
Communication Complexity With Synchronized Clocks

Russell Impagliazzo
Institute for Advanced Study (Princeton, NJ)

& University of California, San Diego
russell@cs.ucsd.edu

Ryan Williams
IBM Almaden Research Center

San Jose, CA
ryanwill@us.ibm.com

Abstract—We consider two natural extensions of the com-
munication complexity model that are inspired by distributed
computing. In both models, two parties are equipped with
synchronized discrete clocks, and we assume that a bit can be
sent from one party to another in one step of time. Both models
allow implicit communication, by allowing the parties to choose
whether to send a bit during each step. We examine trade-offs
between time (total number of possible time steps elapsed) and
communication (total number of bits actually sent).

In the synchronized bit model, we measure the total number
of bits sent between the two parties (e.g., email). We show that,
in this model, communication costs can differ from the usual
communication complexity by a factor roughly logarithmic in
the number of time steps, and no more than such a factor.

In the synchronized connection model, both parties choose
whether or not to open their end of the communication channel
at each time step. An exchange of bits takes place only when
both ends of the channel are open (e.g., instant messaging), in
which case we say that a connection has occurred. If a party
does not open its end, it does not learn whether the other
party opened its channel. When we restrict the number of time
steps to be polynomial in the input length, and the number of
connections to be polylogarithmic in the input length, the class
of problems solved with this model turns out to be roughly
equivalent to the communication complexity analogue of PNP

([BFS86]). Using our new model, we give what we believe to
be the first lower bounds for this class, separating PNP from
Σ2 ∩Π2 in the communication complexity setting.

Although these models are both quite natural, they have
unexpected power, and lead to a refinement of problem
classifications in communication complexity.

I. INTRODUCTION

Sometimes silence speaks. Not receiving a message can
convey information. Here we consider different interpreta-
tions of this implicit communication in a communication
complexity framework. We assume two parties, Alice and
Bob, with synchronized discrete clocks. At each step of
time, each party chooses to send a bit to the other party, or
not. In such synchronized communication models, we can
distinguish between two resources for a protocol: the total
bits exchanged between parties, and the total number of time
steps available for communication. In the normal communi-
cation complexity model, these are considered identical. In

This material is based on work supported by NSF grants CCF-0832797
and DMS-0835373.

our models, it is natural to ask about trade-offs between the
two.

We consider two versions of synchronized communica-
tion complexity. In the first version of the model, called
the synchronized bit model, we simply count all bits sent
between the two parties. In the second version, called the
synchronized connection model, a transfer of bits between
parties takes place during a time step only when both
parties try to send a bit during that step. (We do not allow
participants to learn whether the other party was attempting
communication if no communication occurs. Allowing such
knowledge would also be natural, e.g., modeling telephone
charge policies where an unanswered telephone ring is
free. However, this would also be sufficiently powerful that
communication would be essentially free; one player could
code their input into the sequence of rings and silences.)
That is, in the synchronized connection model, we count
the number of successful “connections” between the parties.

The two models, although related in spirit, are very
different in nature. We show that the synchronized bit
model is equivalent to normal communication complexity
up to factors logarithmic in the time, but can help by such
logarithmic factors. (In fact, in constant round protocols, it
always saves such a factor.)

The synchronized connection model is interesting in itself,
but also as a tool to characterize the communication classes
corresponding to the polynomial time hierarchy ([BFS86]).
Separating such classes has become more important recently
because such separations imply that the corresponding time
classes cannot be proved equal using algebrizing methods
([AW08], [IKK09]). In particular, these papers give general
techniques for converting any communication complexity
separation into an oracle construction separating the corre-
sponding complexity classes and having additional algebraic
structure. In the case of [AW08], this involves separating
the larger class relative to an oracle from the smaller
class relative to an algebraic extension of the oracle. In
[IKK09], the authors give constructions of separating oracles
O that also satisfy an axiom allowing interpolation of NPO

witnesses to low-degree polynomials. (See Appendix B for a
sketch of how our communication complexity lower bounds
yield such oracle constructions.)

The synchronized connection model turns out to be
roughly equivalent to the deterministic second level of the
communication hierarchy, i.e., the equivalent of PNP for
communication complexity [BFS86]. This connection shows
(via known lower bounds) that the connection model can
be arbitrarily more efficient than standard communication
complexity, even when restricted to linear total time. (For
example, the set disjointness problem is solvable with one
connection in linear time, but requires linear communica-
tion in the standard model.) We show lower bounds in
this model for a variety of explicit functions of the form
T > 2Ω(n/c) where T is the total time the protocol takes,
and c is the maximum number of synchronized connections
allowed. This gives (to the best of our knowledge) the
first lower bound for PNP -style communication complexity:
any protocol that makes q queries to languages with non-
deterministic complexities at most t satisfies qt = Ω(n).
(In particular, either q or t is Ω(

√
n).) We can use the same

method to prove lower bounds for functions in Σcc2 ∩Πcc
2 , the

communication complexity analogues of the second levels
of the polynomial time hierarchy. This shows that there is
no algebrizing technique that collapses the second level of
the hierarchy, or even proves equivalence between the above
classes.

A. Prior Work

Similar models where there is a trade-off between bits and
time, as well as models that take advantage of synchroniza-
tion, have been studied in distributed computing for years,
e.g. [GHS83], [Lam84], [Awe85], [FL87], [Lis93], [Lyn96].
This work is concentrated on studying a large number of
parties, some of whom may be faulty, computing functions
on relatively small inputs and outputs. Another recent and
related model is the pulse communication model [FO05],
[DFO06] from sensor network research, which allows play-
ers to be silent under a clocked model but still focuses on
computing very simple functions with many participants.
That is, in these models, problems scale with respect to the
number of participants, rather than with the size of inputs.

In this paper we consider time/bit tradeoffs in the setting
of communication complexity, where the emphasis is on
few players with large inputs, and the problems scale with
respect to the input size. We have not yet found applications
of the many techniques in distributed computing to our com-
munication complexity models. However we do expect that
further study will lead to interesting connections between
distributed computing and our models.

There are a few brief remarks in the complexity literature
that discuss problems related to our synchronized bit com-
plexity. (For example, see Papadimitriou and Sipser [PS84],
pp.262–263, and Arora and Barak [AB09], pp.271–272.)
However, none of them explore these problems in any depth,
to our knowledge.

Finally, we note that in work of [HIKNV04], the authors
study a time-communication tradeoff where the runtimes of
the computational entities are measured against the amount
of communication necessary to solve problems. Here we do
not bound the computational power of the parties (just as in
classical communication).

II. BACKGROUND

We assume some familiarity with communication com-
plexity. Here we briefly recall some key definitions.

We recall the definition of a protocol tree from two-party
communication complexity, following [KN97]. A protocol
tree for n-bit inputs is a binary tree where each node has
either zero or two children. The nodes correspond to all the
possible “histories” or states of the communication. The two
child edges from a parent node are distinctly labelled by 0
and 1, respectively. A node with no children (a leaf) has a
label 0 or 1. Every inner node v is labelled by x or y, along
with a function fv : {0, 1}n → {0, 1}. The communication
complexity of a protocol tree is its depth. The number of
rounds of a protocol tree is 1 plus the maximum number of
times that the node label changes (from x to y or from y
to x), along any path from the root to a leaf. (Intuitively,
this is the number of times that the speaking party switches
from one player to the other, plus one for the first speaking
party.)

A protocol is executed as follows. When one party is given
an input x ∈ {0, 1}n and the other is given y ∈ {0, 1}n, the
current node v is initialized to be the root node. If v has label
x, then fv(x) is computed (otherwise, fv(y) is computed);
this corresponds to a local computation done by the party
holding x (or the party holding y, respectively). Let b be the
output of fv . The child edge out of v labelled b is followed,
and the protocol continues with the new current node. If the
current node is a leaf, then the final output of the protocol
is the label of the leaf.

A nondeterministic protocol tree is defined similarly,
except that the fv at a node v may not be a function: it
may allow a choice of either the 0 or 1 child edge out of v.
We say that a nondeterministic protocol outputs 1 if there
exists a set of such choices that lead from the root node to
a leaf labelled 1.

Let Π = {Πn} be a communication problem, where each
Πn is a function from {0, 1}n×{0, 1}n to {0, 1}. (We some-
times identify Πn with the subset of {0, 1}n × {0, 1}n on
which the function is 1.) The deterministic communication
complexity of a problem Π is the function f : N→ N such
that f(n) is the minimum depth of any protocol tree that
computes Π on n-bit inputs (i.e., computes Πn). Nondeter-
ministic communication complexity is defined analogously,
but with nondeterministic protocol trees. D(Π) denotes the
deterministic communication complexity of Π as a function

of the input length n, and N(Π) denotes nondeterministic
communication complexity. P cc is the class of communica-
tion problems Π such that D(Π) ≤ poly(log n). The class
NP cc consist of those Π that satisfy N(Π) ≤ poly(log n).
Similar extensions of the protocol concept lend to definitions
of coNP cc, Σcck , and so on [BFS86].

III. THE SYNCHRONIZED BIT MODEL

We begin with the synchronized bit model, where two
communicating parties have the option to send either a bit
or nothing at all during a time step. We model this as
communication with a ternary alphabet {0, 1, ?} where ?
corresponds to don’t send and the parties are only ‘charged’
for the number of bits sent.

A synchronized protocol tree in the synchronized bit
model is defined analogously to protocol trees in the usual
two-party communication model, except that every inner
node may have up to three child edges, distinctly labeled 0,
1, and ?. Define the running time of a synchronized protocol
to be the depth of the tree, and define the synchronized bit
complexity of a protocol to be the maximum number of 0-
edges and 1-edges on any path from the root to the leaf.
By definition, the best possible “running time” for a com-
munication problem is lower bounded by its deterministic
communication complexity. In our framework, we allow the
running time of our protocols to be polynomials in n (where
n is the total length of the inputs), and focus on minimizing
the cost of communication.

It is now appropriate to define complexity classes for
problems computed efficiently in our model.

Definition 3.1: TB[t(n), b(n)] is the class of communi-
cation problems Π with the property that there is a constant
c ≥ 1 such that for all n, there is a synchronized protocol
tree for Πn with running time at most c · t(n) + c, and
synchronized bit complexity at most c · b(n) + c.

Definition 3.2: PB(Π), the polytime bit complexity of Π,
is the set of functions {bk(n)}, where bk(n) is the minimum
synchronized bit complexity of any protocol for Πn with
running time at most nk + k. For a function f : N → N,
we say PB(Π) ≤ O(f(n)) if there is a k such that
bk(n) ≤ O(f(n)). We say that PB(Π) ≥ Ω(f(n)) if for
all k, bk(n) ≥ Ω(f(n)).

Note that the sequence {bk} is non-decreasing in the sense
that for all k and n, bk+1(n) ≤ bk(n).

A. Relationship with Classical Communication

We now show how the synchronized bit model relates
to the classical deterministic model. We first show how to
reduce the message complexity of deterministic communica-
tion protocols using the synchronized bit model, by taking
more time. Most of our proofs have a divide-and-conquer

flavor: we split the communication history into pieces and
perform some simulation on each piece.

Theorem 3.1: Suppose Π can be solved by a determin-
istic protocol with r rounds of messages, and a mes-
sage has length at most `i in the ith round. Then for
all t(n) ≥ 2, there is a synchronized protocol for Π
with bit complexity O (r +

∑r
i=1d`i/(log t)e) and time

O (t · (r +
∑r
i=1d`i/(log t)e)).

Proof: The synchronized protocol works as follows.
During each round, the speaking party divides its `-bit
message into blocks b1, . . . , bk of length log t, where k =
max{1, d`/(log t)e}. For i = 1, . . . , k, a (log t)-bit counter
c (initially set to 0) is incremented for t time steps. While
c 6= bi, the speaking party sends ?. During the step when
c = bi, the speaking party sends 1 if i < k, and 0 if i = k.
(Note the 0 communicates that the end of the message has
been reached, so the other party need not know the length
of a message.) Thus an `-bit message is communicated with
at most k bits, taking at most O(td`/(log t)e) time in each
round.

Hence the O (
∑r
i=1 `i) communication complexity of Π

can be reduced to O(r) synchronized bit complexity.

Corollary 3.1: A b-bit string can be sent from one party
to the other in O(2b/c) time with c bits of communication.

That is, a b-bit string can be sent in 2b time and 1 bit, or
in poly(b) time and O(b/ log b) bits.

Corollary 3.2: For every Π, PB(Π) ≤ O(n/ log n). 1

The fact that every communication problem has
O(n/ log n) polytime bit complexity raises an interesting
question. How does the deterministic communication com-
plexity D(Π) relate to the bit complexity of Π over poly-
nomial time protocols? Is PB(Π) ≤ O(D(Π)/ logD(Π))
for all Π? If the optimal protocol for Π can be implemented
within at most O(D(Π)/ logD(Π)) rounds, then the answer
is yes.

Theorem 3.2: Let Dr(Π) denote the minimum communi-
cation complexity required to solve Π that uses at most r
rounds of messages. Then PB(Π) ≤ O(Dr(Π)/ log n+ r).

Proof: Fix the inputs of the two parties in an optimal
protocol. Suppose that, in round i, the parties send messages
of length ai and bi, respectively. By Corollary 3.1, the two
parties can exchange these messages with a synchronized
protocol using poly(n) steps and O(ai/ log n + bi/ log n)
bits. The running time of this simulation is clearly polyno-
mial in n, and the bit complexity is

∑r
i=1O(ai/ log n +

bi/ log n) ≤ O(Dr(Π)/ log n+ r).

1These input-sending protocols can be easily shown to be optimal with
respect to the bits they send. In Appendix A, we discuss these protocols in
further detail, showing (for example) that an n-bit string can be sent in n
steps and less than n/4 bits.

We can also prove a general upper bound, independent of
the number of rounds:

Theorem 3.3: For every problem Π, PB(Π) ≤
O(D(Π)/ log logn+ 1).

Proof: The idea is to reduce an optimal protocol to an-
other classical protocol that takes only O(D(Π)/ log log n)
rounds, where O(log n) bits are exchanged in each round.
Theorem 3.2 is then applied.

To get the round-efficient protocol, the parties divide
the communication history of a protocol for Π into
D(Π)/(log log n) rounds of log log n bits each. Each round
starts at some node v of the protocol tree, and the goal is
to find (with O(1) synchronized bits) the unique node that
will be reached by the parties after log log n bits of normal
communication. There are log n possible nodes of the tree
that could be reached from v. Assuming communication
alternates between the players, each player (say, Alice and
Bob) can independently compute the subset of

√
log n nodes

SAlice and SBob that are consistent with their own inputs, i.e.,
reachable via paths where their own bits sent are determined
by the protocol on their input. The actual node of the
protocol tree reached at the end of the round will be the
only node in SAlice∩SBob. Each player can describe their set
for the current round as a string of length log n, specifying
which nodes are consistent. They repeat this process until
the simulated protocol halts.

The above is a protocol for Π with round complex-
ity r = D(Π)/ log log n, and communication complexity
D(Π) log n/ log log n. Applying Theorem 3.2, we obtain a
polytime synchronized protocol with O(D(Π)/ log log n+1)
bit complexity.

Complementing the above results, a synchronized bit
protocol can also be simulated with a deterministic com-
munication protocol with some overhead.

Theorem 3.4: Suppose Π ∈ TB[t, b]. Then D(Π) ≤
O(b(1 + log t

b)). Furthermore the protocol achieving this
bound takes O(b) rounds of messages with O(log t

b) length.

Proof: Consider a synchronized protocol for Π satis-
fying the hypothesis. We partition the running time of the
protocol into b blocks of t/b steps each.

Suppose N is the number of bits sent during an execution
of the synchronized protocol on some block (and some fixed
inputs). We shall describe how to simulate this protocol
classically, with only N(2 log(t/b)+2)+2 communication.

First, each party sends a 1 iff they will send a bit during
the current block, assuming that the other party sends only
? (i.e., the other party never sends a bit). Note that at least
one party sends a 1, if at least one party sends a bit during
the block. If neither send a 1, the parties move to simulate
the next block. This takes two bits of communication.

Otherwise, the parties exchange up to 2 log(t/b) + 2 bits
for each bit sent during the block, in the following way.
They maintain a (log t/b)-bit counter encoding the current
timestep in the block (which is initially all-zeros). Assuming
the opposite party does not send a bit during the block (sends
only ?), a party sends either log(t/b) + 1 bits, encoding the
first bit they send in the block and the timestep in which
they send it, or nothing at all if they do not send a bit under
the assumption. (Note they have already indicated whether
or not they would send a bit under this assumption.) The
two parties then update their counter to the smaller of the
two timesteps (if only one party sent a timestep, the counter
is updated to that), and both assume that the party that sent
the smaller timestep sent its bit. The simulation continues
from this point in the protocol: the two parties exchange two
bits to see if either will speak further from that point in the
block, and then exchange timesteps of when they will speak.
This process continues until both parties state that they will
not speak further during the block.

The total communication is at most N(2 log(t/b)+2)+2
to simulate a block of a synchronized bit protocol in which
x bits are exchanged. Since there are b blocks, it follows
that D(Π) ≤ O(b(1 + log t/b)).

Theorem 3.4 immediately implies the following rela-
tionship between classical communication complexity and
polytime bit complexity:

Corollary 3.3: D(Π) ≤ O(PB(Π) log n). That is, if
bk(n) is the synchronized bit complexity of Π over protocols
running in nk+k time, then D(Π) ≤ O(bk(n) log n) for all
constants k.

Summarizing the above results, we have the bounds on
polytime bit complexity:

Theorem 3.5: For all Π,

Ω

(
D(Π)

log n

)
≤ PB(Π) ≤ O

(
D(Π)

log log n

)
.

It would be interesting to determine if the upper bound
on PB(Π) can be improved to O(D(Π)/ log n) in general.
Note that for problems with maximum communication com-
plexity, we can asymptotically determine the polytime bit
complexity.

Corollary 3.4: If D(Π) = Θ(n), then PB(Π) =
Θ(n/ log n).

Proof: The upper bound is Corollary 3.2. For the lower
bound, note that D(Π) ≥ Ω(n) implies that PB(Π) ≥
Ω(n/ log n), by Corollary 3.3.

These relationships also help us easily establish time
hierarchies for bit complexity. For example:

Theorem 3.6: Let f(n) ≤ n1+o(1). Then for all ε > 0,
TB[f(n), n/ log n] (TB[n1+ε, n/ log n].

Proof: By Corollary 3.1, any problem can be
solved in n1+ε time and O(n/(ε log n)) bits of com-
munication. On the other hand, Theorem 3.4 says that
every Π ∈ TB[f(n), n/ log n] satisfies D(Π) ≤
O(f(n) log((f(n) log n)/n)) ≤ O(n/ log n · log(no(1))) ≤
o(n). Hence any problem with D(Π) = Θ(n) is not in
TB[f(n), n/ log n].

It would be interesting to investigate further which con-
ditions are sufficient for such hierarchies.

IV. CONNECTION COMPLEXITY

We now introduce the synchronized connection model for
communication. The distinguishing feature of this model is
that the parties have the ability to choose whether or not to
participate in communication in each step. In particular, in
every step the two parties Alice and Bob choose whether
to open their end of the communication channel, then try
to send a bit. An exchange of bits takes place if and
only if Alice and Bob both open their ends, and they are
only charged in those steps where communication takes
place. That is, the parties are only charged for the number
of successful connections made. This model is natural in
situations where parties do not have a means to alert the
other to open up their channel. Unlike the synchronized
bit model, this model does not easily relate to the usual
communication model. This is because messages from Alice
to Bob depend not only on Alice, but also whether Bob
chooses to communicate.

Here we model synchronized connections with commu-
nication over the alphabet {0, 1, ?}, where ? corresponds
to don’t connect.2 The definition of a connection protocol
tree on n-bits changes slightly from before. Every inner
node v of the tree is now labeled with two functions, one
function fv : {0, 1}n → {0, 1, ?} for Alice and one function
gv : {0, 1}n → {0, 1, ?} for Bob. For every inner node, there
are five child edges, with labels (0, 0), (0, 1), (1, 0), (1, 1),
and ?. Evaluation of a node v has two rules: if fv(HA) or
gv(HB) evaluates to ?, the ?-edge is traversed; otherwise,
the edge labeled (fv(HA), gv(HB)) is traversed. The latter
type of edge is called a connection. Intuitively, if either Alice
or Bob choose not to connect, then no communication takes
place, otherwise their messages are exchanged.

The running time of a connection protocol in this model
is just the depth of the protocol tree. The synchronized
connection complexity of a protocol is defined to be the
maximum number of non-? edges on any path from root
to leaf. (That is, we only count successful connections
between Alice and Bob.) We can define complexity classes
analogously to the synchronized bit complexity model:

2The complexity of protocols will only change by a constant factor when
defined over larger alphabets.

Definition 4.1: TC[t(n), c(n)] is the class of communi-
cation problems Π with the property that there is a constant
k ≥ 1 such that for all n, there is a connection protocol
tree for Πn with running time at most k · t(n) + k, and
synchronized connection complexity at most k · c(n) + k.

Definition 4.2: PC(Π), the polytime connection com-
plexity of Π, is the set of functions {ck(n)}, where ck(n) is
the minimum synchronized connection complexity of any
protocol for Πn with running time at most nk + k. For
a function f : N → N, we say PC(Π) ≤ O(f(n)) if
there is a k such that ck(n) ≤ O(f(n)). We say that
PC(Π) ≥ Ω(f(n)) if for all k, ck(n) ≥ Ω(f(n)).

We remark that synchronized connection complexity at
least as powerful as bit complexity.

Proposition 1: TB[t(n), b(n)] ⊆ TC[t(n), b(n)].

Proof: Consider a protocol with bit complexity b(n)
and running time t(n). Without loss of generality, we can
allocate even-numbered timesteps for Alice to (possibly)
send a bit, and odd-numbered timesteps for Bob, in the
synchronized bit protocol. To get an equivalent connection
protocol, have Bob always send 1 during even-numbered
timesteps, and Alice always send 1 in odd numbered
timesteps. That is, when one party sends a bit during its
allotted timestep, the other party always has its channel open,
so the communication of that bit always takes place.

Corollary 4.1: For all Π, PC(Π) ≤ PB(Π).

A. Relationship with Classical Communication

First we note that connections can be exchanged for more
time, in any communication problem. We start with a useful
definition for (normal) communication protocols. We may
assume (with only a constant factor loss) that Alice speaks
only at odd numbered time steps and Bob speaks at even
numbered ones.

Definition 4.3: Let y ∈ {0, 1}t and let P be a protocol.
We say that y is a plausible communication history for
Alice (Bob) on P when the bits in odd positions of y
(even positions of y) are precisely those that Alice (Bob)
would respond on their input to the protocol P , assuming
the opposite party responded with the bits in even positions
of y (odd positions of y, respectively).

Theorem 4.1: Let Π a communication problem. Then for
every k ≥ 1, Π ∈ TC[D(Π)2k

k , D(Π)
k].

Proof: Start with a normal deterministic communication
protocol P . To get a synchronized protocol with lower con-
nection complexity, Alice and Bob split their communication
into blocks of k bits, and treat a k-bit counter as a possible
communication history for the next k bits exchanged in P .
More precisely, the ith bit of the counter is treated as the
ith bit sent in a communication history.

Alice sends a 1 when the current counter value corre-
sponds to a plausible communication history for her (oth-
erwise she sends ?), and Bob does similarly. Observe that
they both send a 1 in a time step if and only if the counter
value is the actual communication history for the next k
steps. When they receive 1, they proceed to the next block.
The simulation takes O(D(Π)/k) rounds, using 2k steps and
only one connection in each round.

Therefore, we can always save a log n factor in the
polytime connection complexity of a problem. (Recall in
the case of polytime bit complexity, it is an open question
if this is true.) Letting k = log n in Theorem 4.1, we have

Corollary 4.2: For all Π, PC(Π) ≤ O(D(Π)/ log n).

This already suggests that the connection model is
stronger than the synchronized bit model. However, we
can say much more. Define the communication problems
EQ = {(x, x)|x ∈ {0, 1}n} and GT = {(x, y) | x ≤
y, x, y ∈ {0, 1}n}, where ≤ is the lexicographical order on
strings. It is well known that EQ and GT both have Θ(n)
deterministic communication complexity, and hence they
have Ω(n/ log n) polytime bit complexity. In contrast, both
problems have very low polytime connection complexity.

Theorem 4.2: EQ and GT can be solved in 2n steps and
at most one connection.

Proof: We start with a protocol for EQ. Let A and B
be the n-bit strings of Alice and Bob. In even-numbered
steps of the form 2i, Alice sends 1 if A[i] = 0, and does
not speak otherwise (sends ?); Bob sends 1 if B[i] = 1
(and ? otherwise). In steps of the form 2i + 1, Alice
sends 1 if A[i] = 1 (otherwise ?) and Bob sends 1 if
B[i] = 0 (otherwise ?). If a connection ever takes place,
the two parties can immediately conclude that their strings
are unequal. If no connection has occurred after 2n steps,
the two parties conclude that their strings are equal.

Note this protocol can also be used to determine if the
first player’s string is less than the second player’s, when
the two strings are treated as integers.

Let DISJn = {(x, y) | ∨ni=1 (xi ∧ yi) = 0}. DISJn
is well known to be coNP cc-complete [BFS86] under
rectangular reductions (the definition of which will not be
necessary for this paper), and DISJn requires Ω(n) commu-
nication, even in the randomized public-coin model [KN97].
On the other hand, it is easy to see that DISJn has low
polytime connection complexity.

Proposition 2: DISJn can be solved in n steps and at
most one connection.

Proof: A party sends 1 when the counter i is such that
the ith bit of their input is 1, and does not speak otherwise
(sends ?). If both parties send 1 at the same time, then the
strings are not disjoint. Otherwise after n steps the players
conclude that the strings are disjoint.

By extending this simple observation, we can show a
tight correspondence between the synchronized connection
model and the communication analogue of PNP . Namely,
problems solvable efficiently with a few connections are
essentially those that can be solved with a few queries to
an NP cc-complete set (e.g., the complement of DISJn).

Let us first set up the query model for communication.
Define a Ψ-oracle protocol tree as a protocol tree with an
additional type of query node. At a query node, the outputs
of arbitrary functions on their respective inputs by Alice
and Bob are posed as queries to an oracle for Ψ, and the
binary response from the oracle dictates whether the 0-edge
or 1-edge is followed in the tree. In other words, a query q
consists of a pair qA, qB , where qA can depend arbitrarily
on Alice’s input and the previous communication and query
answers, and likewise qB can be an arbitrary function of
Bob’s input, the previous communication and previous query
answers. The two parties then both learn in one step whether
(qA, qB) ∈ Ψ.

Let Π be a communication problem. Recall N(Π) is
the nondeterministic communication complexity of Π. Since
the proof of Theorem 4.1 performs an exhaustive search
on plausible communication histories, it also works for
nondeterministic protocols, in the following sense:

Corollary 4.3: For all Π, Π ∈ TC[2N(Π), 1].

By a straightforward reduction, we can generalize this
corollary to protocols that make multiple queries to a prob-
lem with low nondeterministic complexity.

Theorem 4.3: If Π has a Ψ-oracle protocol with com-
munication complexity c making at most q queries, then
Π ∈ TC[c+ q · 2N(Ψ), q + c].

Proof: Let t = N(Ψ). Consider a Ψ-oracle protocol
tree for Π where each path from root to leaf has at most q
query nodes. All non-query nodes can be directly simulated.
We replace each query with a protocol described as follows.

Note the nondeterministic protocol tree P for Ψ on query
v has at most 2t leaves. Both parties can compute their
part of the query, and thus determine the subset of such
leaves consistent with their part of the input to Ψ and
corresponding to accepting runs of the protocol. The goal
is then to determine whether these sets intersect, since such
an intersecting leaf would be an accepting run of the non-
deterministic protocol on the pair of inputs (and vice versa).

To do this, they simulate the above set disjointness pro-
tocol, with linear time and O(1) connections. Since the sets
are from a universe of size 2t, this takes 2t time and constant
connections. This is done q times to simulate the entire
protocol, so the new protocol has total time O(c + q · 2t)
and connection complexity O(c+ q).

Next we show a converse simulation: any problem solv-
able with q connections in T time can be solved with approx-

imately q queries to the complement of set disjointness (or
any other NP cc-complete problem), where each query has
non-deterministic communication complexity logarithmic in
T (e.g., is a set disjointness problem of size about T).

Theorem 4.4: If Π ∈ TC[T, q] then Π has a DISJn-
oracle protocol that makes O(q log(T/q)) queries of length
n = O(T/q) (and hence each query has non-deterministic
complexity t ≤ log(T/q) +O(1)).

Proof: Let P be a synchronized protocol for Π. In
our DISJn-oracle protocol, there are O(q) phases. In each
phase, Alice and Bob either simulate T/q steps of P ,
simulate P until the next time a connection occurs, or
simulate one bit of communication in P . Note that each of
these events (a connection occurring, or T/q steps passing)
can happen at most q times, so the number of phases of the
simulation is at most 3q.

In each phase, the parties have already simulated P up to
a certain time step i. If a connection is active at time i, the
parties simulate one bit of communication and go to time
i + 1, and the phase ends. (They can simulate one bit of
communication with a trivial set intersection query on a set
of size 1.)

Otherwise, the two parties individually simulate P up to
time i+ T/q, assuming that there are no connections made
and so no messages received. The parties each individually
compute the set of times j in this interval that they would
attempt to start a connection. The next connection to occur,
if there is one, is the first time that both attempt to connect,
i.e., the least element in the intersection of these two sets
(since, until a connection is made, the assumption that no
messages are received is correct.) The parties then ask one
set disjointness query about these two sets. If the answer
is that the sets are disjoint , they both individually emulate
the protocol up to time i + T/q. If not, they use binary
search to find the first such time j that a connection is
formed. This binary search involves making up to log(T/q)
set disjointness queries of size at most T/q.

If they reach the last time step, they return the answer in
the simulated protocol. The simulation involves O(q) phases,
and each phase involves at most log(T/q)+1 set disjointness
queries of size at most T/q, which is as claimed.

We can now show how polytime connection complexity
relates to PNP in classical communication. First we define
the class of problems with low polytime connection com-
plexity.

Definition 4.4:

P conn :=
⋃
k>0

TC[nk, logk n].

That is, P conn contains those problems that can be solved
in poly(n) time and poly(log n) connections.

Define PNP
cc

to be the class of problems solvable with
poly(log n) communication complexity with poly(log n)
queries to DISJ instances of size at most 2poly(logn).
(DISJ could be equivalently replaced with any other prob-
lem complete for coNP cc.) PNP

cc

is exactly the problems
solvable in quasi-polynomial time and poly logarithmic
connections, and hence is slightly larger to but related to
the class P conn. The following characterization of PNP

cc

is immediate from Theorems 4.3 and 4.4.

Corollary 4.4: PNP
cc

=
⋃
c,d>0 TC[2logc n, logd n].

Therefore, we can use the synchronized connection model
to prove lower bounds on PNP

cc

. (In retrospect, it is also
easy to rephrase the proofs directly in terms of queries
to DISJ , but thinking in terms of connections helped us
discover it.)

B. Lower Bounds for Connection Complexity

We now turn to proving lower bounds in the synchro-
nized connection model. To start, we present a simplified
form for protocols in the model, which facilitates analysis.
Essentially, the connection model can be seen as a classical
model where an intermediate channel between the parties
performs an AND of the two bits being communicated, and
only charges for communication when this AND is 1. A
related notion is that of energy complexity [UDM06], [UT07]
for circuits: the energy complexity is the maximum number
of gates that output 1 over all inputs to the circuit.

Definition 4.5: An AND-protocol is a (synchronized)
communication protocol that works as follows. In every step,
two players each send a bit to a third party. The third party
computes the AND of the bits, and sends the result to both
players. The AND-complexity of a protocol is the maximum
number of times the AND evaluates to 1, over all possible
conversations in the protocol.

So in an AND-protocol, the parties are only charged for
1’s output by the third party. We can think of protocol
trees in this model in the following way: each inner node
v is labeled with the AND of two functions fv(x) and
gv(y). Each node has two children, a 1-child and 0-child. A
protocol that has connection complexity k is such that every
path from root to leaf has at most k 1-edges. A protocol
taking time t has depth at most t. Note in a protocol with
connection complexity k and time t, there are at most

(
t
k

)
+1

leaves. We say that a node evaluates to a 0-1 value on input
(x, y) if fv(x) ∧ gv(y) equals that value.

Theorem 4.5: For every protocol with connection com-
plexity c and running time t, there is an AND-protocol
computing the same function with AND-complexity c and
running time at most 5t.

Proof: Start with a protocol P with c connections, and
t time. Our AND-protocol will simulate a single step of P

within at most five steps. In each phase of the AND-protocol,
Alice and Bob increment a counter ranging from 1, . . . , 4,
and interpret the counter value as a pair (σA, σB) ∈ {0, 1}2.

Suppose we are at node v in P at the start of a phase. Alice
(resp. Bob) sends 1 if the party would send σA (resp. σB)
when in node v of P , otherwise the party sends 0. If both
send a 1 simultaneously, the simulation of P continues along
the (σA, σB)-edge out of v, the phase ends, and the counter
resets. If the counter reaches 5, the simulation continues
along the ?-edge out of v. It is clear that this AND-protocol
simulates P faithfully and increases the running time by a
factor of 5.

The upshot of Theorem 4.5 is that we may assume without
loss of generality that Alice and Bob only send bits (and
never ?). They only see the AND of what both parties sent
in a timestep, and they are only charged for communication
when both parties send 1 at the same time.

A complication in analyzing AND protocols is that the set
{(x, y)} corresponding to a leaf is no longer a combinatorial
rectangle (as is the case with typical communication com-
plexity). For example, consider a protocol tree with one inner
node labeled with functions f and g such that f(x1) = 0,
f(x2) = 1, g(y1) = 1, g(y2) = 0. Then (x1, y1) and (x2, y2)
both lead to the 0-leaf, but (x2, y1) leads to the 1-leaf.
Nevertheless, we can still prove lower bounds by arguing
that protocols with low time and connection complexity only
work for problems with large monochromatic rectangles.
This is interesting, since it is clear that the connection
model can efficiently solve some problems having many
monochromatic rectangles, such as EQ. (However, observe
that EQ does have a very large monochromatic rectangle.)

We say that the area of a combinatorial rectangle is the
product of its two dimensions.

Theorem 4.6: For any problem Π with connection com-
plexity c in time t, the matrix for Πn contains a
monochromatic combinatorial rectangle with area at least(

4c2

(c+t)2

)c (
1− 2c

t+c

)t−c
· 22n ≥

(
c

2e1/2t

)2c · 22n.

Proof: Consider an AND-protocol for Π. At each time
step, we will maintain a large combinatorial rectangle of
inputs, all of which reach the current node we are visiting
in the protocol tree. When we reach a leaf, this rectangle
must be monochromatic. Initially, we begin at the root and
the current rectangle is the complete 2n × 2n matrix for Π.

Let K be a parameter. Suppose we have reached a node v
in the tree and the current rectangle is R. Let p (respectively,
q) be the fraction of x-inputs (respectively, y-inputs) in R
where a 1 is sent in node v. If pq ≥ 1/K2, then set

R← {(x, y) ∈ R | v evaluates to 1 on (x, y)},

and set the current node to be the 1-child of v. Note R is still
a combinatorial rectangle, and R is at least a 1/K2 fraction

of its original area. If pq < 1/K2, let r = max{1− p, 1−
q} ≥ 1 − 1/K. Without loss of generality, suppose p ≥ q.
Then set

R← {(x, y) ∈ R | v evaluates to 0 on x}

and set the current node to be the 0-child of v. (If q < p, the
same operation is done with y in place of x.) Now the new
rectangle R is at least a 1 − 1/K fraction in area. Follow
a path down the tree in this manner, until a leaf is reached.
Observe that for a path where c connections were made and
t time was taken, the size of R at the leaf is at least(

1

K2

)c(
1− 1

K

)t−c
· 22n,

and R is monochromatic. To determine K to maximize this
value, we differentiate f(K) =

(
1
K2

)c (
1− 1

K

)t−c
and find

that f(K) achieves its maximum when K = c+t
2c .

For our applications, it will suffice (and be very conve-
nient) to give a simplified form. Recall that when x ≤ 1/2,
we have 1 − x ≥ e−2x. Let K = 2t

c . Since t ≥ c, we
have 1

K ≤
1
2 and therefore (1 − 1/K) ≥ e−2/K , so the

lower bound on area simplifies to
(
c2

4t2

)c
e−c/t · 22n ≥(

c
2e1/2t

)2c · 22n.

Corollary 4.5: Any communication problem in PNP
cc

must have a monochromatic rectangle with area at least
22n

2(log n)c for some constant c ≥ 1.

The following is immediate from the proof of Theo-
rem 4.6 and the reduction from PNP

cc

protocols to syn-
chronized connection protocols (Theorem 4.3).

Theorem 4.7: Any function computable with q queries to
a language with non-deterministic communication complex-
ity m has a monochromatic combinatorial rectangle S1×S2

where |Si| ≥ 2n−O(qm) for i = 1, 2.

The Inner Product function has been studied thoroughly
in Communication Complexity. Define the problem IP =
{(x, y) |

∑n
i=1 xiyi = 0 mod 2}.

Corollary 4.6: IP requires Ω(c · 2n/(2c)) time in any
protocol with at most c connections.

Proof: The problem does not have a monochromatic
rectangle of area greater than 2n ([KN97],p.12). By Theo-
rem 4.6, we have 2n >

(
c

2e1/2t

)2c · 22n, or(
2e1/2t

c

)2c

> 2n.

Taking the 2c-th root and multiplying by c, the condition
becomes t ≥ Ω(c · 2n/(2c)).

Corollary 4.7: PC(IP) ≥ Ω(n/ log n) and IP /∈
PNP

cc

.

The above lower bound is nearly tight: we can send an
entire n-bit string in O(c2n/c) time with only c connections,

hence IP requires Θ(n/ log n) connections in polytime. It is
interesting that in the classical deterministic and randomized
models, there is little difference in the complexities of
Inner Product and Set Disjointness, as both require Ω(n)
bits, while in our (deterministic) model there is a major
difference. This reflects the fact that Inner Product is ⊕P cc-
complete while Set Disjointness is only coNP cc-complete.

Finally, we give a lower bound for a communication
problem known to be in Σcc2 ∩ Πcc

2 . Define Block-Equality
to be the set

{(x, y) ∈ {0, 1}`
2

×{0, 1}`
2

| ∃ i ∈ [`],∀ j ∈ [`], xij = yij}

where zij is the (i · ` + j)th bit of z. Block-Equality
is obviously in Σcc2 ; Lam and Ruzzo [LR89] proved that
Block-Equality is also in Πcc

2 . In fact, their protocol uses
random hash functions in the universal quantifier, and so
the containment can be improved to AMcc.

Theorem 4.8: The Block-Equality problem requires
Ω
(

c
n1/(4c) · 2

√
n/(2c)

)
time for any protocol with at most

c connection complexity.

Proof: We argue that every 1-rectangle and 0-rectangle
in the matrix for Block-Equality is small. Suppose we
pick a uniform random pair of strings from {0, 1}`2 . The
probability that two `-bit strings are equal is 1/2`, and so
the probability that one of the ` blocks has two equal strings
is at most `/2`. So there are at most `2`2

2` ones in the entire
matrix, and hence any 1-rectangle has area at most this.

Now consider any 0-rectangle, A × B. For i = 1, . . . , `,
let Ai be the set of all `-bit strings appearing in the ith block
of the `2-bit strings of A. Let Bi be defined similarly. Note
Ai ∩ Bi = ∅, else there is a 1-entry in A × B. Therefore
|Ai|+ |Bi| ≤ 2`, hence |Ai||Bi| ≤ 1

4 · 2
2`. The measure of

A×B can be bounded by

µ(A×B) ≤
∏̀
i=1

µ(Ai) · µ(Bi) ≤
(

1

4

)`
,

so the largest 0-rectangle has area at most 2`2

4` . Therefore by
Theorem 4.6, any t time and c connection protocol satisfies

`22`2

2`
≥
(c

2e1/2t

)2c

· 22`2 .

That is,
(

2e1/2t
c

)2c

≥ 2`

` . By an identical argument as

Corollary 4.6, we have t ≥ Ω(c · 2`/(2c)/`1/(2c)), and
Block-Equality requires Ω(c · 2

√
n/(2c)/n1/(4c)) time with

c connections. In the polynomial time case, Ω(
√
n/ log n)

connections are required.

The below theorem summarizes the known and new rela-
tionships between PNP

cc

and other communication classes.

Theorem 4.9: (i) PNP
cc (Σcc2 ∩Πcc

2

(ii) PNP
cc 6⊆MAcc and AM cc 6⊆ PNP cc

(iii) ⊕P cc 6⊆ PNP cc

and PNP
cc 6⊆ ⊕P cc

Proof: Theorem 4.8 implies (i). The first part of
(ii) follows from an Ω(

√
n) lower bound in MAcc for

DISJn [Kla03], and the second part follows from Theo-
rem 4.8 and the fact that Block Equality is in AM cc. Finally,
(iii) follows from Theorem 4.6 and an Ω(n) lower bound for
DISJn in ⊕P cc [DKMW04].

V. DISCUSSION

To our knowledge, all extensions to the original model
of communication complexity have arisen from granting
various extended modes of computation from complexity
theory to the parties in a communication protocol. This
has led to a very productive and quite comprehensive view
of how these different modes of computation affect what
can be computed with efficient communication. In this
paper, we took a different approach towards extensions of
communication complexity. We added new types of actions
to the parties in a communication protocol: the ability to be
silent, and the ability to opt out of communication, for some
duration of time. Since these abilities are often available in
practice, it is of great interest to measure and understand
their power. Our approach can be recast in the traditional
language of this subject, and in fact it tells us something
new about the communication version of PNP .

There is much opportunity for future work in both
synchronized bit complexity and synchronized connection
complexity. We do not know if the upper bound on PB(Π)
can be improved to O(D(Π)/ log n + 1) in general. Also,
it would be interesting to determine the polytime bit com-
plexity of relations. For instance, if Alice and Bob each
have a subset of {1, . . . , n}, can the median of all their
numbers be computed in polytime and O(1) bits? (Note this
can be solved with O(log n) deterministic communication,
cf. [KN97].)

As another potential direction, we believe that by sup-
plementing the traditional communication model with other
intuitive axioms, it should be possible to recover other
communication classes and in turn, understand them better.
For example, it is still an open problem if Σcc2 = Πcc

2 .
Our paper suggests an approach to this problem: define
natural communication models that capture the two classes
in some way, and use the intuition for that model to attack
the problem.

Finally, it would be also interesting to develop a theory
of randomized synchronous communication. For example,
do problems with low randomized connection complexity
(and time efficiency) correspond to BPPNP ? Preliminary
results suggest that this is the case. Does randomness help
significantly in the polytime bit complexity of problems?

Acknowledgements: We thank the program committee,
Brendan Juba, and Oded Goldreich for helpful comments.

REFERENCES

[AW08] S. Aaronson and A. Wigderson. Algebrization: A New
Barrier in Complexity Theory. In Proc. STOC, 731–740,
2008.

[AB09] S. Arora and B. Barak. Communication complexity: a
modern approach. Cambridge, 2009.

[Awe85] B. Awerbuch. Complexity of network synchronization.
JACM 32(4):804–823, 1985.

[BFS86] L. Babai, P. Frankl, and J. Simon. Complexity classes
in communication complexity theory (preliminary version).
Proc. FOCS, 337–347, 1986.

[DKMW04] C. Damm, M. Krause, C. Meinel, and S. Waack.
On relations between counting communication complexity
classes. JCSS 69:259–280, 2004.

[DFO06] A.K. Dhulipala, C. Fragouli, and A. Orlitsky. Silence
Based Communication for Sensor Networks. Proc. IEEE
International Symposium on Information Theory (ISIT), 212–
216, 2006.

[FO05] C. Fragouli and A. Orlitsky. Silence is golden and time
is money. Allerton Annual Conference on Communications,
Control, and Computing, 2005.

[FL87] G. N. Frederickson and N. A. Lynch. Electing a Leader in
a Synchronous Ring. JACM 34(1):98–115, 1987.

[GHS83] R. G. Gallager, P. A. Humblet, and P. M. Spira. A
distributed algorithm for minimum-weight spanning trees.
ACM TOPLAS 5(1), 66–77, 1983.

[HIKNV04] P. Harsha, Y. Ishai, J. Kilian, K. Nissim, and S.
Venkatesh. Communication Versus Computation. Proceedings
of ICALP, 745–756, 2004.

[IKK09] R. Impagliazzo, V. Kabanets, and A. Kolokolova. An
Axiomatic Approach to Algebrization. To appear in STOC,
2009.

[Kla03] H. Klauck. Rectangle Size Bounds and Threshold Covers
in Communication Complexity. Prc. IEEE Conf. on Compu-
tational Complexity, 118–134, 2003.

[KN97] E. Kushilevitz and N. Nisan. Communication Complexity.
Cambridge University Press, 1997.

[LR89] T. W. Lam and W. L. Ruzzo. Results on Communication
Complexity Classes. Proc. Structure in Complexity Theory
Conference, 1989.

[Lam84] L. Lamport, Using time instead of timeout for fault-
tolerant distributed systems. ACM Trans. Prog. Lang. and
Syst. 6(2):254–280, 1984.

[Lis93] B. Liskov. Practical uses of synchronized clocks in dis-
tributed systems. Distributed Computing 6(4):211–219, 1993.

[Lyn96] N. Lynch. Distributed Algorithms. Morgan Kauffman,
1996.

[PS84] C. H. Papadimitriou and M. Sipser. Communication Com-
plexity. J. Comput. Syst. Sci. 28(2):260–269, 1984.

[UDM06] K. Uchizawa, R. J. Douglas, and Wolfgang Maass.
Energy Complexity and Entropy of Threshold Circuits. In
Proc. ICALP Vol.1, 631–642, 2006.

[UT07] K. Uchizawa and E. Takimoto. An Exponential Lower
Bound on the Size of Constant-Depth Threshold Circuits
with Small Energy Complexity. In Proc. IEEE Conf. on
Computational Complexity, 169–178, 2007.

APPENDIX

A. Bit-Optimal Methods for Sending Strings

To give more intuition for the synchronized bit model,
we further study the problem of sending one’s entire input
in this appendix. In the usual communication setting, this
problem has no nontrivial solution.

Proposition 3: One party can send its n-bit string to the
other in 2 + log3(2)n ≈ 0.631n time and at most 2 + 2

3 ·
log3(2)n ≈ 0.421n bits.

Proof: One party encodes their n-bit string in ternary
(using log3(2)n symbols), and notes the ternary symbol σ
that occurs most often in the encoding. The party sends two
bits indicating σ, then sends the string over the alphabet
{0, 1, ?}, letting ? denote σ. The number of bits sent is at
most 2/3 · log3(2)n.

Although it is very simple, the above proposition is
essentially optimal with respect to time. There are E(δ, t) =(
t
δt

)
2(1−δ)t ways to send (1− δ)t bits in t time. Minimizing

t subject to E(δ, t) ≥ 2n can be done by maximizing the
exponent of E(·, t) with respect to δ. By calculus we find
that δ∗ = 1/3 maximizes the exponent and E(1/3, t) =
2t/ log3(2). Hence we can choose t = log3(2)n ≈ 0.631n and
send (1− δ∗) · log3(2)n ≈ 0.421n bits, which are precisely
the bounds of part (ii) up to 2 bits.

It is natural to ask how many bits suffice to send an
arbitrary string in n steps, since this is the number of steps
required in the original communication model. In this case
we can save many more bits of communication. Let H be
the binary entropy function, i.e., H(p) = p log2(1/p)+(1−
p) log2(1/(1− p)).

Theorem A.1: Let δ > 0 satisfy δ +H(δ) ≥ 1. An n-bit
string can be transmitted in n steps and at most δn bits.

Note we can choose δ ≈ 0.228, so it suffices to send less
than n/4 bits.

Proof: Choose δ + H(δ) = 1. Divide a (δ + H(δ))n
bit string z in z = xy, where |x| = δn and |y| = H(δ)n,
respectively. A standard combinatorial fact is that 2H(δ)n ≥(
n
δn

)
. Hence there is a bijection f from strings y of length

H(δ)n to sets S ⊆ {1, . . . , n} with |S| = δn. Now run the
protocol:

Let j = 1, Sy = f(y).
For time steps i = 1, ..., n,

If i ∈ Sy , then send the jth bit of x and increment j.
else send nothing.

Since |Sy| = δn the protocol clearly sends all the bits of
x. The set Sy can be determined by recording those steps
in which a bit was sent. Therefore y can be determined by
computing f−1(Sy).

The above is the best possible for sending an n-bit string
in n time steps. Intuitively, if no more than b bits are sent
and t time is taken, then there are at most K =

∑b
i=1

(
t
i

)
2i

possible distinct communications from one party to the other.
To send every n-bit string successfully, we must have K ≥
2n. But if t = n then we must have b ≥ 0.227n in order for
K ≥ 2n.

Proposition 4: An n-bit string can be sent in polynomial
time with only O(n/ log n) bits of communication.

Proposition 4 is optimal for similar reasons. Consider a
one-way communication that takes nk time and at most L
bits are passed from one party to the other. There are K =∑L
i=0

(
nk

i

)
2L distinct communications, and we need K ≥

2n so that each n-bit string to correspond to a different
communication. By standard estimates,

2n ≤ K ≤ (enk/L)L2L = (2e)L2L log(nk/L).

We need L ≥ Ω(n/ log n).

B. Applications to Algebrization

Here we give a summary of implications of our commu-
nication lower bounds to the impossibility of collapsing the
second level of the polynomial time hierarchy by “algebriz-
ing means”.

There are two ways to model what it means to say that
a complexity collapse algebrizes. In [AW08], the authors
say that C1 ⊆ C2 algebrizes if for any oracle A and
any low-degree extension Ã, CA1 ⊆ CÂ2 . In [IKK09], the
authors give an axiom called ACT (algebraic checkability
theorem) and define a complexity statement as algebrizing
if any oracle that satisfies ACT also satisfies the statement.
Both approaches prove non-algebrization of statements using
communication complexity.

For oracles A0 and A1, let A0 + A1 = {(b, x) | b ∈
{0, 1}, x ∈ {0, 1}∗, x ∈ Ab} be the oracle where questions
can be asked to either A0 or A1. It is shown in [AW08]
that there is a construction of a low degree extension
Â of A0 + A1 for any A0 and A1 where, if one party
in a communication protocol knows the subset of of A0

restricted to strings of length up to n, and the other knows a
similar subset of A1, they can compute whether a string
y of length n is in Â with polynomial in n (which is
polylogarithmic in their input sizes) communication. They

use this to convert communication complexity separations
into oracle constructions showing the containments do not
algebrize.

Similary, [IKK09] show that there is a function B(A) that
converts an oracle into a stronger oracle so that, for every
A0 and A1, B(A0) + B(A1) satisfies ACT . Since B(A0)
can be computed from just A0 and B(A1) from just A1,
a query to B(A0) + B(A1) can be simulated by a bit of
communication between the two parties described above.

Let BEA0,A1 be the following language equivalent to the
Block Equality problem for oracles A0 and A1:

{1n | ∃z ∈ {0, 1}n,∀w ∈ {0, 1}n

[(z, w) ∈ A0 if and only if (z, w) ∈ A1]}.

For any A1, A2, BEA1,A2 ∈ ΣA1+A2
2 , and so is also in ΣÂ2

and Σ
B(A1)+B(A2)
2 . Let l = 2n.

Fix any oracle machine MO running in polynomial time
using NPO queries, and let n be large enough that the run-
ning time of M on input 1n, and the nondeterministic time
taken by any query, are at most l1/8 = 2n/8. If we cannot
find A0, A1 ⊆ {0, 1}2n so that M Â fails to compute whether
1n ∈ BEA0,A1 we can use M as an efficient communication
protocol to decide the Block-Equality problem on inputs of
length l2 = 22n as follows. Every time M makes a query to
L ∈ NP Â, the two parties make the following query which
can be expressed as a set intersection query: is there a non-
deterministic path of the machine for L and communication
patterns for each query along that path to Â so that the path
accepts and is consistent with both A0 and A1?

This contradicts the lower bound of Theorem 4.8. So we
can diagonalize against all such machines, for larger input
sizes. Thus, the statement Σ2 ⊆ PNP does not algebrize in
the [AW08] sense.

Similarly, we can find n and A0 and A1 so that the
oracle machine MB(A0)+B(A1) fails on 1n. By diagonalizing
against all such machines with different values of n, we
construct an oracle of the form B(A0) + B(A1) so that
PNP

B(A0)+B(A1) (Σ
B(A0)+B(A1)
2 . Since B(A0) + B(A1)

satisfies ACT , this shows that the same containment does
not algebrize in the [IKK09] sense.

