(2n)], which is false by the nondeterministic time hierarchy
theorem [Seiferas et al. 1978; Žák 1983]. The contradiction is derived from stitching
together several facts about circuits and satisfiability.

Define SUCCINCT 3SAT as the problem: given a circuit C on n inputs, let FC be
the 2n-bit instance of 3-SAT obtained by evaluating C on all of its possible inputs in
lexicographical order. Is FC satisfiable?

4In fact a more general result for any circuit class was proved, which implies Theorem 3.1.
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That is, given a compressed encoding of a 3-CNF formula, the task is to determine
if the underlying decompressed formula is satisfiable. For natural reasons, call FC the
decompression of C, and call C the compression of FC . The SUCCINCT 3SAT problem
is a canonical NEXP-complete problem [Papadimitriou and Yannakakis 1986].

FACT 1. There is a constant c > 0 such that for every L ∈ NTIME[2n], there is a
reduction from L to SUCCINCT 3SAT which on input x of length n runs in poly(n) time
and produces a circuit Cx with at most n + c log n inputs and c · nc + c size, such that
x ∈ L if and only if the decompressed formula FCx of 2n · poly(n) size is satisfiable.

Fact 1 follows from several prior works concerned with the complexity of the Cook-
Levin theorem:

THEOREM 3.3 (TOURLAKIS [2001; FORTNOW ET AL. [2005]). There is a c > 0
such that for all L ∈ NTIME[n], L reduces to 3SAT in c · n(log n)c time. Moreover there
is an algorithm AL (with random access to its input) that, given an instance of L with
length n and an integer i ∈ [cn(log n)c + c] in binary, AL outputs the ith clause of the
resulting 3SAT formula in c(log n)c + c time.

In fact, the proofs in the above references build on even earlier work [Schnorr 1978;
Cook 1988; Gurevich and Shelah 1989; Robson 1991]. In a nutshell, all of these proofs
exploit the locality of computation: every nondeterministic computation running in
linear time can be represented with a nondeterministic circuit of size O(n · poly(log n))
which has a highly regular and efficiently computable structure. This circuit can be
easily modeled as a 3-CNF formula using the Tseitin transformation [Tseitin 1968]
that assigns a variable to each circuit wire and uses 3-CNF clauses to model the input-
output relationships for each gate.

The value of c in Theorem 3.3 depends on the underlying computational model; typ-
ically one can take c to be at most 4. A standard padding argument (substituting 2n in
place of n) yields Fact 1. In more detail, given L ∈ NTIME[2n], we apply Theorem 3.3
to the language L′ = {x012|x| | x ∈ L}, which is in NTIME[n]. On an input x, this gener-
ates an equivalent 3SAT instance of length O(2|x||x|c). As it is easy to simulate random
accesses to an input of the form x012|x| with a uniform poly(|x|) size circuit, one can
simulate the O((log n)c) time algorithm of Theorem 3.3 on L′, with a uniform poly(|x|c)
size circuit.

Using Fact 1, one can then prove that if the lower bound for ENP fails to hold, then ev-
ery succinctly compressible satisfiable formula that is output by the SUCCINCT 3SAT
reduction has some succinctly compressible satisfying assignment.

FACT 2. If ENP has ACC circuits of size S(n), then there is a fixed constant c such that
for every language L ∈ NTIME[2n] and every x ∈ L of length n, there is an ACC circuit
Wx of size at most S(3n) with k ≤ n + c log n inputs such that the variable assignment
zi = W (i) for all i = 1, . . . , 2k is a satisfying assignment for the formula FCx , where Cx
is the circuit obtained by the reduction in Fact 1.

PROOF OF FACT 2. Consider the ENP machine:

N(x, i): Compute the SUCCINCT 3SAT reduction from x to Cx in polyno-
mial time. Decompress Cx, obtaining a formula F of O(2|x||x|c) size. Let k be
the number of inputs to Cx. Binary search for the lexicographically small-
est satisfying assignment A to F , by repeatedly querying: given (F,A) where
|A| ≤ 2k, is there an assignment A′ ≤ A that satisfies F ? Then output the ith
bit of A.
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Note the queries can be answered in NP, and N needs O(2k) queries to the oracle.
By assumption, N has ACC circuits of size S(n). It follows that for every x ∈ L there
is some satisfying assignment to F which is encoded by a circuit of size S(|〈x, i〉|) ≤
S(3|x|), where 〈·, ·〉 is a polynomial-time computable pairing function. 2

With these two facts, we may try to recognize any L ∈ NTIME[2n] with a o(2n)
nondeterministic algorithm (a contradiction), as follows. Given a string x of length
n, compute the SUCCINCT 3SAT circuit Cx in polynomial time and nondeterministi-
cally guess a S(3n)-size circuit W . Now the goal is to check that W succinctly encodes
a satisfying assignment for the underlying formula FCx . To verify this condition, the
algorithm constructs a CIRCUIT SAT instance D. The circuit D has n + c log n inputs
fed to O(n) copies of Cx, so that when i is input to D, the copies altogether print the ith
clause of the 3CNF formula FCx . These copies output three variable indices of length
at most n + c log n, along with sign bits (whether or not the variables are negated in
the clause). Then D feeds each index to a copy of W , which prints a bit. Finally D
compares the sign bits with the three bits printed by the copies of W , and outputs
0 iff the variable assignment encoded by W satisfies the ith clause. Observe D has
poly(n) + O(S(3n)) size. Running a fast enough CIRCUIT SAT algorithm lets us deter-
mine the satisfiability of D in o(2n) time. Finally, this algorithm for L accepts x iff D is
unsatisfiable. To see that this algorithm is correct, observe there is a size-S(3n) circuit
W such that D is an unsatisfiable circuit, if and only if there is such a W encoding a
satisfying assignment for FCx , if and only if x ∈ L.

The above argument cannot be carried out directly to prove ACC circuit lower bounds
from ACC CIRCUIT SAT algorithms, because of Fact 1. Given an instance x of L, the
resulting circuit Cx produced in the reduction from L to SUCCINCT 3SAT can be con-
structed in polynomial time, however it looks hard (perhaps impossible) to show that
this Cx can be assumed to be an ACC circuit. As Cx is a component of the circuit D, it
follows that D itself would not be an ACC circuit, so an ACC CIRCUIT SAT algorithm
would not seem to be useful for determining the satisfiability of D.

In the proof of Theorem 3.1 in the author’s prior work [Williams 2013], this problem
was fixed by settling for a weaker reduction from L to SUCCINCT SAT, which generates
an AC0 circuit C ′x with 3n + O(log n) inputs rather than n + O(log n). Unfortunately
this constant factor makes a huge difference: to quickly determine satisfiability of the
resulting circuit D′ in o(2n) time, a 2n/3/nω(1) time algorithm for ACC CIRCUIT SAT is
needed, instead of a 2n/nω(1) algorithm. Algorithms of the former type are not known
even for 3SAT; algorithms of the latter type are much more plentiful.

While it is unlikely that these Cx circuits can be implemented in ACC, note that we
already assume that ACC is powerful in some sense: in a proof by contradiction, we may
assume many functions have small ACC circuits! Since the function computed by Cx is
computable in polynomial time, then even if we assume that only P has ACC circuits,
there still exists a circuit C ′x which is ACC and equivalent to Cx, but it is from a non-
uniform family, and therefore may be arbitrarily difficult to construct. However, we
can use nondeterminism in the algorithm recognizing L in NTIME[o(2n)], so at the very
least we can guess this elusive C ′x. We also have a good algorithm for ACC CIRCUIT
SAT at our disposal. By guessing two more ACC circuits to help us, it turns out that we
can always generate a correct ACC circuit C ′x that is equivalent to Cx in o(2n) time. We
arrive at our main lemma:

LEMMA 3.4. There is a fixed c > 0 and b > 0 with the following property. Assume
P has ACC circuits of depth d(n) and size at most S(n) ≤ 2n/4. Further assume there
is some k > 2c such that ACC CIRCUIT SAT on circuits with n + k log n inputs, depth
2 · d(3n) + b, and at most O(S(3n) + S(2n)n) size can be solved in O(2n/nk) time.
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Then for every L ∈ NTIME[2n], there is a nondeterministic algorithm A and constant
e such that:

—A runs in O(2n/nk + S(3n) · ne) time,
— for every x of length n, A(x) either prints reject or it prints an ACC circuit C ′x with
n + c log n inputs, depth d(3n), and S(n + c log n) size, such that x ∈ L if and only if
C ′x is the compression of a satisfiable 3-CNF formula of 2n · ne size, and

— there is always at least one computation path of A(x) that prints a valid circuit C ′x.

That is, given an instance x, the algorithm A nondeterministically generates an
equivalent SUCCINCT 3SAT instance C ′x which is an ACC circuit. Let us first give a
high-level overview of the proof. Informally, A will guess and verify C ′x in three stages.

(1) A guesses an ACC circuit D of depth d(2n) and O(S(2n) log n) size which encodes
all the gate and wire information of the circuit Cx which has cnc + c size. Given a
gate index j = 1, . . . , cnc + c, D produces the gate type of j, as well as the indices of
gates whose outputs are the inputs for gate j. The correctness of D can be verified
in O(ncS(2n) ·poly(logS(2n))) time by simply producing the entire circuit of cnc + c
size that is described by D, and checking that it is identical to Cx.

(2) Next, A guesses an ACC circuit E of depth d(3n) and O(S(3n)) size which encodes
the outputs of all gates of Cx on all inputs i: given input i and a gate index j =
1, . . . , cnc + c, E produces the output of gate j in Cx evaluated on i. A verifies that
E is correct, using the fact that D is correct. By constructing an appropriate ACC
CIRCUIT SAT instance that checks for all inputs and all gates that the claimed
inputs to that gate are consistent with the output of the gate, this verification
takes O(2n/nk) time (for k chosen to be greater than 2c).

(3) Then using the fact that E is correct, it is easy to verify that a guessed ACC circuit
C ′x is correct via a call to ACC CIRCUIT SAT that runs in O(2n/nk) time. A only
needs to check if there is an i such that C ′x(i) 6= E(i, j?), where j? is the index of the
output gate of Cx. (Alternatively, we could just print the circuit E(·, j?) as a valid
ACC circuit that is equivalent to Cx(·).) If E is correct and no such i exists, then C ′x
is also correct.

PROOF OF LEMMA 3.4. We describe A in detail. On input x of length n, A guesses
an ACC circuit C ′x of size S(n+ c log n), and constructs the SUCCINCT 3SAT circuit Cx
with n + c log n inputs and at most cnc + c size (of Fact 1) in polynomial time, for a
fixed c that is independent of L. By Fact 1, x ∈ L if and only if Cx is the compression
of a satisfiable formula FCx of O(2nnc) length. We must verify that C ′x and Cx compute
exactly the same function, using only the algorithm for ACC CIRCUIT SAT.

Without loss of generality, the unrestricted circuit Cx above has gate types AND, OR,
NOT, and INPUT, where every AND and OR has fan-in two. By definition, an INPUT
gate has no inputs, and the output value of an INPUT gate is the appropriate input bit
itself. The gates are indexed by the numbers 1, . . . , cnc + c, where the first n + c log n
indices correspond to the n+ c log n INPUT gates, and the (cnc+ c)th gate is the output
gate.

Since the map x 7→ Cx is polynomial time computable, the following function f is
polynomial-time computable:

Given x, and a gate index j = 1, . . . , cnc + c, f(x, j) outputs the gate type
(AND, OR, NOT, INPUT) of the jth gate in the circuit Cx. Furthermore, if
the gate type is NOT, then f outputs the gate index j1 in Cx whose output is
the input to j; if the gate type is an AND or OR, then f outputs the two gate
indices j1 and j2 in Cx whose outputs are the two inputs of j.
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Consider the decision problem Df :

Given x, j, and i = 1, . . . , 2c log n+O(1), decide if the ith bit of f(x, j) is 1.

The problem Df is solvable in polynomial time and hence has O(S(n + c log n +
O(log log n)))-size, d(n+ c log n+O(log log n))-depth ACC circuits, by assumption.

Let D(x, j) be an ACC circuit implementing the functionality of f . Note we may as-
sume the size of D is

O(S(n+O(log n)) log n) ≤ O(S(2n) logS(n)), (1)

by simply taking 2c log n + O(1) copies of the S(n + O(log n))-size circuit solving the
decision problem Df . (By convention, let us assume that when D is printing the gate
information for an INPUT gate, it prints all-zeroes strings in place of j1 and j2, and
when D is printing the information for a NOT gate, it prints all-zeroes in place of j2.)
Similarly, the depth of D can be assumed to be at most d(2n).

The nondeterministic algorithm A guesses D, and verifies that D is correct on the
given input x in time

O(ncS(n+O(log n)) · poly(logS(n+O(log n)))) ≤ nc · S(2n) · poly(logS(2n)) ≤ O(22n/3),

by evaluating D(x, ·) on all possible j = 1, . . . , cnc + c, and checking that all outputs of
D correspond with the relevant gates in Cx. If D does not output all the gates of Cx
correctly, then A rejects.

Next, consider the problem:

Given x, an input i of n + c log n bits, and a gate index j = 1, . . . , cnc + c,
output the bit value on the output wire of the jth gate when Cx is evaluated
on i.

By assumption, this problem also has ACC circuits, since Cx can be constructed and
evaluated on any input i in polynomial time. Let E(x, i, j) be an ACC circuit with this
functionality, of size

S(n+ (n+ c log n) + c log n+O(1)) ≤ S(3n), (2)

and depth at most d(3n) as well.
Now, algorithm A guesses E and wishes to verify its correctness on x. To do this,

A constructs a circuit VALUE(i, j) built out of D and E, where i has n + c log n bits
and j = 1, . . . , cnc + c. Intuitively, VALUE(i, j) will output 0 if and only if E produces a
sensible output for the jth gate of Cx evaluated on input i.

First, VALUE(i, j) feeds j to the circuit D(x, ·), producing gate indices j1, j2, and a
gate type g. VALUE then computes v1 = E(x, i, j1), v2 = E(x, i, j2) and v = E(x, i, j).
(Depending on g, these j1 and j2 may be all-zeroes, but this does not matter to us.)

If g = INPUT, then VALUE outputs 0 if and only if j ∈ {1, . . . , n+ c log n} (j is among
the first n + c log n inputs) and the jth bit of i equals v. This behavior can be easily
implemented with an AC0 circuit of size

O(n log n). (3)

If g = NOT, then VALUE outputs 0 if and only if v1 = ¬v.
If g = AND, then VALUE outputs 0 if and only if v1 ∧ v2 = v.
If g = OR, then VALUE outputs 0 if and only if v1 ∨ v2 = v.
Note that each of the above three conditions can be implemented with a constant

number of gates, given the values g, v1, v2, and v. It follows that VALUE can be imple-
mented as an ACC circuit.

Since A has not rejected, D is correct, so we know that for all i, j, the gate types
g and input connections j1 and j2 are correct. Therefore VALUE(i, j) = 1 if and only
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if E asserts that the output of gate j in Cx(i) equals v, and E asserts the inputs to j
have values v1, v2, but the gate type g dictates that the output of j should be ¬v. It
follows that VALUE is an unsatisfiable circuit if and only if E prints correct values for
all gates in Cx(i), over all i.

Therefore, by calling ACC circuit satisfiability on VALUE(·, ·), A determines whether
E is correct. The algorithm A rejects if E is deemed incorrect. The circuit VALUE(i, j)
has n+2c log n+O(1) inputs, depth at most d(2n)+d(3n)+b for a fixed constant b, and it
follows from (1), (2), and (3) that the circuit for VALUE has O(S(3n)+S(2n) logS(2n)+
n logS(n)) ≤ O(S(3n) + S(2n)n) size. By assumption, the assumed ACC satisfiability
algorithm runs in O(2n/nk) time for some k > 2c.

After checking that E is a correct guess, the question of whether C ′x is equivalent
to Cx can now be verified. (Alternatively, at this point we may simply print the circuit
E(·, cnc + c) as a valid circuit that is equivalent to Cx(·).) First note that if E is correct,
then for all i, Cx(i) = E(x, i, cnd + c). Therefore it suffices to set up an ACC circuit
EQUIV(i) which outputs 1 if and only if C ′x(i) 6= E(x, i, cnc+c), and determine if EQUIV
is satisfiable using the algorithm for ACC CIRCUIT SAT. Since EQUIV(i) has n+c log n
inputs, depth d(3n)+O(1), and sizeO(S(n+O(log n))), the circuit satisfiability call runs
in O(2n/nk) time, by assumption. If EQUIV is satisfiable, then A rejects.

Finally, A prints its guessed circuit C ′x if the algorithm did not reject on any of the
above steps. 2

Remark 3.5. The proof of the lemma does not require specific properties of ACC.
We only need that the underlying circuit class C contains AC0 and is closed under
composition of two circuit families. The same goes for the proof of Theorem 3.2 below.

Remark 3.6. In fact the lemma shows that, given any circuit C and a C-circuitD, we
can efficiently check if C is equivalent to D using nondeterminism (under the assump-
tions that P has C-circuits and there are efficient C-SAT algorithms). If P has C-circuits,
then Circuit Evaluation has C-circuits. Therefore any circuit family {Cn} will have an
equivalent C-circuit family, as well as C-circuits encoding the “gate information” and
“gate values” of {C}.

With Lemma 3.4 in hand, the proof of Theorem 3.2 closely follows the author’s prior
work (Theorem 3.1), except the circuit C ′x is substituted in place of Cx. Let us give
the details. We use the specific example of ACC in place of a generic circuit class C;
modification for other classes C is straightforward.

REMINDER OF THEOREM 3.2. Let S(n) ≤ 2n/4. There is a c > 0 and b > 0 such that, if
C-CIRCUIT SAT instances with at most n+ c log n variables, depth at most 2 · d(3n) + b,
and O(n · S(2n) + S(3n)) size can be solved in O(2n/nc) time, then ENP does not have
non-uniform C circuits of depth d(n) and S(n) size.

PROOF OF THEOREM 3.2. Suppose ACC CIRCUIT SAT instances with n+ c log n vari-
ables, depth 2 · d(3n) + O(1), and O(n · S(2n) + S(3n)) size can be solved in O(2n/nc)
time for a sufficiently large c. Further suppose that ENP has non-uniform ACC circuits
of depth d and S(n) size. The goal is to show that NTIME[2n] ⊆ NTIME[o(2n)], contra-
dicting the nondeterministic time hierarchy [Seiferas et al. 1978; Žák 1983].

Let L ∈ NTIME[2n]. We describe a fast nondeterministic algorithm B deciding L. As
discussed earlier (Theorem 2.1), we may assume L has a multitape Turing machine
implementation in O(2n) time, and we only need to simulate L on a RAM in O(2n/nc)
time for large enough c to obtain the contradiction.

On input x of length n, B first runs the nondeterministic algorithm A of Lemma 3.4.
Using the ACC CIRCUIT SAT algorithm and the fact that P has ACC circuits,A runs in
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O(2n/nc+S(3n) ·poly(n)) ≤ O(2n/nc) time, and for some computation path, A produces
an ACC circuit C ′x of S(n+ c log n) size, d(n+ c log n) depth, and n+ c log n inputs such
that x ∈ L if and only if C ′x is the compression of a satisfiable formula FC′x .

Then B nondeterministically guesses a S(3n)-size d(3n)-depth circuit W . By Fact 2,
there exists such a W that encodes a satisfying assignment for FC′x if and only if x ∈ L.

Next, B constructs an ACC CIRCUIT SAT instance D to verify that W is correct (just
as in the proof of Theorem 3.1). The circuit D has n + c log n inputs fed to O(n) copies
of C ′x, so that when i is input to D, the ith clause of the 3CNF formula FC′x is printed
on O(n) bits of output. The O(n) bits encode three variable indices along with sign
bits for each variable. For the three variables, an assignment is computed for them
by evaluating the indices on three copies of W . Finally, D compares the sign bits with
the bits output by the copies of W , and outputs 0 iff the variable assignment encoded
by W satisfies the ith clause. Now observe that our guessed W encodes a satisfying
assignment for FC′x , if and only if every clause of FC′x is satisfied by the assignment
encoded by W , if and only if D(i) = 0 for all i, if and only if D is unsatisfiable.

Observe thatD hasO(n·S(2n)+S(3n)) size, depth at most 2d(3n)+O(1), and n+c log n
inputs. By assumption, the satisfiability of D can be determined in O(2n/nc) time,
hence B decides if x ∈ L in O(2n/nc) time. 2

4. A SATISFIABILITY ALGORITHM FOR ACC CIRCUITS
Now we present an algorithm that determines the satisfiability of ACC circuits slightly
faster than the 2n runtime of exhaustive search. There are two components in the
algorithm: a nice representation of ACC circuits, and a method for evaluating this rep-
resentation quickly on all of its inputs. This method can be implemented using either
fast rectangular matrix multiplication, a dynamic programming approach, or a divide-
and-conquer recursive approach.

It follows from the work of Yao [Yao 1990], Beigel and Tarui [Beigel and Tarui 1994],
and Allender and Gore [Allender and Gore 1991] that, given any ACC circuit of size s,
one can produce a sO(logc s) size SYM+ circuit in poly(sO(logc s)) time that has equivalent
functionality. (For more background, see the Preliminaries.)

LEMMA 4.1. There is an algorithm and function f : N × N → N such that given an
ACC circuit with MODm gates of depth d and size s, the algorithm outputs an equivalent
SYM+ circuit of sO(logf(d,m) s) size, with ANDs of O(logf(d,m) s) fan-in. The algorithm
takes at most sO(logf(d,m) s) time.

Furthermore, given the number of ANDs in the circuit that evaluate to 1, the symmet-
ric function itself can be evaluated in sO(logf(d,m) s) time.

The function f(d,m) is estimated to be no more thanmO(d). Technically speaking, the
above lemma is not explicitly proved in prior work, but Allender and Gore effectively
show it: they prove that given a uniform ACC circuit (with an efficiently computable
connection language), there is a similarly uniform SYM+ circuit of the appropriate
size. Their proof corresponds to an efficient, deterministic algorithm computing the
transformation, and this algorithm works equally well if it is simply given any ACC
circuit as input (not necessarily uniform). Since the proof of the lemma is essentially
identical to previous proofs already in the literature, it has been placed in Appendix A.

We stress that the transformation from ACC to SYM+ results in a circuit with no
negated variables: just a symmetric function of ANDs of variables. (This property is
used in the dynamic programming algorithm below.) It is a simple exercise to trans-
form a SYM of ANDs of polylog fan-in (with negations on some of the wires coming
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out of input variables) to a SYM of ANDs of variables, while preserving the relevant
parameters of Lemma 4.1. A proof sketch of this transformation is in Appendix B.

4.1. Rapid evaluation of an ACC circuit on all of its inputs
The other component of the ACC satisfiability algorithm is a method for rapidly evalu-
ating a given SYM+ circuit on all of its possible satisfying assignments:

LEMMA 4.2 (EVALUATION LEMMA). There is an algorithm that, given a SYM+ cir-
cuit of size s ≤ 2.1n and n inputs with a symmetric function that can be evaluated in
poly(s) time, runs in (2n + poly(s)) · poly(n) time and prints a 2n-bit vector V which is
the truth table of the function represented by the given circuit. That is, V [i] = 1 iff the
SYM+ circuit outputs 1 on the ith variable assignment.

That is, any SYM+ circuit can be evaluated on all 2n assignments in polynomial
amortized time per assignment. Brute force search would take 2n ·poly(s) time, but the
algorithm manages to use roughly 2n + poly(s) time instead.

Lemma 4.2 can be proved in three different ways; each are appealing for different
reasons. The first proof, using dynamic programming, has the benefit that it can be
completely described with few technical details. For pedagogical purposes it is pre-
ferred. The second proof uses a powerful primitive (fast matrix multiplication) that
is common in theoretical computer science, and it is plausible that the matrix mul-
tiplication approach could be extended further. The third proof uses a simple divide-
and-conquer approach: we can reduce the SYM+ circuit evaluation problem to that of
evaluating a multilinear n-variable polynomial on all 2n assignments over {0, 1}n, and
solve that problem in O(2n · poly(n)) time. (This algorithm is discussed in the author’s
survey article [Williams 2011], and is omitted here.)

Proof 1: Dynamic Programming. The evaluation lemma can be proved using simple
dynamic programming, following a conversation with Andreas Björklund.

PROOF OF LEMMA 4.2. Assume we are given a SYM+ circuit C ′′ with a collection
of s′′ AND gates over some variables {x1, . . . , xn}. Let Gj ⊆ [n] be the set of variable
indices that are input to the jth AND gate. Define a function f : 2[n] → N, where f(S)
equals the number of j = 1, . . . , s′′ such that S = Gj . The function f can be prepared
as a lookup table in O(2n + s′′ · poly(n)) ≤ O(2n) time, by building a table of 2n entries
which are initially zero, and for each of the s′′ AND gates corresponding to a subset S,
we increment the S-th entry in the table.

Now consider the function g(T ) =
∑
S⊆T f(S) defined on all T ⊆ [n]. (Typically, g is

called the zeta transform of f .) Observe that g(T ) equals the number of AND gates set
to 1 on the variable assignment obtained by setting xi = 1 for i ∈ T , and xi = 0 for
i /∈ T . Therefore the table of 2n integers of size O(log s′′) representing the function g is
equivalent to the matrix N in the previous proof. Hence if we can compute g then we
can evaluate C ′′ on all of its possible inputs.

It remains to show how to compute g efficiently. Given f , the function g can be
computed in O(2n · poly(n)) time by a dynamic programming algorithm of Yates from
1937 (cf. [Björklund et al. 2009], Section 2.2). For i = 0, . . . , n, define gi : 2[n] → N by
g0(T ) = f(T ), and

gi(T ) =

{
gi−1(T ) + gi−1(T \ {i}) if i ∈ T,
gi−1(T ) otherwise.

It follows that each gi+1 can be obtained from gi in O(2n · poly(n)) time. Induction
shows that gi(T ) =

∑
S f(S) where the sum is over all S ⊆ T subject to the condition
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that {j ∈ S | j > i} = {j ∈ T | j > i}. When i = n, both of these sets are always empty,
so it follows that gn = g. 2

The above description is suitable for random access machines, but the algorithm can
also be implemented on a multitape Turing machine using standard ideas. (Strictly
speaking, a multitape implementation is not necessary to prove ACC lower bounds,
because Lemma 2.1 shows it suffices to have a fast random-access implementation of
any L ∈ NTIMETM [2n]. However, the extension to multitape may be useful for future
work.)

Proof 2: Matrix multiplication. An alternative way to prove Lemma 4.2 is to use
a fast rectangular matrix multiplication algorithm of Coppersmith, building on prior
work of Schönhage [Schönhage 1981]. This algorithm works in the case where the
“middle” dimension of the matrices is polynomially smaller than the other two. In this
case, matrix multiplication can be done nearly optimally.5

LEMMA 4.3 (COPPERSMITH [COPPERSMITH 1982]). For all sufficiently large N ,
multiplication of an N×N .1 matrix with an N .1×N matrix can be done in O(N2 log2N)
arithmetic operations.

More precisely, Coppersmith shows that there is a constant K such that one can
multiply an N × N matrix with an N × N .1 matrix in K · N2 log2N operations with
a bilinear algorithm, i.e., a depth-3 arithmetic circuit with additions at the top level,
multiplications in the middle, and additions at the bottom level, where each input wire
to an addition gate may also multiply the input by a scalar. From the duality of bilinear
matrix multiplication algorithms [Hopcroft and Musinski 1973], a bilinear algorithm
for multiplying N ×N and N ×M directly implies a bilinear algorithm for multiplying
N ×M and M ×N . Furthermore, Coppersmith’s algorithm is explicit, in that it can be
executed on typical machine model (even a multitape TM) in O(N2 · poly(logN)) time,
on matrices over any field of poly(logN) elements. A discussion of implementation
details for his construction can be found in Appendix C. For us, the relevant corollary
is the following.

COROLLARY 4.4. For all sufficiently large N , two 0-1 matrices of dimensions N ×
N .1 and N .1 ×N can be multiplied over the integers in O(N2 · poly(logN)) time.

We arrive at our second proof of Lemma 4.2.

PROOF OF LEMMA 4.2. Suppose we are given a SYM+ circuit C ′′ of size s′′ ≤ 2.1n.
Partition the inputs of C ′′ into two sets A and B of size at most n′ = (n + 1)/2 each.
Set up two matrices MA and MB of dimensions 2n

′ × s′′ and s′′× 2n
′

(respectively). The
rows of MA are indexed by all possible assignments to the variables in set A, while the
columns of MA are indexed by the AND gates of C ′′. Similarly, the columns of MB are
indexed by variable assignments in B, while the rows of MB are indexed by the ANDs
of C ′′. Define:

MA(i, j) =

{
1 if the ith variable assignment in A doesn’t force the jth AND to be 0,

0 otherwise,

5Curiously, later work on rectangular matrix multiplication from the 90’s [Coppersmith 1997; Huang and
Pan 1998] does not provide tight enough bounds: only N2+ε for all ε > 0, rather than N2 log2N . Note that
a bound of N2 · 2(logN)o(1) already suffices for our application.
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and

MB(j, k) =

{
1 if the kth variable assignment in B doesn’t force the jth AND to be 0,

0 otherwise.

Note the preparation of MA and MB takes at most 2n/2 ·s′′ ·poly(n) ≤ O(2n/2+.2n) time.
Multiply MA and MB , yielding a matrix N . Note that MA(i, j) ·MB(j, k) = 1 iff the

ith assignment in A and the kth assignment in B together set the jth AND of C ′′ to 1.
(Given an assignment to all variables in A and B, the AND is forced to either 1 or 0.)
Hence N(i, k) equals the number of ANDs set to 1 by the ith assignment in A and the
kth assignment in B. Therefore, C ′′ is satisfiable if and only if some entry of N makes
the symmetric function of C ′′ output 1.

Since s′′ ≤ 2.1n
′
, the fast rectangular matrix multiplication of Corollary 4.4 applies,

and the multiplication of MA and MB can be done in 22n′poly(n) time.
To decide whether some entry ofN makes the symmetric function output 1, initialize

a bit vector T of length s′′+1, setting T [i] to be the value of the symmetric function of C ′′
on each i = 0, 1, . . . , s′′. The construction of T takes poly(s′′) time, since the symmetric
function can be evaluated in poly(s′′) time. Then for every pair i, k ∈ {1, . . . 2n′}, if
v[N(i, k)] = 1 then stop and report satisfiable. If every pair has been examined without
stopping, report unsatisfiable. The for-loop over all pairs can be implemented in time
22n′ ·poly(n) ≤ 2n ·poly(n) by standard table lookup or by sorting the distinct elements
of N(i, k). 2

4.2. The final algorithm
Given the evaluation lemma, the ACC satisfiability algorithm is relatively straightfor-
ward.

THEOREM 4.5. For every d > 1 and m > 1 there is an ε ∈ (0, 1) such that satisfiabil-
ity of depth-d ACC circuits with MODm gates, n inputs, and 2n

ε

size can be determined
in 2n−Ω(nδ) time for some δ > ε that depends only on d and m.

PROOF. Let `, ε be parameters to set later. Suppose we are given a depth-d ACC cir-
cuit C of s = 2n

ε

size and n inputs. Make a circuit C ′ with s · 2` size and n − ` inputs
which is obtained by producing 2` copies of C, plugging in a different possible assign-
ment to the first ` inputs of C in each copy, and taking the OR of these copies. Observe
C ′ is a depth-(d+ 1) ACC circuit, and C is satisfiable if and only if C ′ is satisfiable.

Applying the translation from ACC to SYM+ (Lemma 4.1), a circuit C ′′ can be pro-
duced which is equivalent to C ′, where C ′′ consists of a symmetric gate connected to
s′′ ≤ se(`

e loge s) ANDs of variables, for some constant e that depends on the depth d
and modulus m. Producing C ′′ from C ′ takes only sO(`e loge s) steps. When s = 2n

ε

,
s′′ ≤ 2en

ε(`enεe). Set ` = n1/(2e), and observe that s′′ ≤ 2n
2/3

for all sufficiently large n
and sufficiently small ε.

By the evaluation lemma (Lemma 4.2) and the fact that the symmetric function
of C ′′ can be evaluated in poly(s′′) time, C ′′ can be evaluated on all of its possible
assignments in O(2n−` · poly(n)) ≤ 2n−Ω(n1/(2e)) time, hence the satisfiability of C can
be determined within this time.

Two remarks. It is worth pointing out a couple more things about the algorithm.
First, the algorithm can be generalized in multiple ways which may be useful in the
future. Instead of taking an OR of all partial assignments to a small number of vari-
ables in C, one could instead take any constant number of ANDs and ORs of partial
assignments, convert this to a SYM+ circuit, then apply the evaluation lemma. This
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observation shows that any quantified Boolean formula with a constant number of
quantifier blocks and a predicate described by an ACC circuit of subexponential size
can also be solved faster than exhaustive search. Second, note that the algorithm does
not give a faster way to solve satisfiability for the class SYM+ itself, because in the
algorithm we need that the OR of 2` circuits from the class is still a circuit in the class.
Hence we cannot give lower bounds for SYM+ at the present time.

5. ACC LOWER BOUNDS
Combining the results of the previous two sections, non-uniform lower bounds for ACC
can be proved.

REMINDER OF THEOREM 1.2. For every d and m, there is a δ > 0 and a language in
ENP that fails to have non-uniform ACC circuits of depth d and size 2n

δ

with MODm

gates.

PROOF. Theorem 4.5 states that for every d and m there is an ε > 0 so that sat-
isfiability of depth-d ACC circuits with MODm gates, n inputs, and 2O(nε) size can
be solved in 2n−Ω(nδ) time, for some δ > ε. Theorem 3.2 says there is a c > 0 such
that, if ACC CIRCUIT SAT instances with n + c log n variables, depth 2d + O(1),
and at most s = n · 2O(nε) size can be solved in O(2n/nc) time, then ENP does not
have non-uniform ACC circuits of depth d and 2n

ε

size. The lower bound follows, as
2(n+c logn)−Ω((n+c logn)δ) � O(2n/nc) for every c.

It follows that complete problems such as SMALLEST SUCCINCT 3SAT (given a cir-
cuit C and integer i, output the ith bit of the smallest satisfying assignment to the
formula FC encoded by C) require exponential ACC circuits. The ENP lower bound can
be “padded down” in a standard way to prove superpolynomial lower bounds for a class
that is very close to PNP.

COROLLARY 5.1. For every d and m, QuasiPNP = TIME[nlogO(1) n]NP does not have
non-uniform ACC circuits of depth d, MODm gates, and polynomial size.

PROOF. If there were d and m such that TIME[2(logn)c ]NP had such circuits for every
c, then by a padding argument (replacing n with 2n

1/c

) it would follow that ENP has
depth-d size-2O(n1/c) circuits for every c, contradicting Theorem 1.2.

Note it is known that NTIME[nlogO(1) n]NP does not have polynomial size (unrestricted)
circuits [Kannan 1982].

Superpolynomial ACC lower bounds for NEXP are also provable. First we need a theo-
rem established in prior work: if NEXP has (unrestricted) polynomial size circuits, then
every satisfiable formula output by the SUCCINCT 3SAT reduction in Fact 1 has some
satisfying assignment that can be represented with a polynomial size unrestricted cir-
cuit.

More precisely, say that SUCCINCT 3SAT has succinct satisfying assignments if
there is a fixed constant c such that for every language L ∈ NTIME[2n] and every x ∈ L
of length n, there is a circuit Wx of poly(n) size with k ≤ n + c log n inputs such that
the variable assignment zi = W (i) for all i = 1, . . . , 2k is a satisfying assignment for
the formula FCx , where Cx is the circuit obtained by the SUCCINCT 3SAT reduction in
Fact 1. Say that Wx is a succinct satisfying assignment for Cx.

THEOREM 5.2 ([WILLIAMS 2013]). Suppose NEXP has polynomial size circuits.
Then SUCCINCT 3SAT has succinct satisfying assignments.
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Theorem 5.2 is not explicitly proved in the paper, however it follows immediately
from another theorem. Say that NEXP has universal witness circuits of polynomial size
if for every L ∈ NEXP and every correct exponential time verifier for L, there is a
c > 0 such that for every x ∈ L, there is a circuit of size at most |x|c+ c which encodes a
witness for x that is accepted by the verifier. (For more formal definitions, see [Williams
2013].) The following directly implies Theorem 5.2:

THEOREM 5.3 ([IMPAGLIAZZO ET AL. 2002; WILLIAMS 2013]). If NEXP ⊆ P/poly
then every language in NEXP has universal witness circuits of polynomial size.

The proof of Theorem 5.3 follows an argument by Impagliazzo, Kabanets, and
Wigderson [Impagliazzo et al. 2002].

The second ingredient in the lower bound for NEXP is a simple folklore lemma:

LEMMA 5.4 (FOLKLORE). Let C be any circuit class. If P has non-uniform C circuits
of S(n)O(1) size, then there is a c > 0 such that every T (n)-size circuit family (uniform
or not) has an equivalent S(n+O(T (n) log T (n)))c-size circuit family in C.

PROOF. If P has non-uniform S(n)O(1)-size C circuits, then for some c > 0, the
CIRCUIT EVAL problem has S(n)c-size circuits. (Recall the CIRCUIT EVAL problem
is: given an arbitrary Boolean circuit C and input x, evaluate C on x and output the
answer.) Let {Dn(·, ·)} be a S(n)c-size circuit family for this problem. Now let {Cn} be
an arbitrary T (n)-size circuit family. To obtain an equivalent C-circuit family {C ′n} of
S(n + O(T (n) log T (n)))c size, define C ′|x|(x) = Dn1

(C|x|, x) for an appropriate length
n1 ≤ n+O(T (n) log T (n)).

Note if S(n) and T (n) are polynomials, then S(n + O(T (n) log T (n)))c is also polyno-
mial. Also note Lemma 5.4 implies that, if P ⊆ ACC, then there are fixed constants d
and m such that every polynomial size circuit family has equivalent polynomial size
depth-d circuits with AND, OR, NOT, and MODm gates. (Here, d and m are the con-
stants arising in the resulting ACC circuit family for CIRCUIT EVAL.)

REMINDER OF THEOREM 1.1. NTIME[2n] does not have non-uniform ACC circuits of
polynomial size.

PROOF. First, we claim that if NTIME[2n] has polysize ACC circuits, then every lan-
guage in NEXP has polysize ACC circuits. Let us sketch this implication, for complete-
ness. If NTIME[2n] has polysize ACC circuits, then the NEXP-complete problem SUC-
CINCT BOUNDED HALTING has polysize ACC circuits: given a nondeterministic ma-
chine N , string x, and t written in binary, does N(x) have an accepting computation
path of length at most t? The reduction from any L ∈ NEXP to SUCCINCT BOUNDED
HALTING can be expressed with an AC0 circuit of size poly(n, log t). (Take any nonde-
terministic machine N with running time 2n

k

that accepts L. Given an input x, the AC0

circuit outputs the code of N as the first input of the SUCCINCT BOUNDED HALTING

instance, x as the second input, and 2|x|
k

as the third input, written in binary. This only
needs an AC0 circuit that outputs 1 followed by |x|k − 1 zeroes.) Hence every L ∈ NEXP
can be recognized by an ACC circuit family of size n`, for some ` depending on L.

By Lemma 5.4 and Theorem 5.2, it follows that SUCCINCT 3SAT has succinct satis-
fying assignments that are polynomial size ACC circuits. We claim that a contradiction
can be obtained by carefully examining the proof of Theorem 1.2 (the lower bound for
ENP). There, the only place requiring the full assumption “ENP has non-uniform ACC
circuits of size S(n)” is inside the proof of Theorem 3.2. In particular, the assump-
tion is needed in Fact 2, where it is shown that for every satisfiable instance of SUC-
CINCT 3SAT, at least one of its satisfying assignments can be encoded in a size-S(3n)
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ACC circuit. (The only other part of Theorem 3.2 where the assumption is applied is
Lemma 3.4, but there it is only required that P has non-uniform ACC circuits.) But from
the above, we already have that SUCCINCT 3SAT has succinct satisfying assignments
which are ACC circuits.

Hence the ACC CIRCUIT SAT instance D constructed in Theorem 3.2 with the wit-
ness circuit W has size polynomial in its n + c log n inputs. Finally, the Circuit SAT
algorithm of Theorem 4.5 can determine satisfiability of any n + c log n input, nc size
ACC circuit in O(2n−log2 n) time, for every constant c. Therefore unsatisfiability of D
can be determined in O(2n/nc) time for every constant c, and the desired contradiction
follows from the nondeterministic time hierarchy.

It follows that problems complete under AC0 reductions for NEXP such as SUCCINCT
3SAT (given a circuit C, does it encode a satisfiable 3-CNF formula FC?) require su-
perpolynomial size ACC circuits.

5.1. An Extension to “Half-Exponential” Type Lower Bounds
The NEXP lower bounds can be extended a little by studying the proof of Theorem 5.3.
However, the results are a bit ugly, so let us only sketch the arguments. A function
f : N → N is said to be sub-half-exponential if for every k, f(f(nk)k)k ≤ 2n

o(1)

. The
following was conjectured by Russell Impagliazzo (private communication), and can be
proved by augmenting Theorem 5.3 with other known results.

THEOREM 5.5. Let S(n) be any sub-half-exponential function such that S(n) ≥ n
for all n. If NTIME[2n] has S(n) size circuits, then all languages in NEXP have universal
witness circuits of size O(S(S(nc)c)c), for some c depending on the language.

The proof goes along the lines of Theorem 5.3, but with S(n) substituted in place of
polynomials: we assume (a) NEXP does not have universal witness circuits of S(S(nc)c)c

size for any c, (b) NTIME[2n] does have S(n) circuits, and derive a contradiction from
the two. Assumption (a) implies that in time O(2n), one can nondeterministically guess
and verify the truth table of a Boolean function on n bits that requires S(S(nc)c)c size
circuits for every c, for infinitely many inputs. This is enough to partially derandomize
MATIME[S(S(nO(1))O(1))O(1)] for infinitely many input lengths, putting the class inside
of i.o.-NTIME[2n]/n [Impagliazzo et al. 2002] (recall that S(S(nO(1))O(1))O(1) ≤ 2n

o(1)

).
Assumption (b) implies that NEXP has S(nO(1))O(1) circuits, hence TIME[2S(nO(1))O(1)

] ⊆
MATIME[S(S(nO(1))O(1))O(1)] [Babai et al. 1993; Miltersen et al. 1999]. It also follows
from assumption (b) that i.o.-NTIME[2n]/n has O(S(n)) size circuits on infinitely many
input lengths. Putting these containments together, it follows that TIME[2S(n)O(1)

] has
O(S(n)) size circuits on infinitely many input lengths. This is false by direct diagonal-
ization: for all large enough n there is a function f on n variables with circuit complex-
ity greater than S(n)2, and the lexicographically first f can be found in 2O(S(n)3) time
and simulated on a given input.

Combining Theorem 5.5 and Lemma 5.4, we immediately obtain the following im-
plication between ACC circuits for NTIME[2n] and ACC circuits which encode witnesses
for NEXP.

COROLLARY 5.6. If NTIME[2n] has S(n)-size ACC circuits, then every language in
NEXP has universal witness ACC circuits of S(S(S(nc)c)c)c for some c depending on the
language.

One extra application of S comes from Theorem 5.5 which produces universal wit-
ness circuits; the other comes from Lemma 5.4 which converts those circuits to ACC.
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Define f : N→ N to be sub-third-exponential if for every k, f(f(f(nk)k)k)k ≤ 2n
o(1)

. Ex-
amples of sub-third-exponential functions are f(n) = npoly(logn) and f(n) = 22poly(log logn)

.

THEOREM 5.7. NTIME[2n] does not have sub-third-exponential size ACC circuits.

The argument is the same as Theorem 1.1, except we apply Corollary 5.6: if
NTIME[2n] has such circuits, then Corollary 5.6 says that NEXP has universal witness
circuits which are ACC and have subexponential size. This implies that SUCCINCT
3SAT instances have subexponential size ACC circuits that encode their satisfying as-
signments, which is enough to establish the contradiction in Theorem 1.1.

THEOREM 5.8. Let g : N→ N have the property that there is a sub-third-exponential
function f satisfying g(f(n)) ≥ 2n. Then NTIME[g(n)] does not have polynomial size ACC
circuits.

If such circuits did exist, then by padding, NTIME[2n] ⊆ NTIME[g(f(n))] would have
ACC circuits of size f(n)O(1) for some sub-third-exponential f , contradicting Theo-
rem 5.7. (Raising f to a constant power is still a sub-third-exponential function.) It
follows that the polynomial size lower bound can be extended down to grotesque classes

such as NTIME[222
√

log logn

] ( NTIME[2n], since f(n) = 2(logn)log logn

= 22(log logn)2

is sub-

third-exponential, and g(f(n)) ≥ 2n for functions like g(n) = 222
√

log logn

.
Finally, it is also straightforward to extend the lower bounds to polysize ACC circuits

of slightly non-constant depth, as the ACC SAT algorithm still beats exhaustive search
on polynomial size circuits of depth o(log log n) with constant moduli. The details can
be found by studying Theorem 4.5 or by reading the paper [Wang 2011].

6. CONCLUSION
This paper demonstrates that the research program of proving circuit lower bounds via
satisfiability algorithms is a viable one. Further work will surely improve the results.
Three natural next steps are: replace ACC with TC0 circuits in the lower bounds, or
replace NEXP with EXP, or extend the exponential lower bounds from ENP to NEXP.

The results of Section 3 and Lemma 5.4 show that one only has to find a very minor
improvement in algorithms for TC0 satisfiability in order to establish non-uniform TC0

lower bounds for NEXP. The author sees no serious impediment to the existence of
such an algorithm; he can only report that the algorithms tried so far do not work. The
evaluation lemma for SYM+ circuits is key to the ACC SAT algorithm, and it would
be very interesting to find similar lemmas for TC0 or NC1. It is plausible that the
characterization of NC1 as bounded-width branching programs [Barrington 1989] could
be applied to prove an analogous evaluation lemma for Boolean formulas, which would
lead to nontrivial depth lower bounds for NEXP. (Note that permutation branching
programs of width 4 can be simulated in ACC [Barrington and Thérien 1988], while
width 5 captures NC1.) Along the lines of the author’s prior work [Williams 2013], Oded
Goldreich and Or Meir (personal communication) have observed that the consequence
of Theorem 3.2 holds even when we replace C-CIRCUIT SAT with the problem: given
an n-input S(n)-size C-circuit, approximate its probability of acceptance on a uniform
random input to within a 1/6 additive factor. It is widely believed that this problem
can be solved in polynomial time for any reasonable C, so the hypothesis appears easier
to satisfy. Recent work with Santhanam has further weakened the derandomization
hypothesis necessary for circuit lower bounds [Santhanam and Williams 2013].

It should be possible to extend the superpolynomial lower bound for ACC down to the
class QuasiNP = NTIME[nlogO(1) n]. This paper comes fairly close to proving this result.
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The only step missing is a proof of the implication: “if QuasiNP has polynomial-size ACC
circuits, then there are polynomial-size ACC circuits that encode witnesses to QuasiNP
languages.” A couple of lemmas rely only on P having non-uniform ACC circuits, so
they could be potentially applied in proofs of even stronger lower bounds. At any rate,
the prospects for future circuit lower bounds look very promising.
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A. APPENDIX: PROOF OF LEMMA 4.1

REMINDER OF LEMMA 4.1. Let m and d be fixed constants. There is an algorithm and
function f : N × N → N such that given an ACC circuit with MODm gates of depth d

and size s, the algorithm outputs an equivalent SYM+ circuit of sO(logf(d,m) s) size. The
algorithm takes at most sO(logf(d,m) s) time.

Furthermore, given the number of ANDs in the circuit that evaluate to 1, the symmet-
ric function itself can be evaluated in sO(logf(d,m) s) time.

There is absolutely nothing new in the proof below. The algorithm is described as
a series of sO(logf(d,m) s) time transformations, closely following Allender and Gore [Al-
lender and Gore 1991] in the appropriate places. We just need to point out that the
relevant transformations are still efficiently computable when the algorithm is given
an arbitrary input circuit.

PROOF. Let C be the given circuit. Note that by increasing the size of C from s to
sO(d), we may always assume at any point in the algorithm that C is a tree (i.e., all
gates have fan-out 1).

Transformation 1.. Let s be the size of C. We transform C into a probabilistic circuit
C ′ that has poly(log s) probabilistic inputs, such that C ′ has constant depth, sO(1) size,
C ′ has no OR or MODm gates for any composite m, and C ′ has AND gates of fan-in
at most poly(log s). (The circuit C ′ is said to accept an input x if it outputs 1 on the
majority of settings to the probabilistic inputs.)

First, note that one can replace NOT gates by MODm gates (for any m), and one
can replace the AND and OR gates by fixed-depth probabilistic circuits with having
only MODm gates and AND gates of poly(log s) fan-in. In fact, all of the AND and OR
gates can share the same set of poly(log s) probabilistic inputs. This is a standard trick
that goes back to Valiant and Vazirani [Valiant and Vazirani 1986] (also found in an
alternative proof of Toda’s theorem [Kannan et al. 1993]) that can be performed in
sO(1) time.

The MODm gates for composite m are eliminated as follows. Let pe11 · · · p
ek
k be the

factorization of m. Since m divides a number x iff peii divides x for all i, every MODm

gate can be replaced by an AND of MODp
ei
i

gates. (Note the factorization of m can be
computed in at most O(

√
mpoly(logm)) time. Assuming for example that m ≤ s and m

has at most poly(log s) distinct primes, this does not factor into the final running time,
and does not create ANDs of large fan-in.) Observe that pe divides a number x iff for
all i = 0, . . . , e − 1, p divides

(
x
pi

)
. Using this fact, a MODpe gate can be replaced with

a constant-fan-in AND of MODp gates of constant-fan-in ANDs, as follows. A MODpe

gate with t inputs is replaced with an AND of fan-in e, where the inputs are MODp

gates. For all i = 0, . . . , e − 1, the ith MODp gate has fan-in
(
t
pi

)
, one for every subset

of the t inputs that has cardinality pi. For all j = 1, . . . ,
(
t
pi

)
, the ith MODp gate has its

jth input connected to an AND of the pi-subset of t inputs corresponding to integer j.
All of this can be computed within tO(pe) time, and hence sO(1) time.

Transformation 2.. We have a probabilistic circuit C ′ with poly(log s) probabilistic
inputs, constant depth, sO(1) size, no OR or MODm gates for any composite m, and
AND gates of fan-in at most poly(log s). Now we produce a C ′′ with no probabilistic
inputs and all of the above properties except that the output gate is now a MAJORITY
gate (which outputs the majority value of its inputs). This is easy to do, by enumerating
through all possible values of the poly(log s) inputs, making a new copy of C ′ for every
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valuation, and taking the MAJORITY of all these copies. Certainly the new circuit C ′′
has size sO(poly(log s)) and the transformation can be performed in this much time.

Transformation 3.. Now we have a circuit C ′′ has size sO(poly(log s)) size, a MAJORITY
gate at the output, no OR or MODm gates for any composite m, and AND gates of fan-
in at most poly(log s). We produce another constant-depth C ′′′ where all these polylog
fan-in AND gates are at the bottom: no MODp gates are below them in C ′′′.

Take any AND gate g with f = poly(log s) fan-in. Without loss of generality, g
has MODp gates h1, . . . , hf as input for some fixed prime p, by inserting “dummy”
MODp gates in the appropriate places, and all MODp gates have the same fan-in
f ′ ≤ sO(poly(log s)), by inserting “dummy” zeroes in the inputs. We want to show that
this AND of MODp gates can be rewritten as a MODp of ANDs.

Let xij represent the jth input to the MODp gate hi. Allender and Gore [Allender
and Gore 1991] show that this AND of MODp can be rewritten as:

f∧
i=1

u

v
∑
j

xij ≡ 0 mod p

}

~ =

f∑
k=1

(p−1)k−1
∑

{i1,...,ik}⊆[f ]

∑
〈j1,1,...,j1,p−1〉∈[f ′]p−1

...
〈jk,1,...,jk,p−1〉∈[f ′]p−1

k∏
t=1

p−1∏
`=1

xit jit,` mod p,

(4)
where JP K = 1 if the predicate P is true, and 0 otherwise.

The right-hand side can be represented with a MODp gate with fan-in at most

O

(
f∑
k=1

(
f

k

)
(f ′)k(p−1)

)
≤ sO(poly(log s)),

which is connected to ANDs of fan-in at most f · (p − 1). The transformation takes
sO(poly(log s)) time.

Transformation 4.. We have a C ′′′ of sO(poly(log s)) size with AND gates of polylog fan-
in connected to the inputs, a MAJORITY at the output, and MODpi gates in between,
where pi is a prime dividingm = O(1). We now show how to express C ′′′ as a symmetric
function of sO(poly(log s)) AND gates, completing the proof.

To do this, we prove that if you have a circuit D which has a symmetric function
at the output, ANDs at the bottom, and depth-d subcircuits of MODpi ’s in between,
then this can be turned into an equivalent D′ with quasi-polynomial size, a symmetric
function at the top, ANDs at the bottom, and depth-(d−1) subcircuits of MODpi ’s. That
is, the topmost layer of MODpi ’s can be “consumed” by choosing a different symmetric
function.

We may assume without loss of generality that all f gates with input to the sym-
metric function F : [f ] → {0, 1} are MODp gates, for a fixed prime p, and all of the
MODp gates have the same fan-in f ′ (by adding dummy wires and gates where neces-
sary). Let xij be the jth input to the ith MODp gate. Note that the function we want to
simulate is H(x1,1, . . . , xf,f ′) = F (

∑f
i=1 MODp(xi,1, . . . , xi,f ′)). We will replace H with

a symmetric function F ′ of ANDs of polylogarithmic fan-in. Then, applying Transfor-
mation 3 to these ANDs, the resulting circuit can be converted into one which has the
ANDs at the bottom and only a quasi-polynomial increase in size.

Define

G(x1,1, . . . , xf,f ′) := F

(
f∑
i=1

MODp(xi,1, . . . , xi,f ′) mod pk

)
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where k is the smallest integer exceeding logp f . Then pk > f , so it is clear that
G(x1,1, . . . , xf,f ′) = H(x1,1, . . . , xf,f ′) when all xi,j are in {0, 1}. We shall show how to
implement G as a symmetric function F ′ of ANDs.

We use the modulus amplifying polynomials of Beigel and Tarui [Beigel and Tarui
1994]. Define

Pk(x) = (−1)k(x− 1)k

(
k−1∑
i=0

(
k + i− 1

i

)
xi

)
+ 1.

This polynomial has the property that for all x ≥ 0 and p ≥ 1,

x = 0 mod p =⇒ Pk(x) = 0 mod pk,

x = 1 mod p =⇒ Pk(x) = 1 mod pk.

Defining Qk(x) = 1 − Pk(xp−1) and appealing to Fermat’s little theorem, it follows
that Qk(x) = 1 mod pk if p divides x, and is equal to 0 mod pk otherwise. Therefore
Qk(

∑f ′

i=1 yi) = MODp(y1, . . . , yf ′) mod pk, and

G(x1,1, . . . , xf,f ′) = F

 f∑
i=1

Qk

 f ′∑
j=1

xi,j

 mod pk

 .

Note that each Qk(
∑f ′

j=1 xi,j) is a symmetric multivariate polynomial of degree at most
k(p−1). Hence Qk can be expanded into a sum of at most (f ·f ′)O(k(p−1)) ≤ sO(poly(log s))

terms. Each term is a product of poly(log s) variables and a coefficient c that is repre-
sented inO(k log k) ≤ poly(log s) bits and easily computed. The product of variables can
be directly represented by an AND. Multiplication by the coefficient c can be simulated
by taking the sum of c copies of the relevant monomials (ANDs).

Therefore the sum of all f of these sums of monomials can be efficiently expressed
as a single sum modulo pk of sO(poly(log s)) AND gates, where each AND has fan-in
k(p−1) ≤ poly(log s). Finally, we take the symmetric function F ′ to be: compute the sum
v of the outputs of all the AND gates created, then output F (v mod pk). Observe that a
symmetric function composed with a sum modulo pk is still a symmetric function.

In summary, for any constant depth circuit, all the above transformations take
at most quasi-polynomial time, increase the circuit size by only a quasi-polynomial
amount, and the transformations are applied at most a quasi-polynomial number of
times. (Transformation 4 is applied a constant number of times.) Moreover, the sym-
metric function generated at the end of the process takes no more time to evaluate
than the time it takes to build the SYM+ circuit. In more detail, the final symmetric
function has the form

F (v) = MAJORITY((· · · ((v mod pk11 ) mod pk22 ) · · · mod p
kd′
d′ ),

for some d′ that depends on the constant depth d and constant modulus m. Here, MA-
JORITY outputs the high-order bit of its input, and each pkii is at most a constant
factor larger than the size of the final circuit.

B. APPENDIX: TRANSFORMING TO SYM+ WITHOUT NEGATIONS
Suppose we are given a circuit C which is a SYM of K = npoly(log s) ANDs of poly(log s)
fan-in, where the AND gates may have some negated variables as input. Here, we
sketch how to transform C into a circuit C ′ which is a SYM of K ′ = npoly(log s) ANDs of
poly(log s) fan-in, where the ANDs are of variables only (no negations).
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The SYM of ANDs circuit C can be represented as a function g : {0, ...,K} → {0, 1}
composed with a poly(log n)-degree polynomial h : {0, 1}n → {0, 1}. The function g
simulates the SYM gate, and the function h sums up the total number of ANDs which
are true on a given assignment. That is, h is a sum of terms over all possible AND
gates, where each term directly corresponds to the product of the literals in some AND
gate: each negated literal ¬xi is multiplied as (1 − xi), and each positive literal xi is
multiplied as just xi. Hence, a term evaluates to 1 on a 0− 1 assignment if and only if
the corresponding AND outputs true.

We can expand the polynomial h into a sum of products of variables in O(npoly(logn))
time, since h is a sum of npoly(logn) products, each product being a poly(log n)-degree
polynomial. Call this new arithmetic expression h′, which has the form

h′(x1, . . . , xn) =
∑
S⊆[n]

cS ·
∏
i∈S

xi,

where each cS is an integer in the interval [−K ′,K ′], and all but O(K ′) of the cS are
zero (and K ′ = npoly(logn)). Say that a subset S ⊆ [n] is negative if cS < 0, and positive
if cS > 0.

It is easy to represent h′ as a SYM of ANDs of entirely non-negated variables (with
a different SYM function from before). The trick is to mildly expand the domain of the
function g so that it can keep track of the contributions from negative S and positive
S, separately. Let ` be the smallest integer satisfying 2` > K ′. Initially our new circuit
C ′ has no AND gates. For every S which is negative, add −cS AND gates over the
variables in S to the circuit C ′. For every S which is positive, add 2` · cS AND gates
over the variables in S to the circuit C ′. Now consider the sum of all AND gates in C ′

on some assignment (y1, . . . , yn) ∈ {0, 1}n. This sum has the form

AB

in binary, where B is an `-bit string and A − B (construing A and B as non-negative
integers) equals h(y1, . . . , yn). Hence we can redefine the function g to be

g′(AB) = A−B.
This g, combined with the above description of AND gates, represents a SYM of ANDs
of non-negated variables that is equivalent to the original circuit C.

C. APPENDIX: COPPERSMITH’S ALGORITHM
Recall we are studying the following algorithm of Coppersmith:

LEMMA C.1 (COPPERSMITH [COPPERSMITH 1982]). For all sufficiently large N ,
multiplication of an N×N .1 matrix with an N .1×N matrix can be done in O(N2 log2N)
arithmetic operations.

Prima facie, it could be that Coppersmith’s algorithm is non-uniform, making it dif-
ficult to apply. For the sake of completeness, here we verify using standard ideas that
Coppersmith’s algorithm can indeed be implemented to run (even on a multitape TM)
in O(N2 ·poly(logN)) time, on matrices over any field of poly(N) elements. (As we work
with 0-1 matrices A′′ and B′′ in our application, it suffices for us to work over a prime
field of poly(N) elements.) We focus on the implementation details of his algorithm,
without going very far into its correctness. The algorithm relies on some of the older
tools from the matrix multiplication literature. More background on these tools can be
found in the highly readable reference [Pan 1984].

Coppersmith’s algorithm follows a paradigm introduced by Schönhage [Schönhage
1981]. For example, suppose we wish to multiply two matrices A′′ and B′′. First we
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preprocess A′′ and B′′ in some efficient way; in our first example, we devise highly
structured matrices A,A′, B,B′ so that A′′ ·B′′ = A′ ·A·B ·B′. The matrices A and B are
sparse “partial” matrices with particular structure in their nonzeroes, and A′ and B′

are explicit matrices of scalar constants which are independent of A′′ and B′′. Next, we
recursively apply a constant-sized matrix multiplication algorithm to multiply A and
B essentially optimally. (Recall that Strassen’s algorithm has an analogous form; such
algorithms are known to be efficiently implementable on a multitape TM.) Finally,
we postprocess the resulting product C to obtain our desired product A′′ · B′′; in the
first example, this means computing A′ · C · B′. Using the explicit structure of A′ and
B′, these matrix products are also done nearly optimally. Our aim is to verify that
each step of this process can be efficiently computed, for Coppersmith’s full matrix
multiplication algorithm.

Coppersmith begins withA′′ of dimensions 24M/5×
(
M

4M/5

)
24M/5 andB′′ of dimensions(

M
4M/5

)
24M/5 × 2M/5 where M ≈ logN , and obtains an O(5Mpoly(M)) algorithm for

their multiplication. Later, he symmetrizes the construction to get the algorithm for
the desired dimensions. In this first construction, the structured matrices A′ and B′

have dimensions 24M/5 × 2M and 2M × 2M/5, respectively. Coppersmith needs that all
24M/5 × 24M/5 submatrices of A′ and 2M/5 × 2M/5 submatrices of B′ are non-singular.
Following Schönhage, this can be accomplished by picking A′ and B′ to be rectangular
Vandermonde matrices. More precisely, the i, j entry of A′ is (αj)

i−1, where α1, α2, . . .
are distinct elements of the field; B′ is defined analogously. Such matrices have the
additional advantages that they can be succinctly described (with 2M field elements),
and linear algebra with them can be done very efficiently, as described below.

The matrices A and B have dimensions 2M×3M and 3M×2M , respectively. Although
these dimensions are large, the matrices are stored in a sparse representation, and
they have structure in their nonzeroes. In more detail, A has only O(5M ) nonzeroes,
B has only O(4M ) nonzeroes, and there is an optimal algorithm for multiplying 2 ×
3 (with 5 nonzeroes) and 3 × 2 matrices (with 4 nonzeroes) that can be recursively
applied to multiply A and B optimally, in O(5M · poly(M)) operations. (In particular,
the 2× 3 and 3× 2 matrix multiplication is an “approximate” algorithm, which can be
recursively applied to larger matrices using O(M)-degree univariate polynomials over
the field; operations on such polynomials increase the overall time by only a poly(M)

factor.) These A and B are constructed by multiplying each of the
(
M

4M/5

)
24M/5 columns

in A′′ and
(
M

4M/5

)
24M/5 rows in B′′ by inverses of Vandermonde matrices and their

transposes (the inverses of appropriate 24M/5×24M/5 submatrices of A′ and 2M/5×2M/5

submatrices ofB′, respectively). Due to the structure of inverse Vandermonde matrices
and their transposes, n × n matrices of this form can be multiplied with n-vectors in
O(n · poly(log n)) operations with explicit algorithms (for references, cf. [Canny et al.
1989; Bini and Pan 1994]).6 Hence the inverse of a submatrix of A′ can be multiplied
with an arbitrary vector in O(24M/5 · poly(M)) operations. It follows that constructing
A and B takes only O(

(
M

4M/5

)
24M/5 · 24M/5 · poly(M)) time. Since 5M ≈

(
M

4M/5

)
44M/5

(within poly(M) factors), this quantity is O(5M · poly(M)).
By construction (using an efficient correspondence between columns of A′′ and

columns of A′ with 24M/5 nonzeroes), we have A′′ ·B′′ = A′ ·(A·B)·B′. After A and B are

6In general, operations on Vandermonde matrices, their transposes, their inverses, and the transposes of in-
verses can be reduced to fast multipoint computations on univariate polynomials. For example, multiplying
an n×n Vandermonde matrix with a vector is equivalent to evaluating a polynomial (with coefficients given
by the vector) on the n elements that comprise the Vandermonde matrix, which takes O(n logn) operations.
This translates to O(n · poly(logn)) time on multitape TMs over small fields.
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constructed, the constant-sized algorithm for 2 × 3 and 3 × 2 mentioned above can be
applied in the usual recursive way to multiply the sparse A and B in O(5M · poly(M))
time; call this matrix Z. Then using the Vandermonde structure of A′ and B′, the prod-
uct Z ′ = A′ · Z can be done in o(5M · poly(M)) operations, and the final product Z ′ · B′
can be done in o(5M ·poly(M)) operations. All in all, we have an algorithm for multiply-
ing matrices of dimensions 24M/5×

(
M

4M/5

)
24M/5 and

(
M

4M/5

)
24M/5× 2M/5 that is explicit

and uses O(5M · poly(M)) operations. Call this ALGORITHM 1. Observe ALGORITHM 1
also works when the entries of A′′ and B′′ are themselves matrices over the field. (The
running time will surely increase in proportion to the sizes of the underlying matrices,
but the bound on the number of operations on the entries remains the same.)

We can extract more algorithms from the above construction by exploiting the sym-
metries of bilinear algorithms. The underlying 2 × 3 and 3 × 2 matrix multiplication
algorithm with 5 products is a bilinear algorithm, meaning that it can be expressed in
the so-called trilinear form∑

ijk

AikBkjCji + p(x) =

5∑
`=1

(
∑
ij

αijAij) · (
∑
ij

βijBij) · (
∑
ij

γijCij) (5)

where αij , βij , and γij are constant-degree polynomials in x over the field, and p(x)
is a polynomial with constant coefficient 0. Such an algorithm can be converted into
one with no polynomials and minimal extra overhead (as described in Coppersmith’s
paper). Typically one thinks of Aik and Bkj as entries in the input matrices, and Cji as
indeterminates, so the LHS of (5) corresponds to a polynomial whose Cji coefficient is
the ij entry of the matrix product. Note the transpose of the third matrix C corresponds
to the final matrix product. The RHS corresponds to the special matrix multiplication
algorithm with only 5 products. For example, Strassen’s famous 7-multiplication algo-
rithm can be expressed in the form of (5) as follows:∑

i,j,k=0,1

AikBkjCji = (A00 +A11)(B00 +B11)(C00 + C11) (6)

+(A10 +A11)B00(C01 − C11) +A00(B01 −B11)(C10 + C11)

+(A10 −A00)(B00 +B01)C11 + (A00 +A01)B11(C10 − C00)

+A11(B10 −B00)(C00 + C01) + (A01 −A11)(B10 +B11)C00.

The LHS of (5) and (6) represents the trace of the product of three matrices A, B, and C
(where the ij entry of matrix X is Xij). It is well known that every bilinear algorithm
naturally expresses multiple algorithms through this trace representation. Since

tr(ABC) = tr(BCA) = tr(CAB) = tr((ABC)T ) = tr((BCA)T ) = tr((CAB)T ),

if we think of A as a symbolic matrix and consider (5), we obtain a new algorithm
for computing a matrix A when given B and C. Similarly, we get an algorithm for
computing a B when given A and C, and analogous statements hold for computing AT ,
BT , and CT . So the aforementioned algorithm for multiplying a sparse 2×3 and sparse
3× 2 yields several other algorithms. In particular (the case of computing BT from AT

and C) we obtain an algorithm for computing 4 entries in a 3 × 2 matrix which is the
product of a 3× 2 matrix (with 5 nonzeroes) and a 2× 2 matrix.

Using the identity tr(ABC) = tr((BCA)T ) = tr(ATCTBT ), we can treat BT as sym-
bolic and let AT and CT correspond to input matrices in (5). Applying the resulting
algorithm recursively, a very similar preprocessing and postprocessing can be used to
multiply

(
M

4M/5

)
24M/5 × 24M/5 and 24M/5 × 2M/5 matrices using an algorithm that runs

in O(5M · poly(M)) time over a small field.
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In more detail, recall in ALGORITHM 1 the matrices A′′ and B′′ were decomposed to
satisfy A′′ ·B′′ = A′ ·A ·B ·B′. The trace identity tells us
tr(A′′B′′ · C) = tr(A′A ·BB′ · C) = tr(B ·B′CA′ ·A) = tr(AT · (A′)TCT (B′)T ·BT ).

This suggests the following algorithm for multiplying
(
M

4M/5

)
24M/5× 24M/5 and 24M/5×

2M/5 matrices. Given A′′ and C ′′ of the appropriate dimensions, preprocess C ′′ into
the 2M × 2M matrix D = B′ · (C ′′)T · A′, and use A′ as before to preprocess A′′ into
a sparse 3M × 2M matrix AT having

(
M

4M/5

)
44M/5 ≈ 5M nonzeroes. Both steps can be

done efficiently using the Vandermonde structure of A′ and B′. Next, multiply AT and
DT , following the bilinear algorithm for computing a 3 × 2 (with 4 nonzeroes) from a
3× 2 (with 5 nonzeroes) and a 2× 2, in O(5Mpoly(M)) time. The multiplication results
in a 3M × 2M matrix B with O(4M ) nonzeroes, which can be efficiently transformed to
the output matrix using the inverses of submatrices of B′. (This postprocessing step
is analogous to the preprocessing of B′′ in ALGORITHM 1.) Notice we have analogous
preprocessing, multiplication, and postprocessing steps, albeit the steps are “out of
order” from before. (Before, multiplication of the result matrix C by A′ and B′ occurred
in postprocessing; now it occurs in preprocessing, as C is now part of the input.) Call
this construction ALGORITHM 2.

Next, we may “tensorize” the two algorithms in a standard way. This consists of di-
viding the input matrices into blocks, executing ALGORITHM 1 on the blocks them-
selves, and calling ALGORITHM 2 when the product of two blocks is needed. As
both of these algorithms are explicit and efficient, their “tensorization” is also ex-
plicit and efficient. ALGORITHM 1 multiplies 24M/5 ×

(
M

4M/5

)
24M/5 and

(
M

4M/5

)
24M/5 ×

2M/5 matrices, and ALGORITHM 2 multiplies
(
M

4M/5

)
24M/5 × 24M/5 and 24M/5 × 2M/5.

Hence their tensorization multiplies matrices of dimensions
(

24M/5 ·
(
M

4M/5

)
24M/5

)
×((

M
4M/5

)
24M/5 · 24M/5

)
and

((
M

4M/5

)
24M/5 · 24M/5

)
×
(
2M/5 · 2M/5

)
, and the algorithm

runs in O(52M · poly(M)) time. Since
(
M

4M/5

)
44M/5 ≈ 5M , this means we are multi-

plying 5M × 5M and 5M × 22M/5 in O(52Mpoly(M)) time. Call this ALGORITHM 3. This
is the algorithm obtained by Coppersmith.

Finally, using the symmetry of ALGORITHM 3 itself, we can obtain an algorithm
for multiplying a 5M × 22M/5 matrix with a 22M/5 × 5M matrix in O(52Mpoly(M))
time. ALGORITHM 3 is also a bilinear algorithm that can be interpreted as an ef-
ficient way to compute tr(ABC) where A is 5M × 5M , B is 5M × 22M/5, and C is
22M/5 × 5M . In the above version of ALGORITHM 3, we have treated A and B as in-
put, and C as symbolic. Treating B and C as input yields an algorithm for multiply-
ing 5M × 22M/5 and 22M/5 × 5M in O(52Mpoly(M)) time. This algorithm also has a
preprocessing step, a product of partial matrices, then a postprocessing step, which
involve multiplications with Vandermonde-style matrices, their transposes, their in-
verses, and their inverse transposes. The important point is that this transformation
does not fundamentally change the algorithm: just as ALGORITHM 2 is a “reorder-
ing” of ALGORITHM 1, this transformation of ALGORITHM 3 only reorganizes these
efficiently computable operations. It follows the final algorithm will also be efficiently
computable. (Of course, it is possible in principle to describe this algorithm directly
as a preprocessing-multiplication-postprocessing procedure, but it is quite messy.) Let
N = 5M . We have arrived at the following.

COROLLARY C.2. For all sufficiently large N , two 0-1 matrices of dimensions N ×
N .1 and N .1 ×N can be multiplied over the integers in O(N2 · poly(logN)) time.
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