Better Time-Space Lower Bounds for SAT and
Related Problems

Ryan Williams
Carnegie Mellon University

June 12, 2005

0-0

Introduction

Few super-linear time lower bounds known for natural problems in NP

(Existing ones generally use a restricted computational model)

Introduction

Few super-linear time lower bounds known for natural problems in NP

(Existing ones generally use a restricted computational model)

We will show time lower bounds for the SAT problem, on

random-access machines using no) space

These lower bounds carry over to MAX-SAT, Hamilton Path, Vertex Cover,
etc. [Raz and Van Melkebeek]

l-a

Introduction

Few super-linear time lower bounds known for natural problems in NP

(Existing ones generally use a restricted computational model)

We will show time lower bounds for the SAT problem, on

random-access machines using no) space

These lower bounds carry over to MAX-SAT, Hamilton Path, Vertex Cover,

etc. [Raz and Van Melkebeek]

Previous time lower bounds for SAT (assuming ne) space):

e w(n) [Kannan 84]

1-b

Introduction

Few super-linear time lower bounds known for natural problems in NP

(Existing ones generally use a restricted computational model)

We will show time lower bounds for the SAT problem, on

random-access machines using no) space

These lower bounds carry over to MAX-SAT, Hamilton Path, Vertex Cover,

etc. [Raz and Van Melkebeek]

Previous time lower bounds for SAT (assuming ne) space):

e w(n) [Kannan 84]

e Q(n'"e) forsome e > 0 [Fortnow 97]

1-c

Introduction

Few super-linear time lower bounds known for natural problems in NP

(Existing ones generally use a restricted computational model)

We will show time lower bounds for the SAT problem, on

random-access machines using no) space

These lower bounds carry over to MAX-SAT, Hamilton Path, Vertex Cover,

etc. [Raz and Van Melkebeek]

Previous time lower bounds for SAT (assuming ne) space):

e w(n) [Kannan 84]
e Q(n'"e) forsome e > 0 [Fortnow 97]

o Q(n\/i_g) foralle > 0 [Lipton and Viglas 99]

1-d

Introduction

Few super-linear time lower bounds known for natural problems in NP

(Existing ones generally use a restricted computational model)

We will show time lower bounds for the SAT problem, on

random-access machines using no) space

These lower bounds carry over to MAX-SAT, Hamilton Path, Vertex Cover,

etc. [Raz and Van Melkebeek]
Previous time lower bounds for SAT (assuming ne) space):
e w(n) [Kannan 84]
Q(n'*e) for some € > 0 [Fortnow 97]
Q(nY2 <) foralle > 0 [Lipton and Viglas 99]
2

Q(n?¢) where ¢ = 1.618... [Fortnow and Van Melkebeek 00]

l-e

Our Main Result

\/5 and ¢ are nice constants...

The constant of our work will be (larger, but) not-so-nice.

Our Main Result

\/5 and ¢ are nice constants...

The constant of our work will be (larger, but) not-so-nice.

Theorem: For all k, SAT requires n'* time (infinitely often) on a
random-access machine using ne) workspace, where T is the
positive solutionin (1, 2) to

—2 -3

AT, —1) =k (324252 (k=1)2).

2-a

Our Main Result

\/5 and ¢ are nice constants...

The constant of our work will be (larger, but) not-so-nice.

Theorem: For all k, SAT requires n'* time (infinitely often) on a
random-access machine using ne) workspace, where T is the
positive solutionin (1, 2) to

—2 -3

AT, —1) =k (324252 (k=1)2).

Define Y := lim;_ ... Y.. Then: n¥ ¢ lower bound.

2-b

Our Main Result

\/5 and ¢ are nice constants...

The constant of our work will be (larger, but) not-so-nice.

Theorem: For all k, SAT requires n'* time (infinitely often) on a
random-access machine using ne) workspace, where T is the
positive solutionin (1, 2) to

2—k—|—3 —2 -3

AT, —1) =k (324252 (k=1)2).

Define Y := lim;_ ... Y.. Then: n¥ ¢ lower bound.
(Note: the T stands for ‘Ugly’)

2-C

Our Main Result

\/5 and ¢ are nice constants...

The constant of our work will be (larger, but) not-so-nice.

Theorem: For all k, SAT requires n'* time (infinitely often) on a
random-access machine using ne) workspace, where T is the
positive solutionin (1, 2) to

—2 -3

AT, —1) =k (324252 (k=1)2).

Define Y := lim;_ ... Y.. Then: n¥ ¢ lower bound.
(Note: the T stands for ‘Ugly’)

However, | ~ \/§ + ﬁ, so we'll present the result with \/§

2-d

Points About The Method We Use

e The theorem says for any sufficiently restricted machine, there is an

Infinite set of SAT instances it cannot solve correctly
We will not construct such a set of instances for every machine!

Proof is by contradiction: it would be absurd, if such a machine could

solve SAT almost everywhere

e Ours and the above cited methods use artificial computational
models (alternating machines) to prove lower bounds for explicit

problems in a realistic model

Outline
e Preliminaries and Proof Strategy

e A Speed-Up Theorem

(small-space computations can be accelerated using alternation)

e A Slow-Down Lemma
(NTIME can be efficiently simulated implies >, T IME can be efficiently
simulated with some slow-down)

e Lipton and Viglas’ nv?2 Lower Bound

(the starting point for our approach)

e Our Inductive Argument

(how to derive a better bound from Lipton-Viglas)

® From n1‘66 to n1'732

(a subtle argument that squeezes more from the induction)

4

Preliminaries: Two possibly obscure complexity classes

e DTISP[t, s] is deterministic time ¢ and space s, simultaneously
(Note DTISP[t, s| # DTIME[t] N SPACE[s]| in general)

We will be looking at DTISP[n*, n°M] for k > 1.

e NQL := J.-o NTIME[n(logn)¢] = NTIME[n - poly(log n)]

The NQL stands for “nondeterministic quasi-linear time”

Preliminaries: SAT Facts

Satisfiability (SAT) is not only NP-complete, but also:

Theorem: [Cook 85, Gurevich and Shelah 89, Tourlakis 00]

SAT is NQL-complete, under reductions doable in O(n - poly(log n)) time
and O(log n) space (simultaneously). Moreover the 7th bit of the
reduction can be computed in O(poly(logn)) time.

Let D be closed under quasi-linear time, logspace reductions.

Preliminaries: SAT Facts

Satisfiability (SAT) is not only NP-complete, but also:

Theorem: [Cook 85, Gurevich and Shelah 89, Tourlakis 00]

SAT is NQL-complete, under reductions doable in O(n - poly(log n)) time
and O(log n) space (simultaneously). Moreover the 7th bit of the
reduction can be computed in O(poly(logn)) time.

Let D be closed under quasi-linear time, logspace reductions.
Corollary: If NTIME[n] € D, then SAT ¢ D.

If one can show NTIME|n] is not contained in some D, then one can

name an explicit problem (SAT) notin D (modulo polylog factors)

6-a

Preliminaries: Some Hierarchy Theorems

For reasonable t(n) > n,

NTIME[t] £ coNTIME[o(t)].
Furthermore, for integers £ > 1,

>, TIME[t] £ N, TIME[o(t)].

So, there’s a tight time hierarchy within levels of the polyn omial

hierarchy.

Proof Strategy

Show if SAT has a sufficiently good algorithm, then one contradicts a

hierarchy theorem.

Proof Strategy

Show if SAT has a sufficiently good algorithm, then one contradicts a

hierarchy theorem.

Strategy of Prior work:

1. Show that DTISP[n¢, n°!)] can be “sped-up” when simulated on an

alternating machine

2. Show that NTIME[n] C DTISP[n¢, n°")] allows those alternations

to be “removed” without much “slow-down”

3. Contradict a hierarchy theorem for small ¢

8-a

Proof Strategy

Show if SAT has a sufficiently good algorithm, then one contradicts a

hierarchy theorem.

Strategy of Prior work:

1. Show that DTISP[n¢, n°!)] can be “sped-up” when simulated on an

alternating machine

2. Show that NTIME[n] C DTISP[n¢, n°")] allows those alternations

to be “removed” without much “slow-down”

3. Contradict a hierarchy theorem for small ¢

Our proof will use the 2_;. time versus ['1;, time hierarchy, for all £

8-b

Outline
e Preliminaries
e A Speed-Up Theorem
e A Slow-Down Lemma
e Lipton and Viglas’ n\/i Lower Bound
e Our Inductive Argument

e From nt% to nt-732

A Speed-Up Theorem
(Trading Time for Alternations)

Let:
e t(n) = n° for rational ¢ > 1,
o 5(n) be n°Y and
e £ > 2 be an integer.

Theorem: [Fortnow and Van Melkebeek 00] [Kannan 83]
DTISP[t, s] C L, TIME[tY/k+oM] N N, TIME[t!/k+eo)],

10

A Speed-Up Theorem
(Trading Time for Alternations)

Let:

e t(n) = n° for rational ¢ > 1,
o 5(n) be n°Y and

e £ > 2 be an integer.

Theorem: [Fortnow and Van Melkebeek 00] [Kannan 83]
DTISP[t, s] C L, TIME[tY/k+oM] N N, TIME[t!/k+eo)],

That is, for any machine M running in time ¢ and using small workspace,
there is an alternating machine M’ that makes k alternations and takes
roughly +/ time.

Moreover, M’ can start in either an existential or a universal state

10-a

Proof of the speed-up theorem

Let « be input, M be the small space machine to simulate

Goal: Write a clever sentence in first-order logic with £ (alternating)

quantifiers that is equivalent to M () accepting

11

Proof of the speed-up theorem

Let « be input, M be the small space machine to simulate

Goal: Write a clever sentence in first-order logic with £ (alternating)

quantifiers that is equivalent to M () accepting

Let C’j denote configuration of M(a:) after 7th step: bit string encoding
head positions, workspace contents, finite control

By space assumption on M, |C;| € ne)

11-a

Proof of the speed-up theorem

Let « be input, M be the small space machine to simulate

Goal: Write a clever sentence in first-order logic with £ (alternating)

quantifiers that is equivalent to M () accepting

Let C’j denote configuration of M(a:) after 7th step: bit string encoding
head positions, workspace contents, finite control

By space assumption on M, |C;| € n°)

M (z) accepts iff there is a sequence C, Cs, . . ., C; where
e (] is the “initial” configuration,
e (U, isin “accept” state

e For all ¢, C; leads to C;; 1 in one step of M on input .

11-b

Proof of speed-up theorem: The case £k = 2
M (x) accepts iff

(3Cy, C g, Cous - -, C)
(Vie{l,....,Vt})

[C;../7 leads to C(i+1)-\/1_5 in \/t steps, C is initial, C} is accepting]

12

Proof of speed-up theorem: The case £k = 2
M (z) accepts iff

(3Cy, C g, Cous - -, C)
(Vie{l,....,Vt})

[C;../7 leads to C(z'+1)-\/i in \/t steps, C is initial, C} is accepting]

Runtime on an alternating machine:
e Jtakes O(v/t - s) = /271 time to write down the C;'s
e V takes O(logt) time to write down i
o [---]takes O(+/t - 5) deterministic time to check

Two alternations, square root speedup

12-a

Proof of speed-up theorem: The k£ = 3 case, first attempt

For k = 2, we had

(3Cy, C sy, Cyus - - -, Co)
(Vi€ {0,1,....v1})

[C;../; leads to C’(Z-Jrl),\/z—e in v/t steps, C initial, C; accepting]

13

Proof of speed-up theorem: The k£ = 3 case, first attempt

For k = 2, we had

(3Cy, C sy, Cyus - - -, Co)
(Vi€ {0,1,....v1})

[C;../; leads to C’(Z-Jrl)_\/z—e in v/t steps, C initial, C; accepting]

Observation: The [---|isan O(+/t) time and small-space

computation, thus we can speed it up by a square root as well

13-a

Proof of speed-up theorem: The k& = 3 case, first attempt

For k = 2, we had

(3Cy, C s, OM,)
(Vi€ {0,1,...,vt})

[C;../; leads to C (i41)-E N V't steps, C initial, C; accepting]

Observation: The [---|isan O(+/t) time and small-space

computation, thus we can speed it up by a square root as well
Straightforward way of doing this leads to:

(3Cy, Chzys, Cyyoss, ..., C) (Vi € {0,1,...,t/3})

(30 42/34-41/3 Cz' t2/342.41/35 « « - C(z—l—l t2/3)(\v/j S {1 \/_})

[Cip2/34 j.41/3 l€@ads 10 Cyyz8 (54 qy.41/8 INT 1/3 steps, C’O initial, C}

accepting]

13-b

k = 2 has one “stage”

G,

C

k = 2 has one “stage”

k = 3 has two “stages”

G,

C-

Cooo. oo

C

Proof of speed-up theorem: Not quite enough for k=3

The k = 3 sentence we gave uses four quantifiers, for only ¢'/2 time

(we want only three gquantifier blocks)

15

Proof of speed-up theorem: Not quite enough for k=3

The k = 3 sentence we gave uses four quantifiers, for only ¢'/2 time
(we want only three gquantifier blocks)

ldea: Take advantage of the computation’s determinism — only one
possible configuration at any step

15-a

Proof of speed-up theorem: Not quite enough for k=3

The k = 3 sentence we gave uses four quantifiers, for only ¢'/2 time

(we want only three gquantifier blocks)

ldea: Take advantage of the computation’s determinism — only one

possible configuration at any step
The acceptance condition for M () can be complemented:
M (x) accepts iff

(VCo,C sz, Cy gy - - - » Cy rejecting)
(3ie{l,... Vi)
[C;../; does notlead to (. 7, /7 in V1 steps]

“For all configuration sequences (', . .., C; where (C} is rejecting, there

exists a configuration C; that does not lead to C; 1"

15-b

The &k = 3 case
We can therefore rewrite the k = 3 case, from
(3Cy, Ci2y5, Cyp2s3, . . ., Cy accepting) (Vi € {0,1,...,t/3))

(EICi-t2/3—|—t1/37 Ci-t2/3—|—2-t1/37 c ooy C(i+1).t2/3)(\7j E {1, c ey \/E})
[Ci.i2/3 j.41/3 leads to Cj jaya (4 1y.41/8 in t1/3 steps]

to:

16

The k = 3 case
We can therefore rewrite the k = 3 case, from
(3Cy, Ci2y5, Cyp2s3, . . ., Cy accepting) (Vi € {0,1,...,t/3))
(3C;2s50173, Crgzrs sz, - - Crignyges) (Vi € {1, V/1})

[C i12/3 4 5.41/3 leads to C 42/3 4 (j41)¢1/3 in t1/3 steps]

to:

EICO) Ct2/37 02~t2/37 R Ct accepting)(W < {07 17 SR 7t1/3})

37 € {1,...,vt})

/
(VC A2/3 441735+ - -y C(i—l—l)-t2/3—t1/37 C(i+1)-t2/3 7é C(i—l—l)-t2/3)
[C i t2/345.41/3 does not lead to C 42/3 4 (j41)-t1/3 in t1/3 steps]

16-a

The k£ = 3 case

We can therefore rewrite the k = 3 case, from
(3Cy, Ci2y5, Cyp2s3, . . ., Cy accepting) (Vi € {0,1,...,t/3))
(ElC +2/3 4 41/3, Cz #2/349.41/3, . - . C(z+1 t2/3)(\7j c {1, Cee \/%})

[C i12/3 4 5.41/3 leads to C 42/3 4 (j41)¢1/3 in t1/3 steps]
to:

EICO) Ct2/37 02~t2/37 R Ct accepting)(W < {07 17 SR 7t1/3})

37 € {1,...,vt})

/
(VC A2/3 441735+ - -y C(i—l—l)-t2/3—t1/37 C(i+1)-t2/3 7é C(i—l—l)-t2/3)
[C i t2/345.41/3 does not lead to C 42/3 4 (j41)-t1/3 in t1/3 steps]

Voila! Three quantifier blocks. This is in ZgTIME[t1/3+O(1)]
(and similarly one can show it's in [1; TIME[t!/3+0(1)])

16-b

This can be generalized...

For arbitrary k£ > 3, one simply guesses (existentially or universally) t1/k
configurations at each stage

17

This can be generalized...

For arbitrary k£ > 3, one simply guesses (existentially or universally) t1/k
configurations at each stage

e |nverting quantifiers means the number of alternations only increases

by one for every stage

(AV)(Vd) (AY)---

17-a

This can be generalized...

For arbitrary k£ > 3, one simply guesses (existentially or universally) t1/k
configurations at each stage

e |nverting quantifiers means the number of alternations only increases

by one for every stage

(AV)(Vd) (AY)---

e There are k — 1 stages of guessing t'/* configurations, then ¢!/* time
to deterministically verify configurations

17-b

Outline
e Preliminaries
e A Speed-Up Theorem
e A Slow-Down Lemma
e Lipton and Viglas’ n\/ﬁ Lower Bound
e Our Inductive Argument

e From nt% to nt-732

18

A Slow-Down Lemma

(Trading Alternations For Time)

Main Idea: The assumption NTIME|n] C DTIME[n¢| allows one to

remove alternations from a computation, with a small time increase

19

A Slow-Down Lemma

(Trading Alternations For Time)

Main Idea: The assumption NTIME|n] C DTIME[n¢| allows one to

remove alternations from a computation, with a small time increase

Let t(n) > n be a polynomial, ¢ > 1.

Lemma: If NTIME[n| C DTIME|n¢| then for all & > 1,
X TIME[t] C X TIME[tC].

We prove the following, which will be very useful in our final proof.

19-a

A Slow-Down Lemma

(Trading Alternations For Time)

Main Idea: The assumption NTIME|n] C DTIME[n¢| allows one to

remove alternations from a computation, with a small time increase

Let t(n) > n be a polynomial, ¢ > 1.

Lemma: If NTIME[n| C DTIME|n¢| then for all & > 1,
X TIME[t] C X TIME[tC].

We prove the following, which will be very useful in our final proof.

Theorem: If X TIME[n| C M, TIME[n¢| then
Y i TIME[t] C L, TIME[tC].

19-b

A Slow-Down Lemma: Proof

Assume 2 TIME|n] C M, TIME[n¢|

Let M be a 2 ; machine running in time ¢

20

A Slow-Down Lemma: Proof

Assume 2 TIME|n] C M, TIME[n¢|

Let M be a 2 ; machine running in time ¢

Recall M (x) can be characterized by a first-order sentence:

(Jx1, |z1] < t(|x)))(Vag, |zo| < t(|2])) - - -
(@2 [as1] < WD) [P@ 21,22, . Thsn)

where P “runs” in time t(|x|)

20-a

A Slow-Down Lemma: Proof

Assume 2 TIME|n] C M, TIME[n¢|

Let M be a 2 ; machine running in time ¢

Recall M (x) can be characterized by a first-order sentence:

(Jxq, |21 < t(|z]))(Vas, |zo| < t(|x))) - - -
(Qz k] < H2)[P(a, 01,2, ., esn)

where P “runs” in time t(|x|)

Important Point: input to P is of O((|x])) length, so P actually runs in
linear time with respect to the length of its input

20-b

A Slow-Down Lemma: Proof

Assume 2 TIME([n] C M, TIME[n|

efine R(z,1) = (Y, ma] < H(la]))
(Q2 k] < 1(]a])

[P<$, L1, L2, .. ,$k+1)]

21

A Slow-Down Lemma: Proof

Assume 2 TIME([n] C M, TIME[n|

Define Rz, m1) = (Vaz,|wa] < H(al) -
(Qz, |zr4a| < t(]2]))

[P(Qf, L1, L2, .. 73:]41—{-1)]

So M (x) accepts iff (Jz1, |x1| < t(|x])) R(x, x1)

21-a

A Slow-Down Lemma: Proof

Assume 2 TIME([n] C M, TIME[n|

Define R(z,z1) = (Vg |za| < t(]2]))---
(Qz, |zr4a| < t(]2]))

[P(Qf, L1, L2, .. 73:]41—{-1)]

So M (x) accepts iff (Jz1, |x1| < t(|x])) R(x, x1)

e By definition, R recognized by a 1 machine in time t(|z]),
i.e. linear time (|z1| = t(|x])).

21-b

A Slow-Down Lemma: Proof

Assume 2 TIME([n] C M, TIME[n|

Define Rz, m1) = (Vaz,|wa] < H(al) -
(Qz, |zr4a| < t(]2]))

[P, @1, %2, ., Tpey1)]

So M (x) accepts iff (Jz1, |x1| < t(|x])) R(x, x1)

e By definition, R recognized by a 1, machine in time ¢(|z|),
i.e. linear time (|x1| = t(|z])).

e By assumption, there is R’ equivalent to R that starts with an 3, has k

quantifier blocks, is in ¢(|z|)¢ time

21-c

A Slow-Down Lemma: Proof

Assume 2 TIME([n] C M, TIME[n|

Define Rz, m1) = (Vaz,|wa] < H(al) -
(Qz, |zr4a| < t(]2]))

[P, @1, %2, ., Tpey1)]

So M (x) accepts iff (Jz1, |x1| < t(|x])) R(x, x1)

e By definition, R recognized by a 1, machine in time ¢(|z|),
i.e. linear time (|x1| = t(|z])).

e By assumption, there is R’ equivalent to R that starts with an 3, has k

quantifier blocks, is in ¢(|z|)¢ time
M (x) accepts iff [(Jx1, |z1| < t(|z])) R (2, x1)] «— i TIME[t¢]

21-d

Outline
e Preliminaries
e A Speed-Up Theorem
e A Slow-Down Lemma
e Lipton and Viglas’ n\/ﬁ Lower Bound
e Our Inductive Argument

e From nt% to nt-732

22

Lipton and Viglas’ n\@ Lower Bound (Rephrased)

Lemma: If NTIME[n] C DTISP[n¢, n°M)] for some ¢ > 1, then for all
polynomials t(n) > n, NTIME[t] € DTISP[t¢, to1)]

Theorem: NTIME|n| g DTlSP[nﬂ_S,no(l)]

23

Lipton and Viglas’ n\/§ Lower Bound (Rephrased)

Lemma: If NTIME[n] C DTISP[n¢, n°M)] for some ¢ > 1, then for all
polynomials t(n) > n, NTIME[t] € DTISP[t¢, to1)]

Theorem: NTIME|[n| g DTlSP[n\@_s,no(l)]

Proof: | Assume NTIME|n| C DTISP[nC,nO(l)]

(We will find a ¢ that implies a contradiction)

23-a

Lipton and Viglas’ n\@ Lower Bound (Rephrased)

Lemma: If NTIME[n] C DTISP[n¢, n°M)] for some ¢ > 1, then for all
polynomials t(n) > n, NTIME[t] € DTISP[t¢, to1)]

Theorem: NTIME|[n| Q DTlSP[n\@_s,nO(l)]

Proof: | Assume NTIME|n| C DTISP[nC,nO(l)]

(We will find a ¢ that implies a contradiction)

e > , TIME[n| C NTIME|[n¢], by slow-down theorem

23-b

Lipton and Viglas’ n\@ Lower Bound (Rephrased)

Lemma: If NTIME[n] C DTISP[n¢, n°M)] for some ¢ > 1, then for all
polynomials t(n) > n, NTIME[t] € DTISP[t¢, to1)]

Theorem: NTIME|[n| gz DTlSP[n\@_E,nO(l)]

Proof: | Assume NTIME|n| C DTISP[nC,nO(l)]

(We will find a ¢ that implies a contradiction)

e > , TIME[n| C NTIME|[n¢], by slow-down theorem

e NTIME[n¢] C DTISP[n¢", n°M], by assumption and padding

23-c

Lipton and Viglas’ n\@ Lower Bound (Rephrased)

Lemma: If NTIME[n] C DTISP[n¢, n°M)] for some ¢ > 1, then for all
polynomials t(n) > n, NTIME[t] € DTISP[t¢, to1)]

Theorem: NTIME|[n| Q DTlSP[n\@_E,nO(l)]

Proof: | Assume NTIME|n| C DTISP[nC,nO(l)]

(We will find a ¢ that implies a contradiction)
e > , TIME[n| C NTIME|[n¢], by slow-down theorem
e NTIME[n¢] C DTISP[n¢", n°M], by assumption and padding

e DTISP[n®", n°M] C M, TIME[n®" /2], by speed-up theorem, so

c < v/ 2 contradicts the hierarchy theorem []

23-d

Outline
e Preliminaries
e A Speed-Up Theorem
e A Slow-Down Lemma
e Lipton and Viglas’ nv?2 Lower Bound
e Our Inductive Argument

e From nt% to nt-732

24

Viewing Lipton-Viglas as a Lemma

(The Base Case for Our Induction)

We deliberately presented Lipton-Viglas’s result differently from the
original argument. In this way, we get

Lemma: NTIME[n] C DTISP[n¢, n°M] implies
>, TIME[n] C M, TIME[n® /2.

Note if ¢ < 2 then ¢*/2 < c.

25

Viewing Lipton-Viglas as a Lemma

(The Base Case for Our Induction)

We deliberately presented Lipton-Viglas’s result differently from the
original argument. In this way, we get

Lemma: NTIME[n] C DTISP[n¢, n°M] implies
>, TIME[n] C M, TIME[n® /2.

Note if ¢ < 2 then ¢*/2 < c.

e Thus, we may not necessarily have a contradiction for larger ¢, but we

.) 2
can remove one alternation from 25 with only n¢ /2 cost

25-a

Viewing Lipton-Viglas as a Lemma

(The Base Case for Our Induction)

We deliberately presented Lipton-Viglas’s result differently from the
original argument. In this way, we get

Lemma: NTIME[n] C DTISP[n¢, n°M] implies
>, TIME[n] C M, TIME[n® /2.

Note if ¢ < 2 then ¢*/2 < c.

e Thus, we may not necessarily have a contradiction for larger ¢, but we

.) 2
can remove one alternation from 25 with only n¢ /2 cost

e Slow-down theorem implies > 3 TIME|n] C ZQTII\/IE[nCQ/Q]

25-b

The Start of the Induction: g

Assume NTIME[n] C DTISP[n¢, n°] and the lemma

26

The Start of the Induction: g

Assume NTIME[n] C DTISP[n¢, n°] and the lemma

o Y TIME[n] C X, TIME[n®/?], by slow-down and lemma

26-a

The Start of the Induction: g

Assume NTIME[n] C DTISP[n¢, n°] and the lemma

o Y TIME[n] C X, TIME[n®/?], by slow-down and lemma

o Y, TIME[n¢/?] C NTIME[n®"/?], by slow-down

26-b

The Start of the Induction: g

Assume NTIME[n] C DTISP[n¢, n°] and the lemma

o Y, TIME[n] C X, TIME[n¢/2], by slow-down and lemma
o Y, TIME[n¢/?] C NTIME[n®"/?], by slow-down

e NTIME[n®"/2] C DTISP[n<"/2, n°™M)], by assumption and padding

26-c

The Start of the Induction: g

Assume NTIME[n] C DTISP[n¢, n°] and the lemma

o Y, TIME[n] C X, TIME[n¢/2], by slow-down and lemma
o Y, TIME[n¢/?] C NTIME[n®"/?], by slow-down
e NTIME[n®"/2] C DTISP[n<"/2, n°™M)], by assumption and padding

e DTISP[n¢"/2, n°M] C My TIME[n" /9], by speed-up

26-d

The Start of the Induction: g

Assume NTIME[n] C DTISP[n¢, n°] and the lemma

o Y, TIME[n] C X, TIME[n¢/2], by slow-down and lemma
o Y, TIME[n¢/?] C NTIME[n®"/?], by slow-down
e NTIME[n®"/2] C DTISP[n<"/2, n°™M)], by assumption and padding
e DTISP[n¢"/2, n°M] C My TIME[n" /9], by speed-up
Observe:
e Now ¢ < v/6 ~ 1.565 contradicts time hierarchy for ¥ 5 and 1
e Butifc > {“/6 then we obtain a new “lemma”:

> s TIME[n] C M3 TIME[nc" /9]

26-e

S, 5.

Assume NTIME[n] C DTISP[n¢, n°)] and lemmas

27

S, 5.

Assume NTIME[n] C DTISP[n¢, n°)] and lemmas

(Here we drop the TIME from 2_; T IME for tidiness)

4 4 4 2

0] C T4[ns] C Tolns 5] € NTIME[ns], but

27-a

S, 5.

Assume NTIME[n] C DTISP[n¢, n°)] and lemmas

(Here we drop the TIME from 2_; T IME for tidiness)

4 4 2 4 2

24 [TL] g Zg[n%] g ZQ[TL%%] g NTIME[TL%%C], but

4 2

NTIME[nS 5] C DTISP[ns 5", noM] C M, [0/

?

(c < /48 =~ 1.622 implies contradiction)

27-b

S, 5.

Assume NTIME[n] C DTISP[n¢, n°)] and lemmas

(Here we drop the TIME from 2_; T IME for tidiness)

4 4 2 4 2

24 [TL] g Zg[n%] g ZQ[TL%%] g NTIME[TL%%C], but

4 2

NTIME[nS 5] C DTISP[ns 5", noM] C M, [0/

?

(c < /48 =~ 1.622 implies contradiction)

8 12 14

Y5n] CX,nsw] CXznts] C Yy[nisez], and thisisin

27-c

S, 5.

Assume NTIME[n] C DTISP[n¢, n°)] and lemmas

(Here we drop the TIME from 2_; T IME for tidiness)

4 4 2 4 2

24 [TL] g Zg[n%] g ZQ[TL%%] g NTIME[TL%%C], but

4 2

NTIME[nS 5] C DTISP[ns 5", noM] C M, [0/

?

(c < /48 =~ 1.622 implies contradiction)

8 12 14

Y5n] CX,nsw] CXznts] C Yy[nisez], and thisisin

15 16 16

NTIME[n1s12] C DTISP[nistz, n°V] C M;[nise]
(c < V/2880 ~ 1.645 implies contradiction)

27-d

. . ,
An intermediate lower bound, nT

Assume NTIME[n] C DTISP[n¢, n°M]

Claim: The inductive process of the previous slide converges.

The constant derived is

T .= lim f(k),

k— 00

where f(k) := TT,_ (14 1/4)"%
Note T/ ~ 1.66.

28

A Time-Space Tradeoff

Corollary: For every ¢ < 1.66 there is d > 0 such that SAT
is notin DTISP[n¢, n.

29

Outline
e Preliminaries
e A Speed-Up Theorem
e A Slow-Down Lemma
e Lipton and Viglas’ nv?2 Lower Bound
e Our Inductive Argument

® From n1'66 to n1'732

30

From n1.66 to n1.732

DTISP[t, t°)] C N, TISP[t/*+°(W] is an unconditional result

31

From n1.66 to n1.732

DTISP[t, t°)] C N, TISP[t/*+°(W] is an unconditional result

All other derived class inclusions in the above proof actually depend on the
assumption that NTIME[n] C DTISP[n¢, n°™M].

31-a

From n1.66 to n1.732

DTISP[t, t°)] C N, TISP[t/*+°(W] is an unconditional result

All other derived class inclusions in the above proof actually depend on the
assumption that NTIME[n] C DTISP[n¢, n°W)].

We’ll now show how such an assumption can get
DT|SP[nC,nO(1)] C |‘|kT|Sp[nc/(k+s)+o(1)]

for some € > (0. This will push the lower bound higher.

31-b

From n1.66 to n1.732

DTISP[t, t°)] C N, TISP[t/*+°(W] is an unconditional result

All other derived class inclusions in the above proof actually depend on the
assumption that NTIME[n] C DTISP[n¢, n°™M].

We’ll now show how such an assumption can get
DTISP[n¢, n°M] C M, TISP[ne/ (k+e)+o(l)]

for some € > (0. This will push the lower bound higher.

Lemma: Letc < 2. Defined; = 2,d,. == 1 + d’“c_l.

it NTIME[n?/¢] C DTISP[n?, n°)], then

for all k, DTISP[n% n°M] C M, TIME[n! o],

31-c

From 711(%3t0 TﬂL732

DTISP[t, t°)] C N, TISP[t/*+°(W] is an unconditional result

All other derived class inclusions in the above proof actually depend on the
assumption that NTIME[n] C DTISP[n¢, n°W)].

We’ll now show how such an assumption can get
DT|SP[nC,nO(1)] C |‘|kT|Sp[nc/(k+s)+o(1)]

for some € > (0. This will push the lower bound higher.
dp_1

C

Lemma: Letc < 2. Defined; = 2,d,. == 1 +
it NTIME[n?/¢] C DTISP[n?, n°W)], then
for all k, DTISP[n, n°W] C M, TIME[n!*ToM)],

For ¢ < 2, {dy} is increasing — for each k, a bit more of
DTISP[nPW n°W)] is shown to be contained in M, TIME[n!To()]

31d

Proof of Lemma

di—1
.

Lemma: Let ¢ < 2. Defined; := 2, d;, := 1+
it NTIME[n?/¢] C DTISP[n?, n°)], then
forall k € N, DTISP[n%, n°M] C Ny TIME[p! o],

Induction on k. kK = 1 case is trivial (speedup theorem).

Suppose NTIME[n?/¢] C DTISP[n?, n°"] and
DTISP[n% n°M] C My TIME[n! o],

32

Proof of Lemma

Lemma: Let ¢ < 2. Define d; :=
it NTIME[n?/¢] C DTISP[n?, n°)], then
forall k € N, DTISP[n%, n°M] C Ny TIME[p! o],

Induction on k. kK = 1 case is trivial (speedup theorem).

Suppose NTIME[n?/¢] C DTISP[n?, n°"] and
DTISP[nde, ne®] C M, TIME[n+0)].

want: DTISP[n! /¢, noM)] C M1, TIME[n! ()],

32-a

Proof of Lemma

Lemma: Let ¢ < 2. Define d; :=
it NTIME[n?/¢] C DTISP[n?, n°W)], then
forall k € N, DTISP[n%, n°M] C Ny TIME[p! o],

Induction on k. kK = 1 case is trivial (speedup theorem).

Suppose NTIME[n?/¢] C DTISP[n?, n°"] and
DTISP[n% n°M] C My TIME[n! o],

want: DTISP[n! /¢, noM)] C M1, TIME[n! ()],

By padding, the purple assumptions imply

NTIME[n%/¢] C DTISP[n®, n°M] C M, TIME[n' W], (x)

32-b

Goal: DTISP[n!'*de/¢ no] C My TIME[n!+oW)]

Consider a 1, simulation of DTISP[n!++/¢ (W] with only O(n) bits

1—o(1)

(n configurations) in the universal quantifier:

33

Goal: DTISP[n!'*de/¢ no] C My TIME[n!+oW)]

Consider a 1, simulation of DTISP[n!++/¢ (W] with only O(n) bits

(n'—°() configurations) in the universal quantifier:
(V configurations C', ..., C,1-oq) of M onz s.t. C,1-.0) is rejecting)
(Fi € {1,...,n'7°0) — 11)[C; does not lead to C;_; in n¥/<T°() time]

33-a

Goal: DTISP[n!'*de/¢ no] C My TIME[n!+oW)]

Consider a 1, simulation of DTISP[n!++/¢ (W] with only O(n) bits

(n'—°() configurations) in the universal quantifier:
(V configurations C', ..., C,1-oq) of M onz s.t. C,1-.0) is rejecting)
(Fi € {1,...,n'7°0) — 11)[C; does not lead to C;_; in n¥/<T°() time]

Green part is an NTIME computation, input of length O(n), takes
ndr/ctoll) time

33-b

Goal: DTISP[n!'*de/¢ no] C My TIME[n!+oW)]

Consider a 1, simulation of DTISP[n!++/¢ (W] with only O(n) bits

(n'—°() configurations) in the universal quantifier:
(V configurations C', ..., C,1-oq) of M onz s.t. C,1-.0) is rejecting)
(Fi € {1,...,n'7°0) — 11)[C; does not lead to C;_; in n¥/<T°() time]

Green part is an NTIME computation, input of length O(n), takes
ndr/ctoll) time

(%) == Green can be replaced with 1, TIME[n!*°(1)] computation, i.e.

33-c

Goal: DTISP[n!'*de/¢ no] C My TIME[n!+oW)]

Consider a 1, simulation of DTISP[n!++/¢ (W] with only O(n) bits

(n'—°() configurations) in the universal quantifier:
V configurations C;,...,C 1001y of M onx s.t. C 1-.q) is rejecting
g n n
(Fi € {1,...,n'7°0) — 11)[C; does not lead to C;_; in n¥/<T°() time]

Green part is an NTIME computation, input of length O(n), takes
ndr/ctoll) time

(%) == Green can be replaced with 1, TIME[n!"°(})] computation, i.e.
(V configurations C', ..., C,1-oq) of M onz s.t. C,1-.0) is rejecting)

(Vy, [yl = cl|"°W) (Fz, 2| = cl 2" D)[R(C, ..., Cramow, 2,9, 2)],

for some deterministic linear time relation X and constant ¢ > 0.

33-d

Goal: DTISP[n!'*de/¢ no] C My TIME[n!+oW)]

Consider a 1, simulation of DTISP[n!++/¢ (W] with only O(n) bits

(n'—°() configurations) in the universal quantifier:
V configurations C;,...,C 1001y of M onx s.t. C 1-.q) is rejecting
g n n
(Fi € {1,...,n'7°0) — 11)[C; does not lead to C;_; in n¥/<T°() time]

Green part is an NTIME computation, input of length O(n), takes
ndr/ctoll) time

(%) == Green can be replaced with 1, TIME[n!"°(})] computation, i.e.
(V configurations C', ..., C,1-oq) of M onz s.t. C,1-.0) is rejecting)

Yy, [yl = clz['T°M) (3z,]z] = c|z|"T*) [R(Cy, . .., Cri—oty, 2, Y, 2)],
for some deterministic linear time relation /2 and constant ¢ > 0.
Therefore, DTISP[n+1, n°M] C M, TIME[n! o)), O

33-e

New Lemma Gives Better Bound

Corollary 1
Letc € (1,2). ENTIME[n?¢] C DTISP[n?, n°V)] then

foralle > O suchthat = —¢& > 1,
DTISP[n=1"%,n°M] C M, TIME[n!*+oM)].

34

New Lemma Gives Better Bound

Corollary 1
Letc € (1,2). ENTIME[n?¢] C DTISP[n?, n°V)] then

foralle > O suchthat = —¢& > 1,
DTISP[n=1"%,n°M] C M, TIME[n!*+oM)].

Proof. Recalldy = 2,d, =1+ dj_1/c
{d}.} is monotone non-decreasing for ¢ < 2; converges to d, = 1 + C%’O
—> d, = ¢/(c — 1). (Note ¢ = 2 implies d, = 2)

It follows that for all €, there’s a K such that d > —= — €. []

34-a

Now: Apply inductive method from n!-% lower bound-

the “base case” now resembles Fortnow-Van Melkebeek’s n? lower bound

it NTIME[n] C DTISP[n¢, n°V], Corollary 1 implies

2 o(1) o2.c=1 ¢/(c—=1)+o(1)
>, TIME[n] C DTISP[n¢, n]gDTlSP[(n)

C M, TIME[pe e Do) p(p—1) =1

35

Now: Apply inductive method from n!-% lower bound-

the “base case” now resembles Fortnow-Van Melkebeek’s n? lower bound

it NTIME[n] C DTISP[n¢, n°V], Corollary 1 implies

2 o(1) o2.c=1 ¢/(c—=1)+o(1)
>, TIME[n] C DTISP[n¢, n]gDTlSP[(n)

C M, TIME[pe e Do) p(p—1) =1

Inducting as before, we get

35-a

Now: Apply inductive method from n!-% lower bound-

the “base case” now resembles Fortnow-Van Melkebeek’s n? lower bound

it NTIME[n] C DTISP[n¢, n°V], Corollary 1 implies

2 o(1) o2.c=1 ¢/(c—=1)+o(1)
>, TIME[n] C DTISP[n¢, n]gDTlSP[(n)

C N, TIME[pele-DreM] (g —1) =1

Inducting as before, we get

> 5[n] C Lo V] C DTISP[RS (=1 n°M] C My[n s)},then

35-b

Now: Apply inductive method from n!-% lower bound-
the “base case” now resembles Fortnow-Van Melkebeek’s n? lower bound
it NTIME[n] C DTISP[n¢, n°V], Corollary 1 implies

2 o(1) o2.c=1 ¢/(c—=1)+o(1)
>, TIME[n] C DTISP[n¢, n]gDTlSP[(n)

C N, TIME[pele-DreM] (g —1) =1

Inducting as before, we get

Y 5[n] C Lo[nc V] C DTISP[RS (= n°M] C My[n~5 |, then

03-(0—1) c4-(c—1)2 c6-(c—1)2

| CYyn 5 |CDTISP[n 5, n°W]

2, n] Cxsn

06-(0—1)2

Cllyn~ 12 | etc

35-c

Claim: The exponent ¢, derived for >, TIME[n| C 1, TIME[n®] is
C3'2k_3 (C_l)2k—3
ek — k'(32k_4'42k_5°52k_6”'(k—1)).

36

Finishing up

Simplifying, e, =
— k—3
32877 (c—1)2]€ ’ L c3(c—1) 2
k'(32k_4°42k_5'52k_6"'(k—l)) - k2_k+3'(32_1'42_2°52_3°"(k—1)2_k+3)

thus
c3(c—1)
.(32_1 422 5273 ...(k_1)2—k+3)

ek <]. @ k‘2_k+3 < 1

37

Finishing up

Simplifying, €, =
B _ k—3
32" 3(0—1)2]€ ’ L c3(c—1) 2
k(328742870 5280 (1)) T \R2TRTRL(327 42725270 (k—1)27 R R

thus
c3(c—1)
.(32_1 422 5273 ...(k_1)2—k+3)

ek <]. @ k‘2_k+3 < 1

o Define f(k) = k2" . (327427 .52 (b — 1))

37-a

Finishing up

Simplifying, €, =
_ k—3
32877 (c—1)2k ’ L c3(c—1) 2
k(328742870 5280 (1)) T \R2TRTRL(327 42725270 (k—1)27 R R

thus
c3(c—1)
(32_1 422 5273 ...(k_1)2—k+3)

o Define f(k) = k2" . (327427 .52 (b — 1))
o f(k) — 3.81213--- ask — ¢

ek <]. @ k2_k+3- < 1

37-b

Finishing up

Simplifying, e, =
— — k—3
32" 3(0—1)2k ’ L c3(c—1) 2
k'(32k_4°42k_5'52k_6"'(k—l)) - k2_k+3'(32_1'42_2°52_3“'(k—1)2_k+3)

thus
c3(c—1)
.(32_1 422 5273 ...(k_1)2—k+3)

ek <]. @ k2_k+3 < 1

o Define f(k) = k2" . (327427 .52 (b — 1))
o f(k) — 3.81213--- ask — ¢

e Above task reduces to finding positive root of

¢ (c—1) =3.81213

37-c

Finishing up

Simplifying, e, =
— — k—3
32" 3(0—1)2k ’ L c3(c—1) 2
k'(32k_4°42k_5'52k_6"'(k—l)) - k2_k+3'(32_1'42_2°52_3°"(k—1)2_k+3)

thus
c3(c—1)
.(32_1 422 5273 ...(k_1)2—k+3)

ek <]. @ k2_k+3 < 1

o Define f(k) = k2" . (327427 .52 (b — 1))
o f(k) — 3.81213--- ask — ¢

e Above task reduces to finding positive root of

¢ (c—1) =3.81213

—c =~ 1.7327 > \/§ + mfoo yields a contradiction.

37-d

The above inductive method can be applied to improve
several existing lower bound arguments.

e Time lower bounds for SAT on off-line one-tape machines

® Time-space tradeoffs for

nondeterminism/co-nondeterminism in RAM model

e Etc. See the paper!

38

