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Abstract. We improve upon indirect diagonalization arguments for
lower bounds on explicit problems within the polynomial hierarchy. Our
contributions are summarized as follows.

1. We present a technique that uniformly improves upon most known
nonlinear time lower bounds for nondeterminism andalternating
computation, on both subpolynomial (no(1)) space RAMs and se-
quential one-tape machines with random access to the input. We
obtain improved lower bounds for Boolean satisfiability (SAT), as
well as all NP-complete problems that have efficient reductions
from SAT, and Σk-SAT, for constant k ≥ 2. For example, SAT
cannot be solved by random access machines using n

√
3 time and

subpolynomial space.

2. We show how indirect diagonalization leads to time-space lower
bounds for computation with bounded nondeterminism. For both
the random access and multitape Turing machine models, we
prove that for all k ≥ 1, there is a constant ck > 1 such that
linear time with n1/k nondeterministic bits is not contained in de-
terministic nck time with subpolynomial space. This is used to
prove that satisfiability of Boolean circuits with n inputs and nk

size cannot be solved by deterministic multitape Turing machines
running in nk·ck time and subpolynomial space.
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1. Introduction

We study the power of indirect diagonalization in proving class separations
and lower bounds on explicit problems in NP and the polynomial hierarchy,
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deriving several improvements on existing lower bounds and some brand new
bounds as well.

1.1. Indirect Diagonalization. Put bluntly, a separation by “indirect di-
agonalization” is a proof-by-contradiction simulation. Suppose we wish to show
C * D, for classes C and D. An indirect diagonalization argument begins by
assuming C ⊆ D. If sufficiently strong, this assumption allows us to derive new
complexity class inclusions— in particular, we use the algorithms guaranteed to
exist by the assumption to develop new algorithms. After some iterations, the
new algorithms/inclusions become so wonderful that they are not only unlikely
but are also provably impossible, contradicting a known separation result, e.g.,
a time hierarchy theorem. As a lower bound method, this approach is appeal-
ing in that it allows one to employ one’s algorithmic intuitions towards the task
of proving lower bounds, and it is non-relativizing, in the sense that one can
potentially invoke non-relativizing inclusions in the derivations that lead to a
contradiction.

One limitation to this sort of attack is that, at present, there are not too
many known class separations to begin with, so a number of strong assump-
tions are sometimes necessary to reach a contradiction. The major goal of our
work is to investigate how one might circumvent this difficulty, by employing
a host of known class separations in some sophisticated way. In this paper, we
focus on the particular cases of lower bounds on nondeterministic linear time,
alternating linear time, and bounded nondeterminism. The lower bounds for
nondeterministic linear time extend to lower bounds for natural NP-complete
problems, such as Boolean satisfiability. Similarly, the lower bounds for al-
ternating linear time extend to lower bounds for a class of quantified Boolean
formulas, and the bounded nondeterminism results imply a lower bound for
circuit satisfiability.

1.2. A Four-Step Scheme for Indirect Diagonalization. Let D[t] de-
note a class of sets recognized by some deterministic machine model running in
time t. One family of prior lower bound approaches for nondeterministic time
(in general, alternating time) follows a certain high-level schematic:

1. Assume (for contradiction) that NTIME[n] ⊆ D[nc].

2. Prove thatD[t] can be “sped up” by alternating machines. More precisely,
D[t] ⊆ Σ`TIME[f(t)] for some ` ≥ 1 and f(n) = o(n).

3. Prove using (1) that alternations in an alternating computation can be
“removed”, at the cost of a small “slowdown” in time. For example, (1)
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might imply Σ2TIME[n] ⊆ NTIME[nc], by converting the conondetermin-
istic part of the Σ2 computation into a deterministic computation.

4. If the amount of speedup in (2) sufficiently exceeds the amount of slow-
down in (3), conclude a contradiction to some known time hierarchy the-
orem.

Introduced in a paper by Kannan (12) in 1983 (he used it to prove time
lower bounds on one-tape Turing machines), this four-step scheme has been
quite successful, leading to a number of lower bounds on nondeterminism and
alternation in several machine models over the years (6; 7; 14; 15; 20; 22; 25).
For example, the celebrated result of Paul, Pippenger, Szemeredi, and Trotter
(20) that NTIME[n] 6= DTIME[n] for multitape machines can be said to follow
the above:

1. Assume NTIME[n] = DTIME[n].

2. Paul-Pippenger-Szemeredi-Trotter prove DTIME[t] ⊆ Σ4TIME[t/ log∗ t],
for t(n) ≥ n log∗ n.

3. Item (1) implies that ΠkTIME[n] = coNTIME[n] = DTIME[n] for all k.

4. Therefore by padding, Π4TIME[t] = DTIME[t] ⊆ Σ4TIME[t/ log∗ t], a con-
tradiction with the alternating time hierarchy.

We extend the above four-step argument in a significant way, leading to im-
proved lower bounds in several computational models.

1.3. Lower Bounds for SAT on Subpolynomial-Space RAMs. Rooted
in work of Kannan (12; 13) from the early 80’s, and initiated by Fortnow (6)
in 1997, an intriguing thread of lower bound research has opened up that seeks
to prove a “poor man’s” version of L 6= NP using indirect diagonalization.

More precisely, while it is well-known that L 6= NP is equivalent to the
statement “nondeterministic linear time is not contained in deterministic nk

time on logspace machines, for all k ≥ 1” (i.e., NTIME[n] * DTISP[nk, log n]),
proving such a large lower bound on nondeterministic linear time currently ap-
pears out of our reach. Nevertheless, it is of course still interesting to ask what
we can prove about the matter—to find the largest k for which the separation
provably holds. Naturally, when one starts to consider fixed time bounds, the
model of computation becomes a possible issue. We use the random access Tur-
ing machine model discussed in Section 2.1, which is time-equivalent to other
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random access models within polylogarithmic factors. SAT has strong com-
pleteness properties under this model, in the sense that a separation of the form
NTIME[n] * DTISP[nk, log n] implies that SAT is not in DTISP[nk−o(1), log n].
Therefore, proving such a non-containment also proves a lower bound for an
explicit and natural problem in NP.

Lipton and Viglas (14) gave an indirect diagonalization argument (which
implicitly follows the four-step scheme) to obtain the lower bound

NTIME[n] * DTISP[n
√

2−ε, no(1)].

By Corollary 2.2 for subpolynomial (i.e. no(1)) space RAMs, this implies that

SAT cannot be solved in n
√

2−ε time and subpolynomial space, for all ε > 0.
The best lower bound known prior to our work was nφ−ε time and no(1) space
by Fortnow and Van Melkebeek (7) in 2000, where φ ≈ 1.618 is the golden
ratio. Their proof was also an indirect diagonalization.

Improvements on Deterministic Subpolynomial-Space SAT Lower
Bounds. We utilize tools developed in the aforementioned work with an in-
ductive method to improve the SAT time lower bound to Ω(n1.6616...) time.

Theorem 1.1. SAT is not solvable by deterministic RAMs using n1.6616 time
and no(1) space. The lower bound holds for any NP-complete problem that is
(simultaneously) quasi-linear time and polylogspace reducible from SAT, where
each bit in the reduction is computable in no(1) time.

An informal outline of the inductive method is provided in Section 1.7, and
the theorem is proved in Section 3.2. We then boost the lower bound to n1.7327,
which is slightly larger than n

√
3.

Theorem 1.2. SAT is not solvable by deterministic RAMs using n1.7327 time
and no(1) space.

To achieve this bound, we introduce a new tool that improves upon item
(2) in the four-step scheme. That is, we give an improved speedup of DTISP
in Σ2TIME. The key behind our speedup is that it relies heavily on item (1),
i.e. the initial assumption of the indirect diagonalization argument. Previous
speedup results of this kind (Lipton-Viglas and Fortnow-Van Melkebeek) did
not utilize this assumption— their containments of DTISP in ΣkTIME hold
unconditionally.
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1.4. Improvement on Alternating Time Lower Bounds. We also im-
prove upon lower bounds for solving Σk-SAT (deciding the truth of Σk sen-
tences in first-order Boolean logic) with deterministic and co-nondeterministic
machines, by using the inductive method introduced in the n1.661 lower bound
for SAT. In their golden-ratio lower bound work, Fortnow and Van Melkbeek
(7) also proved that the problem Σk-SAT cannot be solved in nk−ε time on a
no(1)-space random access machine. We improve upon this result for all values
of k. For instance, in the case of Σ2-SAT, the lower bound goes from n2 time
to n2.761. As k increases, the lower bound becomes closer to nk+1: for example,
the bound for Σ100-SAT is n100.99 time. The following lower bound for all Σ` is
proved in Section 4.1.

Corollary 1.3. Σ`TIME[n] * DTISP[n`(1+1/`)1/2
, no(1)].

1.5. Improved Lower Bounds for SAT on Off-Line One-Tape TMs.
The above results all hold for random-access machine models. Our inductive
method also works for lower bounds on a machine model that is a hybrid be-
tween a RAM and a off-line one-tape TM: in particular, the model has random
access to its input, but only sequential access to its worktape. For more details
on the model, see Section 2.1.

Proving time lower bounds on these machines is not as easy as one might
first think, e.g. such machines can recognize PALINDROMES in linear time
and logarithmic space.1 Maass and Schorr (15) and Van Melkebeek and Raz
(16) independently showed the following result for off-line one-tape TMs, where
DTIME1[t] denotes the time class for this machine model:

NTIME[n] * DTIME1[n
1.22].

Theorem 1.4 increases this lower bound by a modest amount.

Theorem 1.4. NTIME[n] * DTIME1[n
1.268].

Corollary 1.5. SAT is not solvable by any hybrid TM that runs in O(n1.268)
time.

1Contrast this machine model with the standard multitape Turing machine, where a
O(log n) space bound implies a Ω(n2) time lower bound for recognizing PALINDROMES
(4). Santhanam (22) gave an efficient reduction from PALINDROMES to SAT, resulting
in an Ω(n2/(poly(log n))) time lower bound on the time-space product for solving SAT on
multitape machines.
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1.6. Lower Bounds for Bounded Nondeterminism on Small-Space
Machines. In the remainder of the paper, we show how indirect diagonaliza-
tion ideas using alternation can be further extended to prove lower bounds on
bounded nondeterministic computation. Define NTIBI[t(n), b(n)] to be the class
of languages recognized by t(n) time (the TI) random access Turing machines
that use at most b(n) nondeterministic bits (the BI). More precisely, when given
an input x, a characteristic machine for this class guesses b(|x|) bits on a special
tape and then runs deterministically for t(|x|) time using the input tape, the
special tape, and some number of worktapes.2 We prove the separation:

Theorem 1.6. For all ε > 0, there is a cε > 1 such that NTIBI[n, nε] *
DTISP[ncε , no(1)]. The theorem also holds when the classes are defined with
respect to multitape Turing machines.

That is, even with only n1/1000 nondeterministic moves, there is still a non-
linear time separation of nondeterminism from deterministic small space. Some
examples of concrete values of cε are:

◦ NTIBI[n, n
1√
2
−ε

] * DTISP[n1.414, no(1)]

◦ NTIBI[n, n0.451] * DTISP[n1.25, no(1)]

◦ NTIBI[n, n0.0199] * DTISP[n1.01, no(1)]

As might be expected, cε → 1 as ε → 1. Theorem 1.6 has an interesting
corollary.

Corollary 1.7. For all k ≥ 1, there exists ck > 1 such that Boolean satisfia-
bility on circuits with n inputs and nk gates requires nk·ck time on a determin-
istic multitape Turing machine using no(1) space.

Remark on Derivations. While the lower bound exponents in the Lipton-
Viglas and Fortnow-Van Melkebeek SAT lower bounds have simple, symbolic
formulations, the best representations we know for our exponents are rather
complicated expressions, whose complexity increases with each inductive step.
As a consequence, the values we state for these exponents were obtained by
computer analysis. We do not yet know nice closed-form expressions for the
exponents we have derived.

2Note NTIBI[t, b] = GC[b,DTIME[t]], where GC is the guess-and-check model of Cai and
Chen (1). However, we found the NTIBI notation more convenient for our purposes.
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1.7. Our Strategy at a High Level. We propose an inductive strategy
which elaborates upon the four-step scheme described in the introduction, and
takes better advantage of the polynomial hierarchy in obtaining a contradiction.

The main idea is to derive a sequence of “switching lemma” style inclusions
(but only vaguely related to H̊astad (10)), where each new lemma invokes all of
the previous lemmas in its derivation. We start by using items (2) and (3) from
the four-step scheme (i.e. “speedup” and “alternation removal”) to derive

Σ2TIME[n] ⊆ Π2TIME[nf2 ]

for some small constant f2. Essentially this means that an “OR of ANDs” at
the bottom of the configuration tree of an alternating machine can be switched
with an “AND of ORs” of polynomial size. Under the right conditions, this
switching lemma can be invoked to prove an even better relationship between
Σ3 and Π3, namely

Σ3TIME[n] ⊆ Π3TIME[nf3 ]

for some f3 < f2. In general, a relation between Σk and Πk can be proved
by using relations between all lower levels of the polynomial hierarchy. If the
derived exponent fk ever drops below 1, then we know the hypothesis assumed
in item (1) of the four-step scheme must be false, as that contradicts a time
hierarchy theorem.

Let’s give a concrete illustration. In the deterministic random-access ma-
chine lower bounds for SAT, we suppose that NTIME[n] ⊆ DTISP[nc, no(1)] for
some c > 1 and in turn we derive an inclusion of the form

Σ2TIME[n] ⊆ Π2TIME[nf2(c)],

where f2 is a function of c. If f2(c) < 1, then the inclusion contradicts a known
separation (cf. Theorem 2.4 in the following section). Otherwise, we may as-
sume this inclusion as a lemma, to help us out in further derivations.3 More
precisely, we use this inclusion to derive Σ3TIME[n] ⊆ Π3TIME[nf3(c)], where
f3(c) < f2(c) for appropriate c. Again if f3(c) < 1 we are done, otherwise we
proceed to get an inclusion for Σ4TIME[n], Σ5TIME[n], etc. Our construction
and choice of c ensure that the sequence f2(c), f3(c), f4(c), . . . is monotonically
decreasing, and eventually drops below 1. Moreover, the value of c such that
the sequence drops below 1 is larger than the lower bound exponents previ-
ously obtained. More dramatic improvements occur with higher levels of the
polynomial hierarchy, cf. Table 1.1.4

3In fact, observe f2(c) = 1 would imply ΣkTIME[n] = Σ2TIME[n] for all k ≥ 2. One can
show that this would be also sufficient for a contradiction.

4We regrettably remark that the table in the conference version (26) mistakenly reported
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Model of computation
Problem det. RAM co-nondet. RAM hybrid TM (one worktape)

SAT n1.7327 (n1.618) (n1.414) n1.268 (n1.224)
Σ2-SAT n2.788 (n2) n1.6616 n1.609 (n1.5)
Σ3-SAT n3.826 (n3) n2.39 n1.726

Σ100-SAT n100.99 (n100) n50.49 n1.99

Table 1.1: Time lower bounds of this paper. For RAMs, the given bounds
hold assuming at most no(1) workspace is used. The ‘hybrid TM’ model is discussed
in Section 2.1. The previous bounds are in parentheses; each of them either directly
appear in (7) (the RAM bounds), (16) (the TM bounds), or can be easily derived
from that work.

Comparison With Fortnow-Van Melkebeek. Our inductive strategy ap-
pears to be somewhat different from that of Fortnow and Van Melkebeek. Al-
though both strategies use indirect diagonalization and induction, Fortnow and
Van Melkebeek obtain contradictions by inductively deriving containments of
the form

NTIME[nki ] ⊆ coNTIME[naiki ],

for an increasing sequence {ki} and decreasing sequence {ai}. When ai < 1, a
contradiction to a time hierarchy theorem is reached. In contrast, our induction
derives

ΣkTIME[n] ⊆ ΠkTIME[nbk ]

for a decreasing sequence {bk}. That is, Fortnow-Van Melkebeek derives rela-
tions between NTIME and coNTIME for larger and larger time functions, while
our method derives relations for the same time bounds but for a larger and
larger number of alternations. Furthermore, when a contradiction does not
hold for us, we still obtain a relation between Σk and Πk that is useful for
deriving a relation between Σk+1 and Πk+1 and higher levels of the polynomial
hierarchy. The dichotomy of deriving either (a) a contradiction, or (b) a bet-
ter inclusion than before, is the leverage that allows us to improve the known
lower bounds. In particular, item (b) provides a way to remove alternations
at a lower time cost. Thus one may say that this kind of argument helps us
improve upon item (3) in the four-step scheme above.

incorrect lower bounds for Σ3 and Σ100 on co-nondeterministic machines, of n2.761 and n99.98.
Those lower bounds were for Σ2 and Σ99 on deterministic machines. We thank an anonymous
reviewer for pointing this out.
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We note that the final results in this paper (those proving lower bounds on
bounded nondeterminism) do not follow the inductive strategy we have outlined
above. Instead, they exploit a property of the known simulations of DTISP in
Σ2TIME. In particular, these ΣkTIME and ΠkTIME speedups of DTISP are such
that the kth quantifier only guesses O(log n) bits. Roughly speaking, we do
not need the assumption NTIME[n] ⊆ DTISP[nc, no(1)] to eliminate an O(log n)-
bit quantifier, as the weaker assumption NTIBI[n, log n] ⊆ DTISP[nc, no(1)] will
suffice. For more details, confer with Section 6.

2. Preliminaries

This section has two parts. First, we describe our notation and the machine
models we use in the paper. Secondly, we recall some results from past work
that shall be useful in developing our lower bounds.

2.1. Notation and the Machine Models Studied. We use ε to denote
(as is standard) a non-zero quantity that is sufficiently small for the current
context. As is typical with most such works, we implicitly assume floors and
ceilings are applied to fractions wherever appropriate.

We assume familiarity with basic complexity notions such as alternation (2),
and standard resource-bounded classes such as DTIME[t], NTIME[t], SPACE[s],
DTISP[t, s] (simultaneous deterministic time t and space s), NTISP[t, s] (the
nondeterministic version of the same class), and ΣkTIME[t] and ΠkTIME[t]
(time with k − 1 alternations— Σ denotes starting in an existential state,
whereas Π-machines start in a universal state). We also use the class NTIBI[t, b]
(nondeterministic time and bits), which we define to be the class of languages
recognized by t(n) time (the TI) random access Turing machines that use at
most b(n) nondeterministic bits (the BI).

When we speak of a “quantifier” of an alternating machine, we are referring
to a segment of the machine’s computation whose first timestep is either in
the initial state or in a state immediately following an alternation, and whose
last timestep is either in a final state or in a state immediately prior to an
alternation. So, no alternations occur during a quantifier, but they can occur
just before and after it. For example, an alternating machine M uses exactly
k quantifiers iff M is a Σk or Πk machine.

Default Model. Our default machine model is the random access Turing
machine, although our arguments work for RAMs as well and in general are
more or less model-independent. When we specify a class without further qual-
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ification, we are referring to classes defined with respect to this Turing machine
model. By “random access Turing machine”, we mean Turing machines with a
read-only input tape, a full-access work tape, and two write-only index tapes
(one for input, one for work). To access the ith cell of the input or work tape,
one writes i to the respective index tape; hence an arbitrary access of a tape
with t cells takes O(log t) time. After the ith cell is accessed, the respective
index tape is reset to blanks.

Hybrid Off-Line TM Model. We also prove lower bounds for an off-line
Turing machine model, referred to as “deterministic off-line TM” in Table 1.1.
The machine model has:

◦ an input tape that is read-only, random access,

◦ a small storage of no(1) bits that is read-write, random access, and

◦ an unbounded one-dimensional tape that is read-write with sequential
(two-way) access.

To emphasize that there is only one unbounded read-write tape, we define
DTIME1[t] to be the relevant time class for this machine model.

2.2. Existing Tools. As our results build upon previous lower bound work,
we apply several tools already available. The first one permits us to phrase our
results as lower bounds for SAT.

A Useful Property of Satisfiability. It is known that satisfiability of
Boolean formulas in conjunctive normal form is a complete problem under very
tight reductions for a small nondeterministic complexity class. Define NQL as
“nondeterministic quasi-linear time”, i.e.

NQL :=
⋃
c≥0

NTIME[n · (log n)c] = NTIME[n · poly(log n)].

Theorem 2.1. (Follows from Schnorr (24), Cook (5), Gurevich
and Shelah (9), Fortnow and Van Melkebeek (7), Tourlakis (25))
SAT is NQL-complete, under reductions in quasi-linear time and O(log n) space
simultaneously, for both multitape and random access machine models. More-
over, each bit of the reduction can be computed in O(poly(log n)) time and
O(log n) space in both machine models.
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This theorem has a corollary significant for our purposes. Let C[t(n)] in the
following represent a time t(n) complexity class under one of the three models:

◦ Deterministic RAM using time t and to(1) space,

◦ Co-nondeterministic RAM using time t and to(1) space,

◦ Hybrid Off-Line TM using time t.

Corollary 2.2. If NTIME[n] * C[t(n)], then there is a c > 0 such that SAT
is not contained in C[t(n) · (log t(n))c].

That is, if one can show NTIME[n] is not in C[t], then one can name
an explicit problem (SAT) that is not in C[t], modulo polylog factors. Our
proofs establish that NTIME[n] is not in C[nc] for particular c > 1, imply-
ing that SAT is not solvable in nc−o(1) time with respect to the particular
machine model denoted by C. For example, we shall show a lower bound
of the form NTIME[n] * DTISP[nc, no(1)], which means that SAT is not in
DTISP[nc−o(1), no(1)].

Furthermore, as observed by Van Melkebeek and Raz, the results of this
work apply to any problem Π such that SAT reduces to Π under highly effi-
cient reductions. Examples of such problems include Vertex Cover, Inde-
pendent Set, Travelling Salesperson, 3-SAT, and MAX-2-SAT. (The
typical reductions from SAT to these problems use gadgets, where there is an
explicit and simple correspondence between each clause of the original formula
and each gadget of the reduced instance.)

Corollary 2.3. (cf. Van Melkebeek and Raz (16)) The lower bounds
of this paper apply to any problem Π such that SAT reduces to Π, where each
bit of the reduction is computable in no(1) time in the machine model for which
one is proving the lower bound.

Some Separation Results. We shall also require some well-known sepa-
ration results, each of which are provable by straightforward diagonalization.
The following result uses the fact that a random-access machine using k quan-
tifiers in time t can be simulated by a two-tape machine using k quantifiers
in time O(t), found in Chandra and Stockmeyer’s original conference paper on
alternation (3).
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Theorem 2.4. (“No Complementary Speedup”) For all k ≥ 1 and time
constructible t(n) ≥ n, ΣkTIME[t] * ΠkTIME[o(t)].

We call it the “No Complementary Speedup” Theorem, as it intuitively says
that not all bounded-alternation machines can be sped up by a “complemen-
tary” machine with the same number of alternations.

When proving lower bounds on bounded nondeterminism classes, we use
a different hierarchy theorem, which holds for random access and multitape
Turing machines.

Theorem 2.5. For all time constructible functions t2(n), t2(n) ≥ n such that
t2(n) log t2(n) = o(t1(n)), and for all ε ∈ (0, 1),

coNTIBI[t1, t
ε
1] * NTIBI[t2, t

ε
2].

Proof. Standard diagonalization. First, observe one can enumerate the
set of random access (or multitape) machines {Mi} using t2(n) time and tε2(n)
nondeterministic bits in a standard way (perhaps the only difficulty in the proof
is that tε2(n) is computable in O(t2(n)) time). Define M ′ that on x determines
Mx, universally guesses tε1(|x|) bits on a special tape, then simulates Mx(x) with
the special tape, returning the opposite answer. It takes O(tε1) time to write
down the bits, and an arbitrary deterministic time t2 machine can be simulated
in O(t1) time. Since M ′(x) = ¬Mx(x), it is clear that if Mx is nondeterministic
and M ′ is co-nondeterministic, then Mx(x) accepts iff M ′(x) rejects. ¤

“Alternations For Time” Lemma. Another useful proposition says that
we can reduce alternations in a computation while slightly increasing the run-
time, provided that there is a close time relationship between classes with fewer
alternations. We do not know of a reference for this lemma, but its proof is
elementary.

Lemma 2.6. (Alternations For Time Lemma) Let d > 1, let k and ` be
non-negative integers with k > `, and let t(n) ≥ n be time constructible. If
Σ`TIME[n] ⊆ Π`TIME[nd], then

◦ ΣkTIME[t] ⊆ Σk−1TIME[td], and

◦ ΠkTIME[t] ⊆ Πk−1TIME[td].

Proof. First, observe that Σ`TIME[n] ⊆ Π`TIME[nd] implies Π`TIME[n] ⊆
Σ`TIME[nd]. So by padding, any k-quantifier machine M running in time t is
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equivalent to some k-quantifier machine N that runs in time td, but if M begins
with an ∃ (resp. ∀) quantifier, then N begins with a ∀ (resp. ∃) quantifier.

Let M be a Σk machine with O(t) runtime. Without loss of generality, we
may assume that the state of M at the start of the (k − `)th alternation is a
special state q∗. Define a machine M∗ whose input is an input x to M and a
tape configuration C of M :

M∗(x,C): Simulate M(x), starting from C and state q∗.

By assumption, M∗ has ` quantifiers, since M has k quantifiers and q∗ starts
at the (k − `)th alternation (the beginning of the (k − ` + 1)th quantifier). M∗

runs in O(t) time and takes inputs of O(t) size.
The hypothesis implies that there is a machine N∗ that is equivalent to M∗,

runs in O(td) time, uses ` quantifiers, but begins each computation with the
quantifier opposite to that with which M∗ begins. We now define a machine
N :

N(x): Simulate M(x) until q∗ is reached.
Let C be the configuration of M(x) at this point. Simulate N∗(x,C).

It is easy to verify that L(N) = L(M), and that N runs in O(td) time. We
claim that N uses only k − 1 quantifiers. This follows from the fact that the
last quantifier of M(x) prior to q∗ and the first quantifier of N∗ are the same.
Therefore, in N , no alternation occurs at state q∗. But N and M still have the
same number of alternations occurring prior to q∗ and after q∗, so N∗ has one
less alternation than M . ¤

Fortnow and Van Melkebeek’s Speedup Simulations. We also require
speedup simulations of DTISP of NTISP with alternating machines. In this
paper, we build upon Fortnow and Van Melkebeek’s simulations. Their proofs
are crucial to some of our arguments, so we include sketches of them for com-
pleteness.

Lemma 2.7. (Fortnow and Van Melkebeek (7), Theorem 5.1) For
every natural number k ≥ 2, and time constructible t, space constructible s,
and b(n) such that 1 ≤ b(n) ≤ t(n),

DTISP[t, s] ⊆ ΣkTIME[k · b · s + t/bk−1].

In particular, the first (k − 1) quantifier stages run in O(b · s) time each, and
the last quantifier stage runs in O(t/bk−1) time.
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Note the case k = 2 was essentially proved by Kannan (13). The key
idea is to simulate the proof in (2) that DTISP[t, s] ⊆ ATIME[s log t], which is
essentially Savitch’s theorem (23) tailored to the language of alternating ma-
chines. In the proof of DTISP[t, s] ⊆ ATIME[s log t], the alternating simulation
of a DTISP[t, s] machine M works by repeatedly guessing configurations “in
the middle” of the computation. Let us think of the input to an alternating
simulation A as a triple 〈k, C, C ′〉, where k is a positive integer and C and C ′

are configurations of M . A wishes to output yes iff, when M is executed from
C for 2k steps, its configuration becomes C ′. (Without loss of generality, the
runtime t is a power of two.) To do this, if k = 0 then A just simulates M
from C for one step, and checks if its configuration equals C ′. For k > 0, A
existentially guesses a configuration C ′′, which is supposed to be the configura-
tion of M that occurs 2k−1 = 2k/2 steps after starting from C; let us call this
configuration C ′′. A universal quantifier then guesses a 0 or a 1. Finally, A
calls itself on 〈C, C ′′, k − 1〉 if 0 was written, and calls itself on 〈C ′′, C ′, k − 1〉
if 1 was written. It is easy to see that this simulation works; a little analysis
shows that its runtime is O(s log t) = O(s2).

The above machine A uses many alternations during its execution (O(log t),
as a matter of fact). To obtain a fast simulation of M that uses a constant
number of alternations, we can guess many configurations at once, and univer-
sally check each one we guessed. This sacrifices the O(s log t) runtime, but uses
vastly fewer alternations.

Proof of Lemma 2.7. (Sketch) Fix a deterministic machine M using time
t(n) and space s(n). We first show how to simulate M in kbs + t/bk−1 time
with 2k quantifiers (a Σ2kTIME[kbs + t/bk−1] machine). Next, we show how
the construction can be modified to use only k quantifiers, i.e. we make a
simulation in ΣkTIME[kbs + t/bk−1].

We describe a machine N using 2k quantifiers that simulates M below.

N(x): Let C0 and Ct+1 be the unique initial and accept
configurations of M(x).
Return Simulate(C0, Ct+1, k).

Simulate(Ci, Cj, j):
If j = 0 then accept iff Ci leads to Cj in at most t/bk−1 steps.

◦ Existentially guess machine configurations Cj
1 , . . ., Cj

b of M(x).
If Cj

1 6= Ci then reject.
If Cj

b 6= Cj then reject.
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◦ Universally choose ij ∈ {1, . . . , b} and return Simulate(Cj
ij
, Cj

ij+1, j − 1).

It is straightforward to verify that the procedure Simulate works analogously
to the proof of DTISP[t, s] ⊆ ATIME[s·log t], except that instead of guessing just
the “midpoint” configuration C ′′, we are guessing b “midpoint” configurations
of M(x) before each recursive call. This increases the runtime, but lowers the
number of required alternations.

Simulate with j := k clearly has 2k quantifiers, guessing O(b ·s) bits existen-
tially and O(log t) bits universally between each recursive call, and running for
O(t/bk−1) deterministic time in the base case (on a RAM). Thus the procedure
takes O(k · b · s + t/bk−1) time overall.

How can we reduce the number of quantifiers from 2k to k? We exploit the
fact that the computation is deterministic, and therefore closed under comple-
ment. Rewrite Simulate to be a “negation” of the above:

Simulate2(Ci, Cj, j):
If j = 0 then accept iff Ci leads to Cj in at most t/bk−1 steps.

◦ Universally choose configurations Cj
1 , . . . , C

j
b of M(x).

If Cj
1 6= Ci then accept.

If Cj
b = Cj then accept.

◦ Existentially choose ij ∈ {1, . . . , b}.
Return ¬Simulate2(Cj

ij
, Cj

ij+1, j − 1).

Intuitively, Simulate2 verifies that Ci leads to Cj by considering all sequences
of configurations where the first configuration is Ci, but the last one is not Cj.
Simulate2 verifies that for any such sequence, there are two adjacent configu-
rations that do not lead from one to the other. Since all sequences from Ci to
some C ′

j 6= Cj fail to work, it must be that Ci leads to Cj. Clearly, Simulate2
runs in the same time bound and number of alternations as Simulate, but the
quantifiers start with a ∀ instead.

Our final algorithm makes the two procedures mutually recursive: rewrite
Simulate so that it calls Simulate2, and vice-versa. Then, the number of quanti-
fiers in N(x) becomes exactly k, where the first (k−1) quantifiers guess O(b ·s)
bits each, and the last quantifier runs in O(t/bk−1) time. ¤

Remark 2.8. Note that DTISP[t, s] ⊆ ΠkTIME[k · b · s+ t/bk−1] follows imme-
diately from the closure of DTISP under complementation.

A significant instantiation of Lemma 2.7 is the following important corollary.
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Corollary 2.9. For all integers k ≥ 2, DTISP[t, s] ⊆ ΣkTIME[(tsk−1)1/k].

Proof. When b = (t/s)1/k, the overall runtime of the Lemma 2.7 simulation
is minimized, resulting in the corollary. ¤

For lower bounds involving co-nondeterministic machines, we use an anal-
ogous simulation, which was also observed by Fortnow and Van Melkebeek.
Similar to with Lemma 2.7, one can show that for k ≥ 2, coNTISP[nc, no(1)] ⊆
Π2k−1TIME[nc/k]: (k − 1) pairs of two alternations (universally guessing nc/k

configurations, then existentially picking one) are used to cut down the simula-
tion time of a block of the computation by a kth root, and a final ∀ quantifier
guesses the nc/k co-nondeterministic steps taken in a block.

Lemma 2.10. (Fortnow and Van Melkebeek (7)) For time constructible
t(n) ≥ n and b(n) such that 1 ≤ b(n) ≤ t(n), and all k ≥ 1, coNTISP[t, to(1)] ⊆
Π2k−1TIME[t1/k+o(1)].

3. New Time-Space Lower Bounds for SAT

We begin by showing a n1.6616 time lower bound for deterministic RAMs using
no(1) space. The proof of this lower bound does not use any new tools, but
rather relies solely on a new style of argument, introduced in Section 1.7 and
outlined in the next section.

3.1. Intuition. As mentioned in Section 1.7, the idea behind our new lower
bounds is to derive a sequence of “switching lemmas”, where each new lemma
invokes all of the previous lemmas in its derivation. Here we make that idea
more precise, in the specific context of time-space lower bounds on nondeter-
minism.

If nondeterministic time n can be simulated in deterministic time nc, then
by Lemma 2.6 it follows that ΣkTIME[n] ⊆ Σk−1TIME[nc]. A fundamental
observation behind our results is that, if we further assume nondeterministic
time n is in deterministic time nc and space no(1) for c < 2, this not only implies
that ΣkTIME[n] can be efficiently simulated by a Σk−1 machine, but also that
the runtime for this simulation is faster than nc. Moreover, as k increases,
the implied simulation gets faster for appropriately small c. This simulation
can be used to improve item (3) from the four-step scheme (the “alternation
removal”).

For an example of the idea, we give a simple proof that NTIME[n] *
DTISP[nc, no(1)] for c <

√
2. First, assume the contrary. Then by the ma-
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chinery presented in the previous section,

Σ2TIME[n] ⊆ NTIME[nc] ⊆ DTISP[nc2 , no(1)]

⊆ Π2TIME[n
c2

2
+o(1)] ⊆ Π2TIME[o(n)],

a contradiction. (The first inclusion follows from the Alternations for Time
Lemma, the second follows by assumption, and the third by Fortnow and Van
Melkebeek’s simulation.)

Consider if we let c ≥ √
2. Then the resulting derivation

Σ2TIME[n] ⊆ Π2TIME[n
c2

2
+o(1)]

is not quite a contradiction, but it is at the very least a lemma that, in conjunc-

tion with Lemma 2.6, implies ΣkTIME[n] ⊆ Σk-1TIME[n
c2

2
+o(1)], for all k ≥ 3.

Provided that c < 2, this is stronger than ΣkTIME[n] ⊆ Σk-1TIME[nc]. The
lemma can then be used to get an even tighter inclusion for Σ3 in Π3, in par-
ticular

Σ3TIME[n] ⊆ Σ2TIME[n
c2

2
+o(1)] ⊆ DTISP[n

c4

2
+o(1), no(1)] ⊆ Π3TIME[n

c4

6
+o(1)].

If c4 < 6, we have a contradiction. Otherwise, the above inclusion between
Σ3 and Π3 can be used to prove a relation between Σ4 and Π4. An inductive
strategy for improving lower bounds naturally arises: derive increasingly better
Πk simulations of Σk using the previous simulations obtained, and take c to be
the largest constant that implies ΠkTIME[n] ⊆ ΣkTIME[o(n)] for some k. In
many cases, this particular attack yields better lower bounds than previous
approaches, as we shall see throughout the paper.

3.2. First SAT Lower Bound. We now present a more formal exposition
of the above ideas, proving a n1.6616 time lower bound for SAT on no(1) space
machines. The main theorem of this section is the following.

Theorem 3.1. For every integer k ≥ 2 and c ≥ 1 such that c < f(k),
NTIME[n] * DTISP[nc, no(1)], where f(k) :=

∏k−1
j=1(1 + 1/j)1/2j

.

Let us first observe some properties of the f function.

Lemma 3.2. f(k) is monotone increasing and converges to a value greater than
1.6616.
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Proof of Lemma 3.2. As (1 + 1/j)1/2j
> 1 for all j, it is evident that

f(k) is monotone increasing. Observe that (1 + 1/j)1/2j ≤ exp( 1
j·2j ), so f(k) ≤

exp(
∑k−1

j=1
1

j·2j ). As this sum converges, f(k) converges also. Computation of

f(12) suffices to show f(k) > 1.6616. ¤
Corollary 2.2, Theorem 3.1, and Lemma 3.2 immediately imply Theorem 1.1

from the Introduction, i.e. the n1.6166 time-space lower bound for SAT.
We use the inductive argument described in previous sections to prove a

relation between Σk and Πk for all k ≥ 2, from which the theorem follows.
Define an expression e by the inductive definition

(3.3) e(2) :=
c2

2
, e(k) :=

c2

k

(
k−1∏
i=1

e(i)

)
.

Lemma 3.4. Assume

NTIME[n] ⊆ DTISP[nc, no(1)] (∗)
holds for some c ≥ 1, and let k ≥ 2 be an integer. If e(i) ≥ 1 for all i ∈
{2, . . . , k − 1}, then

ΣkTIME[n] ⊆ ΠkTIME[ne(k)+o(1)].

Proof. By induction. The case k = 2 is exactly the n
√

2 lower bound of
Section 3.1. We revisit it for completeness. Assume (∗) holds for c > 1; then

Σ2TIME[n] ⊆ DTISP[nc2 , no(1)] ⊆ Π2TIME[nc2/2+o(1)] = Π2TIME[ne(2)+o(1)],

where the last inclusion follows from Corollary 2.9. Observe this is precisely
what we derived earlier in Section 3.1.

Induction Hypothesis: Assume for all i ∈ {2, . . . , k − 1} that e(i) ≥ 1 and
ΣiTIME[n] ⊆ ΠiTIME[ne(i)+o(1)].

We now prove the theorem for general k. The “Alternations For Time” Lemma
(Lemma 2.6) and induction hypothesis imply that

Σ`TIME[n] ⊆ Σ`−1TIME[ne(`−1)+o(1)], for ` ∈ {2, . . . , k − 1}.
We therefore have by padding (which is possible since each e(i) ≥ 1)

ΣkTIME[n] ⊆ Σk−1TIME[ne(k−1)+o(1)]

⊆ Σk−2TIME[n(e(k−1)+o(1))(e(k−2)+o(1))] ⊆ · · · ⊆ Σ2TIME[n
∏k−1

i=2 (e(i)+o(1))].
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But we also have

Σ2TIME[n
∏k−1

i=2 (e(i)+o(1))] ⊆ NTIME[nc
∏k−1

i=2 (e(i)+o(1))]

⊆ DTISP[nc2
∏k−1

i=2 (e(i)+o(1)), no(1)] ⊆ ΠkTIME[n
c2

k

∏k−1
i=2 (e(i)+o(1))]

⊆ ΠkTIME[ne(k)+o(1)],

where the penultimate inclusion follows from Corollary 2.9 (Fortnow and Van
Melkebeek’s simulation), and the last inclusion follows by definition of e(k). ¤

Proof of Theorem 3.1. Let k′ be the smallest integer such that c < f(k′);
such a k′ exists since f is monotonically increasing (Lemma 3.2). Consider when
k′ = 2. If we assume NTIME[n] ⊆ DTISP[nc, no(1)], then Lemma 3.4 implies

Σ2TIME[n] ⊆ Π2TIME[ne(2)+o(1)] = Π2TIME[nc2/2+o(1)]. (∗)

Now if c < 21/2 = (1+1/1)1/2 = f(2), then e(2) < 1. Therefore (∗) contradicts
the “No Complementary Speedup” Theorem (Theorem 2.4), and this concludes
the base case. Otherwise, observe that c ≥ 21/2 implies e(2) ≥ 1. In fact, we
have the following arithmetic relationship between the expressions e and f .

Claim 3.5. For all i, e(i) ≥ 1 ⇐⇒ c ≥ f(i).

Proof of Claim 3.5. Recall that f(k) :=
∏k−1

j=1(1+1/j)1/2j
, and e(1) := 1,

e(k) := c2

k

(∏k−1
i=1 e(i)

)
.

First, we claim that e(i) = c2
i−1

i!
∏i−2

j=2(j!)
2i−j−2 follows from a proof by induction.

The denominator can be simplified further to get e(i) = c2
i−1

i·∏i−1
j=2 j2i−j−1 .

For all i, let ci be the unique number in (1, 2) such that e(i) = 1 when
c = ci, i.e. (ci)

2i−1
= i ·∏i−1

j=2 j2i−j−1
. It suffices for us to show that ci = f(i).

Observe

(ci−1)
2i−1

= ((ci−1)
2i−2

)2 = (i− 1)2 ·
i−2∏
j=2

j2i−j−1

by definition of ci−1. Hence

(
ci

ci−1

)2i−1

=
i ·∏i−1

j=2 j2i−j−1

(i− 1)2
∏i−2

j=2 j2i−j−1
= i/(i− 1),
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so ci

ci−1
=

(
i

i−1

)1/2i−1

. Therefore,

ci = (ci/ci−1)(ci−1/ci−2) · · · (c3/c2)c2

=
i∏

j=2

(
1 +

1

j − 1

) 1

2j−1

=
i−1∏
j=1

(
1 +

1

j

) 1

2j

= f(i).

¤

Claim 3.5 and our choice of k′ implies that k′ is the smallest integer such
that e(k′) < 1. Therefore for all i ≤ k′ − 1 we have that e(i) ≥ 1, so Lemma
3.4 applies. Namely,

Σk′TIME[n] ⊆ Πk′TIME[ne(k′)+o(1)]. (∗∗)

However, (∗∗) contradicts the “No Complementary Speedup” Theorem (Theo-
rem 2.4), since e(k′) < 1. This completes the proof of Theorem 3.1. ¤

The mechanics of the above proof also demonstrate a new time-space trade-
off for SAT.

Corollary 3.6. For all c < 1.66 there is a d ∈ (0, 1) such that SAT is not in
DTISP[nc, nd].

Proof. (Sketch) In the above proof, one can replace the no(1) space bound
by nd for a sufficiently small d > 0. The time bounds of the alternating
simulations increase only by an additive factor of qkd in the exponents, where
qk is a constant that depends on the number of alternations. ¤

3.3. From n1.661 to n1.732: Conditional Speedups of DTISP. Fortnow
and Van Melkebeek’s result (Corollary 2.9, of Lemma 2.7) that DTISP[t, to(1)] ⊆
ΠkTIME[t1/k+o(1)] is an unconditional one, whereas all other inclusions we de-
rived in the above actually depended on the assumption that NTIME[n] ⊆
DTISP[nc, no(1)]. Here we show how to carefully exploit this assumption to get

DTISP[t, to(1)] ⊆ Π2TIME[t1/(2+δ)+o(1)]

for some δ > 0 that depends on the constant c < 2. This new containment
allows us to push the SAT lower bound above n

√
3.
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Lemma 3.7. Let c ∈ (1, 2). Define d(1) := 2, d(k) := 1+ d(k−1)
c

. If NTIME[n] ⊆
DTISP[nc, no(1)] then for all k ∈ N, DTISP[nd(k), no(1)] ⊆ Π2TIME[n1+o(1)].

Let us briefly outline how the proof of the lemma goes. As the statement
of the lemma suggests, it is an inductive argument, but of a different kind
than before. First we use the containment of nondeterministic linear time in
DTISP[nc, no(1)] to obtain

NTIME[n`] ⊆ Π2TIME[n1+o(1)]

for some ` > 1. We show that this containment can be used to get a better
simulation of DTISP in Π2TIME than the known one. In particular,

DTISP[nd, no(1)] ⊆ Π2TIME[n1+o(1)],

for some d > 2. This new simulation can in turn be used to obtain

NTIME[n`′ ] ⊆ Π2TIME[n1+o(1)]

for some `′ > `. That is, the two containments of DTISP in Π2TIME and
NTIME in Π2TIME can mutually improve upon each other, and the amount of
improvement that can be achieved depends on the constant c.

Proof of Lemma 3.7. By induction on k. The k = 1 case is trivial since
DTISP[n2, no(1)] ⊆ Π2TIME[n1+o(1)] follows unconditionally.

Suppose that both NTIME[n] ⊆ DTISP[nc, no(1)] and DTISP[nd(k), no(1)] ⊆
Π2TIME[n1+o(1)]. By padding and the inductive hypothesis (note d(k) ≥ 2 for
all k) we have

NTIME[nd(k)/c] ⊆ DTISP[nd(k), no(1)] ⊆ Π2TIME[n1+o(1)]. (∗)

We use this inclusion to get a better speedup of DTISP in Π2TIME[n1+o(1)].
Consider a Π2 simulation of DTISP[n1+d(k)/c, no(1)], where we only guess O(n)
bits (i.e. n1−o(1) configurations) in the universal quantifier. (Formally, we are
invoking Lemma 2.7, with b = n1−o(1).) Written as a first-order logic sentence,
the Π2 simulation looks like:

( ∀ configurations C1, . . . , Cn1−o(1) of M on x
s.t. Cn1−o(1) is rejecting

)
(∃i ∈ {1, . . . , n1−o(1) − 1})

[Ci does not lead to Ci+1 in nd(k)/c+o(1) time].
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The (∃i · · · )[· · · ] part in the above sentence corresponds to an NTIME com-
putation that takes an input of O(n) bits (the input x, plus the list of con-
figurations) and runs in nd(k)/c+o(1) time. Hence, by inclusion (∗), this nonde-
terministic computation can be replaced with a Π2TIME[n1+o(1)] computation.
Therefore DTISP[n1+d(k)/c, no(1)] can be simulated by a computation of the form:

( ∀ configurations C1, . . . , Cn1−o(1) of M on x
s.t. Cn1−o(1) is rejecting

)
(∀y, |y| = a|x|1+o(1))

(∃z, |z| = a|z|1+o(1))[R(C1, . . . , Cn1−o(1) , x, y, z)],

for some deterministic linear time relation R and constant a > 0. That is,
DTISP[nd(k+1), no(1)] is in Π2TIME[n1+o(1)]. ¤

Corollary 3.8. Let c ∈ (1, 2). If NTIME[n] ⊆ DTISP[nc, no(1)] then for all
ε ∈ (0, 1

c−1
), DTISP[n

c
c−1

−ε, no(1)] ⊆ Π2TIME[n1+o(1)].

(Note we need ε ≤ 1
c−1

, since ε must satisfy c
c−1

− ε ≥ 1.)

Proof. For any c < 2, the sequence {d(k)}k∈N is monotone non-decreasing,
and converges to a constant given by d∞ = 1 + d∞

c
, which is d∞ = c/(c − 1).

Hence for all ε > 0, there is a finite K such that d(K) ≥ c
c−1

− ε. ¤
Notice that Corollary 3.8 can be padded in a standard way.

Corollary 3.9. Let c ∈ (1, 2). If NTIME[n] ⊆ DTISP[nc, no(1)], then for
all time constructible t(n) ≥ n and all ε > 0, DTISP[t(n)

c
c−1

−ε, t(n)o(1)] ⊆
Π2TIME[t(n)1+o(1)].

We are now armed with an additional lower bound tool. If Corollary 3.9 is
combined with the inductive argument from Section 3.2, we see an interesting
result: instead of having Lipton-Viglas’ n

√
2 lower bound as a base case, we

now have something resembling Fortnow-Van Melkebeek’s nφ lower bound as
a base case, with φ being the golden ratio.

More precisely, we know that if NTIME[n] ⊆ DTISP[nc, no(1)] then c ≥ φ,
hence c2 ≥ c/(c− 1)− ε for all ε > 0. Then, for all ε > 0 and sufficiently small
ε2 > 0, there is an ε1 > 0 such that

Σ2TIME[n] ⊆ DTISP[nc2 , no(1)] ⊆ DTISP[
(
nc2·( c−1

c
+ε1)

)c/(c−1)−ε

, no(1)]

⊆ DTISP[
(
nc(c−1)+ε2

)c/(c−1)−ε
, no(1)]

⊆ Π2TIME[nc·(c−1)+ε2+o(1)],
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where the penultimate inclusion follows by taking ε1 = ε2/c
2, and the last

inclusion follows from Corollary 3.9. Observe that this new inclusion of Σ2

linear time in Π2 time is superior to the previously derived Σ2TIME[n] ⊆
Π2TIME[nc2/2+o(1)] inclusion, for all c < 2. More precisely, c(c − 1) < c2/2
for all c ∈ (1, 2), and this is the source of our lower bound improvement.

Proceeding inductively as before, we can derive for all sufficiently small
ε3 > 0 that

Σ3TIME[n] ⊆ Σ2TIME[nc·(c−1)+ε2+o(1)] ⊆ DTISP[nc3·(c−1)+ε2c2+o(1), no(1)]

⊆ Π3TIME[n
c3·(c−1)

3
+ε3+o(1)],

by setting ε2 = 3ε3/c
2.

Similarly, for all sufficiently small ε4 > 0 we can derive

Σ4TIME[n] ⊆ Σ3TIME[n
c3·(c−1)

3
+ε3+o(1)] ⊆ Σ2TIME[n

c4·(c−1)2

3
+c(c−1)ε3+o(1)]

⊆ DTISP[n
c6·(c−1)2

3
+c3(c−1)ε3+o(1), no(1)]

⊆ Π4TIME[n
c6·(c−1)2

12
+ε4+o(1)],

by setting ε4 = 4ε3/(c
3(c− 1)).

We can formally state the relation between Σk and Πk for general k as
follows. Define g(2) := c(c− 1), and for k ≥ 3,

g(k) :=
c3·2k−3

(c− 1)2k−3

k · (∏k−1
i=3 i2(k−1)−i)

.

Observe that g(3) = c3(c− 1)/3 and g(4) = c3·2(c− 1)2/(4 · 3) = c6(c− 1)2/12.

Lemma 3.10. Assume NTIME[n] ⊆ DTISP[nc, no(1)] holds for some c ≥ 1, and
let k ≥ 2 be an integer. If g(i) ≥ 1 for all i ∈ {2, . . . , k − 1}, then

ΣkTIME[n] ⊆ ΠkTIME[ng(k)+o(1)].

Proof. By induction on k. ¤

Finally, we are in position to improve our previous lower bound for SAT
(Theorem 1.2) to Ω(n1.7327) time on subpolynomial space machines.

Proof of Theorem 1.2. By Corollary 2.2, it suffices to show NTIME[n] *
DTISP[n1.7327, no(1)]. Assuming NTIME[n] ⊆ DTISP[nc, no(1)], we wish to find
the largest c possible such that g(k) < 1 for some k, while g(k′) ≥ 1 for all
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k′ < k. (Note that, as with the function f , the function g is also monotone de-
creasing.) By Lemma 3.10, such a c implies that ΣkTIME[n] ⊆ ΠkTIME[o(n)],
and therefore is a contradiction. Observe that the function g(k) can be simpli-
fied to

g(k) =
c3·2k−3

(c− 1)2k−3

k · (32k−4 · 42k−5 · 52k−6 · · · (k − 1))

=

(
c3(c− 1)

k2−k+3 · (32−1 · 42−2 · 52−3 · · · (k − 1)2−k+3)

)2k−3

.

Now, g(k) < 1 if and only if

g′(k) :=
c3(c− 1)

k2−k+3 · (32−1 · 42−2 · 52−3 · · · (k − 1)2−k+3)
< 1,

so it suffices to analyze the latter expression.
The denominator of g′(k) numerically converges to 3.81213 · · · as k → ∞.

Therefore the calculation of c reduces to finding the positive root of c3 ·(c−1) =
3.81213, or c ≈ 1.7327. ¤

A straightforward application of the methods of Tourlakis (25) further yields
a lower bound on non-uniform machines for SAT (we use the standard notation
of C/f(n) to denote class C augmented with advice strings of length f(n) on
inputs of length n). We omit the details.

Corollary 3.11. NTIME[n] * DTISP[n1.7327, no(1)]/no(1).

4. Better Lower Bounds for Alternating Time

The method can also be used to improve known lower bounds for alternating
linear time. Here, we just show how the inductive argument extends to goes
for Σ2 and Σ100— the other cases are extremely similar.

4.1. Deterministic RAMs. We begin by showing the Σk time lower bounds
for small space deterministic RAMs. An argument similar to the one of Section
4.2 can be applied by proving a simple generalization of Lemma 3.7.

Lemma 4.1. Let ` > 0 be an integer and let c < ` + 1. Define d′(1) := ` + 1,

d′(k) := ` + d′(k−1)
c

. If Σ`TIME[n] ⊆ DTISP[nc, no(1)], then for all k ∈ N,

DTISP[nd′(k), no(1)] ⊆ Π`+1TIME[n1+o(1)].
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Observe when ` = 1, the lemma is equivalent to Lemma 3.7. The proof for
arbitrary ` is analogous. We sketch it for completeness.

Proof of Lemma 4.1. (Sketch) The case k = 1 follows from Lemma 2.7.
For k > 1, the induction hypothesis implies

(4.2) Σ`TIME[nd′(k−1)/c] ⊆ DTISP[nd′(k), no(1)] ⊆ Π`+1TIME[n1+o(1)].

Essentially, we rely on the flexibility of the alternating simulation of DTISP

from Lemma 2.7. Consider a DTISP[n`+
d′(k−1)

c , no(1)] computation simulated in
Σ`+1 along the lines of Lemma 2.7, where the first ` quantifiers each guess n
configurations (i.e. b = n), the (` + 1)th quantifier picks a configuration from
the `th quantifier, and the remaining computation is a DTISP[nd′(k−1)/c, no(1)]
computation:

(∃ n configurations)(∀i1 ∈ [n])

(∀ n configurations)(∃i2 ∈ [n]) · · · (Qi` ∈ [n]))D(x, . . .),

where D runs in nd′(k−1)/c time and no(1) space, and Q = ∃ if ` is even and
Q = ∀ if ` is odd.

But (4.2) implies that we can replace the (∀i1 · · · ) · · ·D(x, · · · ) part of
the above with a Π`+1TIME[n1+o(1)] computation. Doing so, we find that

DTISP[n`+
d′(k−1)

c , no(1)] ⊆ Π`+1TIME[n1+o(1)]. ¤

Taking the limit of the sequence {d′(k)}k∈N yields the following corollary.

Corollary 4.3. For ` and c as the above, If Σ`TIME[n] ⊆ DTISP[nc, no(1)],

then for all sufficiently small ε > 0, DTISP[n`· c−ε
c−1 , no(1)] ⊆ Π`+1TIME[n1+o(1)].

Theorem 4.4. For all k ≥ 2, Σ2TIME[n] * DTISP[nc, no(1)], for c < 2.788.

We briefly sketch the argument. First observe that if we assume the con-
trary, then Σ2TIME[n] ⊆ DTISP[nc, no(1)] ⊆ Π2TIME[nc/2+o(1)]. Thus c ≥ 2,

and by Corollary 4.3, DTISP[n2· c−ε
c−1 ] ⊆ Π3TIME[n1+o(1)] for small ε > 0.

Hence

Σ3TIME[n] ⊆ Σ2TIME[nc/2+o(1)] ⊆ DTIME[nc2/2+o(1)]

⊆ DTIME[
(
n

c(c−1)
4

+ε′
)2 c

c−1
−ε

]

⊆ Π3TIME[n
c(c−1)

4
+ε′ ]
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for arbitrarily small ε′ > 0 and appropriate ε > 0. Therefore, to avoid a
contradiction, it must be that c(c − 1) ≥ 4, or c ≥ 2.56. Continuing with
Σ4, Σ5, etc., one can numerically derive that c > 2.788 is needed to avoid a
contradiction.

The columns of Table 1 for deterministic RAMs can be completed in similar
fashion. A general lower bound result can be stated as follows.

Theorem 4.5. Let ` ≥ 2 be an integer. Let c > 1 be such that for some
integer k ≥ 2,

c2k

< (` + k)
k−1∏
i=0

(` + i)2k−i−1

.

Then Σ`TIME[n] * DTISP[nc, no(1)].

Proof. (Sketch) The induction begins with:

Σ`TIME[n] ⊆ DTISP[nc, no(1)] ⊆ Π`TIME[nc/`+o(1)]

and

Σ`+1TIME[n] ⊆ Σ`TIME[n
c
`
+o(1)] ⊆ DTISP[n

c2

`
+o(1), no(1)]

⊆ Π`+1TIME[n
c2

`·(`+1)
+o(1)].

In general, one can prove that for k ≥ `,

Σk+`TIME[n] ⊆ Πk+`TIME[ne`(k)]

where e`(0) = c/`, e`(k) = (e`(k− 1))2 · (k− 1)/k. An explicit expression for e`

is given by

e`(k) =
c2k

(` + k) ·∏k−1
i=0 (` + i)2k−1−i

.

¤

For example, the n100.99 time lower bound for Σ100 can be derived using The-

orem 4.5. When k > 12 and c < 100.99, the expression c2
k

(100+k)·∏k−1
i=0 (100+i)2k−1−i

is less than 1.

A simple expression for a lower bound on Σ`TIME[n] is given by the following
corollary, which is already an improvement over Fortnow and Van Melkebeek’s
n`−ε lower bound for Σ`TIME[n]. In the following, we prove Corollary 1.3 from

Section 1.4, which claims that Σ`TIME[n] * DTISP[n`(1+1/`)1/2
, no(1)].
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Proof of Corollary 1.3. First, we claim that

(4.6) `2k

(
1 +

1

`

)2k−1

< (` + k) ·
k−1∏
i=0

(` + i)2k−1−i

.

Observe that the corollary follows from (4.6), due to Theorem 4.5 and the fact
that

c = ` ·
(

1 +
1

`

)1/2

=⇒ c2k

= `2k

(
1 +

1

`

)2k−1

< (` + k) ·
k−1∏
i=0

(` + i)2k−1−i

.

We now prove (4.6). For k ≥ 3, the following sequence of inequalities holds:

(` + k) ·
k−1∏
i=0

(` + i)2k−1−i

= `(1 + k/`) ·
k−1∏
i=0

`2k−1−i

(1 + i/`)2k−1−i

= `1+
∑k−1

i=0 2k−1−i

(1 + k/`) ·
k−1∏
i=0

(1 + i/`)2k−1−i

> `1+2k−1(1+1/2+1/4+···+1/2k−1)(1 + 1/`)1+2k−2+···+2+1

= `1+2k−1(2−1/2k−1)(1 + 1/`)2k−1

= `2k

(1 + 1/`)2k−1

.

¤
While the above bound is in a simple form, we note that it is still some-

what weak for large values of `. In particular, we know (empirically, from
analysis of ` = 100) that the lower bound of Theorem 4.5 approaches Ω(n`+1)
for Σ`TIME[n] when ` is large, while Corollary 1.3 only implies an Ω(n`+1/2−ε)
lower bound for Σ`TIME[n] when ` is sufficiently large.

4.2. Co-Nondeterministic RAMs. Our method can also be used to derive
lower bounds for for Σ`TIME[n] on co-nondeterministic machines using no(1)

space. We only sketch how these arguments go, since they are similar to the
above. Our purpose here is not to prove the best possible bound, but to
demonstrate the lines of reasoning. We shall invoke Lemma 2.10, Fortnow and
Van Melkebeek’s alternating simulation of coNTISP.

First we look at the case when ` = 2. Assume for contradiction that
Σ2TIME[n] ⊆ coNTISP[nc, no(1)]. This implies that, for k ≥ 1, two alterna-
tions can be removed from a Σk+2 computation with cost c in the exponent



28 Ryan Williams

(the proof of this is similar to Lemma 2.6). We derive

Σ4TIME[n] ⊆ Σ2TIME[nc] ⊆ coNTISP[nc2 , no(1)] ⊆ Π3TIME[nc2/2+o(1)].

Now assuming c ≥ √
2, this implies Σ5TIME[n] ⊆ Σ3TIME[nc2/2+o(1)]. In partic-

ular, the Π4TIME[n] part of a Σ5TIME[n] computation can be replaced with a
Σ3TIME[nc/2+o(1)] computation, leaving a Σ3TIME[nc/2+o(1)] computation. Thus

Σ6TIME[n] ⊆ Σ4TIME[n
c2

2
+o(1)] ⊆ Σ2TIME[n

c3

2
+o(1)]

⊆ coNTISP[n
c4

2
+o(1), no(1)]

⊆ Π5TIME[n
c4

6
+o(1)].

Hence when c4 ≥ 6, Σ7TIME[n] ⊆ Σ5TIME[nc4/6+o(1)] by similar argument as
above, and

Σ8TIME[n] ⊆ Σ6TIME[n
c4

6
+o(1)] ⊆ Σ4TIME[n

c2

2
· c4

6
+o(1)]

⊆ coNTISP[n
c8

12
+o(1), no(1)]

⊆ Π7TIME[n
c8

48
+o(1)],

which implies Σ9TIME[n] ⊆ Σ7TIME[nc8/48+o(1)]. The acute reader will notice
that the sequence c2/2, c4/6, c8/48 corresponds precisely to the expressions
e(2), e(3), and e(4) where e is defined by equation (3.3) in the n1.6616 SAT
lower bound of Section 3.2. Indeed, it can be proved inductively that

Σ2k+1TIME[n] ⊆ Σ2k−1TIME[ne(k)+o(1)].

Therefore if c < 1.6616, we obtain a contradiction with a time hierarchy theo-
rem.

Let us now look at a more general case: lower bounds on Σ`TIME[n] when `
is odd. If ` = 2k−1 and Σ`TIME[n] ⊆ coNTISP[nc, no(1)], then `+1 alternations
from an alternating time t computation can be removed at cost tc, and

Σ`TIME[n] ⊆ coNTISP[nc, no(1)] ⊆ Π`TIME[nc/k+o(1)].

Thus for ` + 2 = 2(k + 1)− 1,

Σ`+1TIME[n] ⊆ Σ`TIME[n(c/k)+o(1)] ⊆ coNTISP[nc(c/k)+o(1), no(1)]

⊆ Π`+2TIME

[
n

c2

k(k+1)
+o(1)

]
,
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and similarly

Σ`+4TIME[n] ⊆ Σ`+2TIME

[
n

(
c3

k2(k+1)

)2
+o(1)

]

⊆ coNTISP

[
n

c(c/k)2
(

c3

k2(k+1)

)2
+o(1)

, no(1)

]

⊆ Π`+4TIME

[
n

c9

k6(k+1)2(k+2)
+o(1)

]
.

In general, the expression for the exponent derived in the jth inclusion
satisfies the recurrence r(1) = c/k, r(j) = c

k+j−1
·∏j−1

i=1 r(i)2. We can simplify
r to

r(j) = r(j − 1)2 · c

k + j − 1
·

j−2∏
i=1

r(i)2

=

(
c2

(k + j − 2)2
·

j−2∏
i=1

r(i)4

)
· c

k + j − 1
·

j−2∏
i=1

r(i)2

=
c3

(k + j − 2)2(k + j − 1)
·

j−2∏
i=1

r(i)6 = r(j − 1)3 · (k + j − 2)

(k + j − 1)
.

For ` = 3 (k = 1) and ` = 99 (k = 50), the recurrence r implies a lower
bound of n2.390 and n50.49, respectively.

In principle, one can improve further upon these bounds by developing
conditional speedups of coNTISP in ΠkTIME, along the lines of Section 3.3.
However, we do not feel that this exercise yields enough new insight into our
techniques to be worth the reader’s trouble— at best, the resulting improve-
ments in the lower bound exponent are fractional.

4.3. Remark on Solving Tautologies With Nondeterminism. To end
this section, we briefly discuss the problem of solving Boolean tautologies on
nondeterministic machines with small space. Here, our methods do not appear
as effective as what is already known. The best lower bound known5 says
that this problem requires at least n

√
2−ε time given no(1) space, and is due

to Fortnow and Van Melkebeek (7). We have found an alternative inductive

5The preliminary version of this paper in CCC’05 stated that its lower bound of n1.337

was the best known. At the time, we did not realize that Fortnow and Van Melkbeek had
proven a better result.
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argument that also attains the n
√

2 bound, but it does not take the form of the
above work and so we omit it here.

After much effort, we have not found a way to improve upon the n
√

2 lower
bound with our techniques, although we strongly believe this to be possible.
The proof of the result in (7) appears to rely critically on the hierarchy result
NTIME[p(n)] * coNTIME[o(p(n))], for infinitely many polynomials p(n). How-
ever, our style of argument looks to be only truly effective when can formulate
the contradictions in terms of inclusions among classes running in linear (or
nearly linear) time.

5. Improving Time Lower Bounds for a Strong Form of
Off-Line Turing Machine

The inductive method makes it also possible to strengthen time lower bounds
for a type of Turing machine that is a hybrid between a random access machine
and a one-tape machine, as described in Section 2.1. Recall this model has read-
only random access to the input, an no(1)-space random-access storage, and an
unbounded one-dimensional sequential-access worktape.

Previously, an n
√

3/2−ε ≈ n1.22 time lower bound for SAT was provable
for this machine model, using a simulation due to Maass and Schorr (15)
(independently rediscovered recently by Van Melkebeek and Raz (16)). An

n
4
√

3/2−ε ≈ n1.1 bound proved by Kannan (12) in 1983 for a more restricted
machine model can be easily seen to hold for the above as well. Our improve-
ment pushes the lower bound to greater than n5/4. More precisely, we prove
Theorem 1.4, which establishes

NTIME[n] * DTIME1[n
1.268].

Our main tool is a “speed up” simulation of DTIME1, implicitly proven
by Van Melkebeek and Raz. In the context of lower bounds, this speedup
simulation represents item (2) in the four-step scheme described in Section 1.2.
A speedup lemma of the kind we need was first proved by Maass and Schorr
for sequential tapes, but examination of the proof shows that the result is not
affected by the addition of a random access no(1)-space storage and adding
random-access to the input tape.

Lemma 5.1. (Maass and Schorr (15))
For all k ≥ 1, DTIME1[t] ⊆ Σ2kTIME[t(k+1)/(2k+1)+o(1)].

Later, Van Melkebeek and Raz independently proved a tighter version of
this speedup. Note when k = 1, the two results are the same.
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Lemma 5.2. (Implicitly in Van Melkbeek and Raz (16))
For all k ≥ 1, DTIME1[t] ⊆ Σk+1TIME[t(k+1)/(2k+1)+o(1)].

At a high level, the simulation of DTIME1 works by guessing and verify-
ing carefully chosen crossing sequences of the one-dimensional read-write tape,
which can be described in fewer bits than the entire tape’s content. Note by
definition of the machine model, each crossing in a sequence (that is, each con-
figuration of the rest of the machine) can be described in no(1) bits, since the
rest of the machine can be described by the tape heads, the state, and the
content of the small-space storage. The speedup of DTIME1 in Σk+1 is used to
prove a time lower bound for nondeterminism, just as the speedup of DTISP in
Σk was used earlier.

Proof of Theorem 1.4. Suppose NTIME(n) ⊆ DTIME1[n
c]. Then

Π2TIME[n] ⊆ coNTIME[nc] ⊆ DTIME1[n
c2 ] ⊆ Σ2TIME[n

2
3
c2+o(1)].

Clearly there is a contradiction when c <
√

3
2

(the previously known lower

bound). If this is not the case, then as before we can use the derived inclusion

Π2TIME[n] ⊆ Σ2TIME[n
2
3
c2+o(1)]. The induction hypothesis becomes

For all i = 2, . . . , k − 1, ΠiTIME[n] ⊆ ΣiTIME[nh(i)+o(1)],

where h(1) := c, h(k + 1) :=
(

k+1
2k+1

c2
) ∏k

i=1 h(i). Thus, applying Lemma
5.2,

Πk+1TIME[n] ⊆ ΠkTIME[nh(k+1)+o(1)] ⊆ · · · ⊆ Π2TIME[n
∏k

i=2 h(i)+o(1)]

⊆ DTIME1[n
c2

∏k
i=2 h(i)+o(1)]

⊆ Σk+1TIME[n
(k+1)
2k+1

c2
∏k

i=2 h(i)+o(1)],

so

Πk+1TIME[n] ⊆ Σk+1TIME[nh(k+1)+o(1)].

Simplifying as in previous cases, one can rewrite the recurrence for h to be

h(2) =
2

3
· c2, h(k + 1) =

2k − 1

k
· k + 1

2k + 1
· h(k − 1)2.

Let ck ∈ (1, 2) be such that h(k) = 1 when c = ck. As k → ∞, one can verify
that ck > 1.2684. ¤
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To complete the rest of Table 1 for this machine model, we simply observe
that the same analysis holds, except that the “base case” for e changes. For
example, the proof of the lower bound for Σ2TIME[n] results in the expression
h′(2) = 2c

3
, h′(k + 1) = k+1

k
· 2k−1

2k+1
· h′(k)2, yielding a n1.609 lower bound.

As a final note to this section, it is not clear if one can obtain better condi-
tional speedups of DTIME1 in alternating time, similar to that in Section 3.3.
The alternating simulation of DTIME1 in Lemma 5.2 does not seem to admit
as nice of a tradeoff between the sizes of quantifier segments.

Remark 5.3. Van Melkebeek and Raz gave similar lower bounds for SAT on
co-nondeterministic machines under the same model, as well as lower bounds
when the sequential access tape is k-dimensional for constant k. Our method
can in principle be applied to improve those bounds as well, due to existence
of speedups via alternation.

For example, when the sequential tape is two-dimensional, Van Melkebeek

and Raz prove a n
√

4/3−ε = n1.154... time lower bound for solving SAT. The
above argument can be used to modestly improve this lower bound to n1.173...,
using the fact (again, derivable from Van Melkebeek and Raz’s paper) that time
t in the two-dimensional tape model can be simulated with k + 1 alternations

in t
2k+1
3k+1

+o(1) time.

6. Lower Bounds for Bounded Nondeterminism

We now turn to the problem of proving time-space lower bounds for machines
with bounded nondeterminism. In particular, we prove Theorem 1.6 from the
introduction, which states that for any ε > 0, there is a cε > 1 whereby
NTIBI[n, nε] is not contained in DTISP[ncε , no(1)]. More precisely, the separation
holds when cε < (ε +

√
ε2 + 4)/2.

Theorem 1.6 also holds when the classes are defined with respect to multi-
tape Turing machines. For this reason, we define the classes NTIBIM [t(n), b(n)]
and DTISPM [t(n), s(n)] to be the corresponding complexity classes for multi-
tape Turing machines. Like the separation results for NTIME, Theorem 1.6 is
also tied to lower bounds on an explicit problem, that of satisfying Boolean
circuits with a relatively small number of inputs.

Corollary 1.7. For all k ≥ 1, there exists ck > 1 such that Boolean satisfia-
bility on circuits with n inputs and nk gates requires nk·ck time on a determin-
istic multitape Turing machine using no(1) space.
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Our results here do not use an inductive argument. Instead, they hinge
primarily on the fact that an alternating simulation of DTISP (such as that
appearing in Lipton-Viglas and Fortnow-Van Melkebeek) has the property that
its last quantifier does not guess many bits. An anonymous reviewer pointed out
that this particular property has been exploited before in a different manner–
Fortnow et al. (8) used it to prove lower bounds on NTISP, rather than NTIBI.
Their proofs are similar in nature to ours; the reader is referred to their paper
for details.

Proof of Theorem 1.6. Assume there is an ε > 0, such that for all c > 1,
NTIBI[n, nε] ⊆ DTISP[nc, no(1)]. Fix such a c ∈ (1, 2), to be defined later.
Choose ε′ ∈ (0, min{ε, c/2}) and t(n) ≥ n1/ε′ .

By padding, NTIBI[t, tε] ⊆ DTISP[tc, to(1)] for all c > 1 and t(n) ≥ n. Since
DTISP is closed under complement, we have coNTIBI[t, tε] ⊆ DTISP[tc, to(1)] as
well. By the proof of Lemma 2.7, a time tc and space to(1) machine M can be
simulated by a Σ2 machine that is defined by the sentence:

(∃ configurations C1, . . . , Ctε′ of M on x)(∀i ∈ {1, . . . , tc−ε′ + 1})
[Ci−1 leads to Ci in tc−ε′ time],

where C0 and Ctε′+1 are the initial and accept configurations, respectively.The

(∀i · · · )[· · · ] part of the Σ2 sentence corresponds to a coNTIBI[N (c−ε′)/ε′ , log N ]
computation, where N = tε

′
+ n ∈ O(tε

′
). Therefore the (∀i · · · )[· · · ] part can

be replaced by a DTIME[N c(c−ε′)/ε′ ] computation, by assumption (and the fact
that c− ε′ > ε′, since ε′ < c/2).

Thus the computation represented by the Σ2 sentence above is equivalent
to a computation represented by the sentence:

(∃ configurations C1, . . . , Ctε
′ of M on x) D(x,C1, . . . , Ctε

′ ),

where D is a deterministic computation running in tc(c−ε′) time. However, the
above sentence corresponds to an NTIBI[tc(c−ε′) + tε

′
, tε

′+o(1)] computation.
Hence we obtain

coNTIBI[t, tε] ⊆ NTIBI[tc(c−ε′) + tε
′
, tε

′+o(1)].

Note that ε′ < c/2 < 1, for c < 2. If c(c− ε′) < 1, then we have a contradiction
with Theorem 2.5, as this implies coNTIBI[t, tε] ⊆ NTIBI[t1−γ, tε−γ] for some
γ > 0.

It remains for us to show that there is a c > 1 such that c(c − ε′) < 1.
Note d(d − ε′) = 1 has the unique positive solution d = (ε′ +

√
(ε′)2 + 4)/2.
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Therefore, for any ε′ ∈ (0, 1) it follows that d ∈ (1, 2), so any c ∈ (1, d) suffices.
¤

Notice in the above we needed that c(c−ε′) < 1, ε′ < ε, and ε′ < c/2. Thus
the maximum possible ε and c are ε < 1/

√
2 and c <

√
2. (To see this, note

that c is maximized by making ε′ as large as possible; change the inequalities
to equations, and solve.)

The separation of NTIBI from DTISP has application to real satisfiability
problems, as we now demonstrate.

Lemma 6.1. Fix k ≥ 1. If Boolean satisfiability on circuits with N inputs and
Nk gates and wires is in DTISPM [nc, no(1)] for some c ≥ 1, then NTIBIM [n, n1/k]
is contained in DTISPM [nc · poly(log n), no(1)].

Proof. (Sketch) Suppose the problem stated in the lemma is solvable in nc

time and no(1) space, by multitape TM MC . Let M be an arbitrary multitape
TM using n1/k nondeterministic bits running in O(n) time. Then there exists
a deterministic linear time M ′ such that M(x) accepts iff there is a y of length
|x|1/k such that M ′(x, y) accepts. By the oblivious TM simulation of Pippenger
and Fischer (21), there is a Boolean circuit CM ′ of O(n log n) gates such that
M ′(x, y) accepts iff CM ′(x, y) = 1.

Let CM ′,x be CM ′ with the input bits of x hard-coded. An arbitrary bit
in the description of the Pippenger-Fischer circuit CM ′,x can be computed in
O(poly(log n)) time and O(log n) space on a multitape machine, when the input
tape head is on the proper bit of x (for a reference, cf. Fortnow et al. (8)).
Thus M(x) accepts if and only if there is an input y of length |x|1/k such that
CM ′,x(y) = 1.

Now we define a multitape M ′′ that, on input x, simulates MC(CM ′,x) and
accepts if and only if the simulation does. More precisely, when the simulation
of MC requests a bit of CM ′,x, it is computed in O(poly(log n)) time and O(log n)
space. By assumption on MC and the fact that CM ′,x has O(n log n) gates, M ′′

runs in O(nc · poly(log n)) time and no(1) space. M ′′ is correct since

M(x) accepts ⇐⇒ (∃y : |y| ≤ |x|1/k)[M ′(x, y) accepts]

⇐⇒ (∃y : |y| ≤ |x|1/k)[CM ′,x(y) = 1]

⇐⇒ MC(CM ′,x) accepts ⇐⇒ M ′′(x) accepts.

¤

Corollary 1.7 follows immediately from Theorem 1.6 and Lemma 6.1.
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7. Conclusion

We have demonstrated an inductive method for proving lower bounds on con-
crete NP-complete problems, such as SAT, that utilizes properties of the poly-
nomial hierarchy and existing tools. We also showed how existing lower bound
arguments can get lower bounds on bounded nondeterminism classes, due to
the O(log n)-bit universal quantifier inside of a Σ2TIME simulation of DTISP.

Our approach is extremely general. It is applicable to essentially any lower
bound on ΣkTIME where the class C (shown to be weak) can be sped up us-
ing a constant number of alternations, and this speedup improves when more
alternations are used— a tradeoff between alternations and speedup must be
possible. To illustrate the importance of the last point, observe that our ap-
proach cannot currently be used to improve Paul, Pippenger, Szemeredi, and
Trotter’s NTIME[n] 6= DTIME[n] result, since we do not know a generalization
of DTIME[t] ⊆ Σ4TIME[t/ log∗ t] where a machine using more than four alter-
nations improves upon the t/ log∗ t time simulation of DTIME[t]. (However, we
do know that DTIME[t] ⊆ ATIME[t/ log t] (11; 19), so such a tradeoff may be
possible.)

Concerning further work in this area, it would be interesting to unify our
techniques with those of Fortnow and Van Melkebeek. Their approach seems to
be different from ours in both its capabilities and limitations. We can improve
many of their results— however, they are able to prove an Ω(n

√
2) time lower

bound for SAT on co-nondeterministic subpolynomial space machines and it
seems we cannot do that with our method.

In closing, we believe that we have not yet completely exploited the full
“power of inductive thinking” in our results. The conditional speedup of DTISP
(Lemma 3.7) only works when we assume a subquadratic time algorithm. Thus
it appears that the best time lower bound for SAT that we can obtain with
the tools of this paper is Ω(n2) (assuming subpolynomial space), but this is
not totally clear. It may very well be that a proof of L 6= NP could take a
form similar to the kind of arguments we presented here. Results supporting
or contradicting this suggestion would be of great interest.
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