Time-Space Tradeoffs for Counting NP Solutions Modulo Integers

Ryan Williams

Carnegie Mellon University

Recent progress in understanding the time complexity of hard problems in the space-bounded setting

Recent progress in understanding the time complexity of hard problems in the space-bounded setting

• Time-space tradeoffs for SAT and QUANTIFIED BOOLEAN FORMULAS

[Santhanam'01, Fortnow-Lipton-Van Melkebeek-Viglas'05, W'05, Diehl-Van Melkebeek'06]

Recent progress in understanding the time complexity of hard problems in the space-bounded setting

• Time-space tradeoffs for SAT and QUANTIFIED BOOLEAN FORMULAS

[Santhanam'01, Fortnow-Lipton-Van Melkebeek-Viglas'05, W'05, Diehl-Van Melkebeek'06]

• SAT requires $\Omega(n^{2\cos(\pi/7)}) \approx n^{1.801}$ time on RAMs using $n^{o(1)}$ space

Also holds for VERTEX COVER, HAMILTONIAN PATH, MAX CUT, etc.

Recent progress in understanding the time complexity of hard problems in the space-bounded setting

• Time-space tradeoffs for SAT and QUANTIFIED BOOLEAN FORMULAS

[Santhanam'01, Fortnow-Lipton-Van Melkebeek-Viglas'05, W'05, Diehl-Van Melkebeek'06]

• SAT requires $\Omega(n^{2\cos(\pi/7)}) \approx n^{1.801}$ time on RAMs using $n^{o(1)}$ space

Also holds for VERTEX COVER, HAMILTONIAN PATH, MAX CUT, etc.

Can similar limitations be proved for other problems?

Recent progress in understanding the time complexity of hard problems in the space-bounded setting

• Time-space tradeoffs for SAT and QUANTIFIED BOOLEAN FORMULAS

[Santhanam'01, Fortnow-Lipton-Van Melkebeek-Viglas'05, W'05, Diehl-Van Melkebeek'06]

• SAT requires $\Omega(n^{2\cos(\pi/7)}) \approx n^{1.801}$ time on RAMs using $n^{o(1)}$ space

Also holds for VERTEX COVER, HAMILTONIAN PATH, MAX CUT, etc.

Can similar limitations be proved for other problems?

[Diehl-Van Melkebeek], [Viola] Lower bounds for QSAT with randomized algorithms

Let m be a fixed integer and Π be a combinatorial problem.

Is the number of solutions to a given instance of Π divisible by m?

Let m be a fixed integer and Π be a combinatorial problem.

Is the number of solutions to a given instance of Π divisible by m? MOD_mSAT: For formula F, is the number of solutions divisible by m? [Cai-Hemachandra'92]

Define MOD_mP , for which MOD_mSAT is a complete problem.

Let m be a fixed integer and Π be a combinatorial problem.

Is the number of solutions to a given instance of Π divisible by m? MOD_mSAT: For formula F, is the number of solutions divisible by m? [Cai-Hemachandra'92]

Define MOD_mP , for which MOD_mSAT is a complete problem.

Recent Attention: Fueled by Valiant's accidental algorithms

- For some #P-complete problems,
- Can determine in P if the number of solutions is divisible by 7,
- But MOD_2P -hard to determine if the number of solutions is divisible by 2.

How difficult is MOD_m SAT, in general?

(Is it just as hard as SAT? Is it harder??)

How difficult is MOD_m SAT, in general?

(Is it just as hard as SAT? Is it harder??)

• (Valiant-Vazirani)

RP-reduction from SAT to MOD_m SAT

- (Naik-Regan-Sivakumar) $O(n \cdot \text{poly}(\log n))$ -time randomized reduction from SAT to MOD₂ SAT
- (Toda-Ogihara, Gupta)

 $O(n^{k+1})$ -time randomized 2-sided reduction from $\Sigma_k SAT$ to $MOD_2 SAT$

How difficult is MOD_m SAT, in general?

(Is it just as hard as SAT? Is it harder??)

• (Valiant-Vazirani)

RP-reduction from SAT to MOD_m SAT

- (Naik-Regan-Sivakumar) $O(n \cdot \text{poly}(\log n))$ -time randomized reduction from SAT to MOD₂ SAT
- (Toda-Ogihara, Gupta)

 $O(n^{k+1})$ -time randomized 2-sided reduction from $\Sigma_k SAT$ to $MOD_2 SAT$

Naive Idea For MOD_m SAT Lower Bounds:

Prove lower bounds for MOD_m SAT by applying above reduction(s) and appealing to known SAT lower bounds.

 Can't use Valiant-Vazirani reduction or its offshoots since they're randomized and space-inefficient

- Can't use Valiant-Vazirani reduction or its offshoots since they're randomized and space-inefficient
- Even if we could make them space-efficient, we could only say:

 MOD_m SAT has a fast det. alg. \implies SAT has a fast rand. alg.

But we don't know nontrivial randomized time lower bounds for SAT(!)

- Can't use Valiant-Vazirani reduction or its offshoots since they're randomized and space-inefficient
- Even if we could make them space-efficient, we could only say:

 MOD_m SAT has a fast det. alg. \implies SAT has a fast rand. alg.

But we don't know nontrivial randomized time lower bounds for SAT(!)

• Could we get rid of the randomness?

- Can't use Valiant-Vazirani reduction or its offshoots since they're randomized and space-inefficient
- Even if we could make them space-efficient, we could only say:

 MOD_m SAT has a fast det. alg. \implies SAT has a fast rand. alg.

But we don't know nontrivial randomized time lower bounds for SAT(!)

- Could we get rid of the randomness?
- Derandomizations? We don't know no stinking derandomizations! (But we have good reason to believe they exist [Klivans-Van Melkebeek])

Time-Space LBs for NP \mapsto Time-Space LBs for MOD_mP

Time-Space LBs for NP \mapsto Time-Space LBs for MOD_mP

Transfer Principle for Time-Space Lower Bounds:

If there is an *alternation-trading proof* that

SAT cannot be solved in t time and s space,

Time-Space LBs for NP \mapsto Time-Space LBs for MOD_mP

Transfer Principle for Time-Space Lower Bounds:

If there is an *alternation-trading proof* that

SAT cannot be solved in t time and s space,

then for every $\varepsilon > 0$ and primes $p \neq q$, there is a proof that:

One of MOD_p SAT or MOD_q SAT can't be solved in $t^{1-\varepsilon}$ time and $s^{1-\varepsilon}$ space.

Outline of Talk

- Introduction
- Some Notation
- Some Preliminaries
- Alternation-Trading Proofs
- Transfer Principle

Recall $\mathsf{DTISP}[t, s]$ is the class of problems solvable in time t and space s. Define $\mathsf{DTS}[t] := \mathsf{DTISP}[t^{1+o(1)}, n^{o(1)}].$

Recall $\mathsf{DTISP}[t, s]$ is the class of problems solvable in time t and space s. Define $\mathsf{DTS}[t] := \mathsf{DTISP}[t^{1+o(1)}, n^{o(1)}].$

Notation for Alternating Classes:

- $(\exists f(n)) C$ = class of problems solved by a machine that: \exists -guesses $f(n)^{1+o(1)}$ bits, then runs a C-machine. *Example:* NTIME $[n^{1+o(1)}] = (\exists n)$ DTIME $[n^{1+o(1)}]$.
- $(\forall f(n)) C$ defined similarly.

Recall $\mathsf{DTISP}[t, s]$ is the class of problems solvable in time t and space s. Define $\mathsf{DTS}[t] := \mathsf{DTISP}[t^{1+o(1)}, n^{o(1)}]$.

Notation for Alternating Classes:

- $(\exists f(n)) C$ = class of problems solved by a machine that: \exists -guesses $f(n)^{1+o(1)}$ bits, then runs a C-machine. *Example:* NTIME $[n^{1+o(1)}] = (\exists n)$ DTIME $[n^{1+o(1)}]$.
- $(\forall f(n)) C$ defined similarly.
- $(MOD_m f(n)) C$ = class of problems solved by a machine that: guesses $y : |y| = f(n)^{1+o(1)}$, runs a *C*-machine *N*, **accepts** iff the number of *y* that make *N* accept is divisible by *m*. *Example:* $MOD_m TIME[n^{1+o(1)}] = (MOD_m n) DTIME[n^{1+o(1)}].$

Alternation Speedup Theorem (Trading Time For Alternations)

Alternation Speedup Theorem (Trading Time For Alternations)

 $\begin{array}{ll} & \mathsf{DTISP}[t,s] \subseteq (\exists \ b \cdot s) (\forall \ \log b) \mathsf{DTISP}[t/b,s] \\ & \mathsf{[Fortnow-Van Melkebeek]} & \mathsf{DTISP}[t,s] \subseteq (\forall \ b \cdot s) (\exists \ \log b) \mathsf{DTISP}[t/b,s] \end{array}$

Alternation Speedup Theorem (Trading Time For Alternations)

[Kannan] $\mathsf{DTISP}[t,s] \subseteq (\exists b \cdot s)(\forall \log b)\mathsf{DTISP}[t/b,s]$ [Fortnow-Van Melkebeek] $\mathsf{DTISP}[t,s] \subseteq (\forall b \cdot s)(\exists \log b)\mathsf{DTISP}[t/b,s]$

Proof Sketches:

[Kannan]

Existentially guess configs C_1, \ldots, C_{b+1} of a DTISP machine. Universally guess $i \in [b]$. Accept iff $C_i \vdash^{t/b} C_{i+1}$ and C_1 is initial and C_{b+1} is accepting.

Alternation Speedup Theorem (Trading Time For Alternations)

[Kannan] $\mathsf{DTISP}[t,s] \subseteq (\exists b \cdot s)(\forall \log b)\mathsf{DTISP}[t/b,s]$ [Fortnow-Van Melkebeek] $\mathsf{DTISP}[t,s] \subseteq (\forall b \cdot s)(\exists \log b)\mathsf{DTISP}[t/b,s]$

Proof Sketches:

[Kannan]

Existentially guess configs C_1, \ldots, C_{b+1} of a DTISP machine. Universally guess $i \in [b]$. Accept iff $C_i \vdash^{t/b} C_{i+1}$ and C_1 is initial and C_{b+1} is accepting.

[Fortnow-van Melkebeek]

Universally guess configs C_1, \ldots, C_{b+1} of a DTISP machine. Existentially guess $i \in [b]$. Accept iff $(\neg (C_i \vdash^{t/b} C_{i+1}))$ or C_1 is not initial or C_{b+1} is not rejecting).

A Slowdown Lemma (Trading Alternations For Time)

Idea: The assumption $\mathsf{NTIME}[n] \subseteq \mathsf{DTS}[n^c]$

lets you remove alternations from a computation at little time cost

A Slowdown Lemma (Trading Alternations For Time)

Idea: The assumption $\mathsf{NTIME}[n] \subseteq \mathsf{DTS}[n^c]$

lets you remove alternations from a computation at little time cost

Let $c \ge 1$. **Theorem:** For all $b \ge a \ge 1$, $\mathsf{NTIME}[n] \subseteq \mathsf{DTS}[n^c] \Longrightarrow (\exists n^a)(\forall n^b)\mathsf{DTS}[n^b] \subseteq (\exists n^a)\mathsf{DTS}[n^{bc}]$ and $(\forall n^a)(\exists n^b)\mathsf{DTS}[n^b] \subseteq (\forall n^a)\mathsf{DTS}[n^{bc}]$.

Alternation-Trading Proofs

Alternation-Trading Proofs

An *alternation-trading proof* that $SAT \notin DTS[n^c]$ works by:

- Showing $\mathsf{NTIME}[n] \nsubseteq \mathsf{DTS}[n^c]$
- \bullet Appealing to strong completeness properties of $S\ensuremath{\mathsf{SAT}}$
An *alternation-trading proof* that $SAT \notin DTS[n^c]$ works by:

- Showing $\mathsf{NTIME}[n] \nsubseteq \mathsf{DTS}[n^c]$
- \bullet Appealing to strong completeness properties of $S\ensuremath{\mathsf{SAT}}$

Show $\mathsf{NTIME}[n] \nsubseteq \mathsf{DTS}[n^c]$ by assuming the opposite, and applying three rules in a way that $\mathsf{DTS}[t] \subseteq \mathsf{DTS}[t^{1-\varepsilon}]$ (a contradiction) can be derived:

An *alternation-trading proof* that $SAT \notin DTS[n^c]$ works by:

- Showing $\mathsf{NTIME}[n] \nsubseteq \mathsf{DTS}[n^c]$
- \bullet Appealing to strong completeness properties of $S\ensuremath{\mathsf{SAT}}$

Show $\mathsf{NTIME}[n] \nsubseteq \mathsf{DTS}[n^c]$ by assuming the opposite, and applying three rules in a way that $\mathsf{DTS}[t] \subseteq \mathsf{DTS}[t^{1-\varepsilon}]$ (a contradiction) can be derived:

1. (Speedup) $\mathsf{DTS}[n^b] \subseteq (\exists n^a) (\forall \log n) \mathsf{DTS}[n^{b-a}]$ $\mathsf{DTS}[n^b] \subseteq (\forall n^a) (\exists \log n) \mathsf{DTS}[n^{b-a}]$

An *alternation-trading proof* that $SAT \notin DTS[n^c]$ works by:

- Showing $\mathsf{NTIME}[n] \nsubseteq \mathsf{DTS}[n^c]$
- \bullet Appealing to strong completeness properties of $S\ensuremath{\mathsf{SAT}}$

Show $\mathsf{NTIME}[n] \not\subseteq \mathsf{DTS}[n^c]$ by assuming the opposite, and applying three rules in a way that $\mathsf{DTS}[t] \subseteq \mathsf{DTS}[t^{1-\varepsilon}]$ (a contradiction) can be derived:

- 1. (Speedup) $\mathsf{DTS}[n^b] \subseteq (\exists n^a) (\forall \log n) \mathsf{DTS}[n^{b-a}]$ $\mathsf{DTS}[n^b] \subseteq (\forall n^a) (\exists \log n) \mathsf{DTS}[n^{b-a}]$
- 2. (Slowdown) $(\exists n^a)(\forall n^b)\mathsf{DTS}[n^b] \subseteq (\exists n^a)\mathsf{DTS}[n^{bc}]$ and $(\forall n^a)(\exists n^b)\mathsf{DTS}[n^b] \subseteq (\forall n^a)\mathsf{DTS}[n^{bc}].$

An *alternation-trading proof* that $SAT \notin DTS[n^c]$ works by:

- Showing $\mathsf{NTIME}[n] \nsubseteq \mathsf{DTS}[n^c]$
- \bullet Appealing to strong completeness properties of $S\ensuremath{\mathsf{SAT}}$

Show $\mathsf{NTIME}[n] \nsubseteq \mathsf{DTS}[n^c]$ by assuming the opposite, and applying three rules in a way that $\mathsf{DTS}[t] \subseteq \mathsf{DTS}[t^{1-\varepsilon}]$ (a contradiction) can be derived:

- 1. (Speedup) $\mathsf{DTS}[n^b] \subseteq (\exists n^a) (\forall \log n) \mathsf{DTS}[n^{b-a}]$ $\mathsf{DTS}[n^b] \subseteq (\forall n^a) (\exists \log n) \mathsf{DTS}[n^{b-a}]$
- 2. (Slowdown) $(\exists n^a)(\forall n^b)\mathsf{DTS}[n^b] \subseteq (\exists n^a)\mathsf{DTS}[n^{bc}]$ and $(\forall n^a)(\exists n^b)\mathsf{DTS}[n^b] \subseteq (\forall n^a)\mathsf{DTS}[n^{bc}].$
- 3. (Combination) $(\exists n^a)(\exists n^b)\mathsf{DTS}[n^d] \subseteq (\exists n^a + n^b)\mathsf{DTS}[n^d]$ $(\forall n^a)(\forall n^b)\mathsf{DTS}[n^d] \subseteq (\forall n^a + n^b)\mathsf{DTS}[n^d]$

There is an alternation-trading proof of $\mathbf{SAT} \notin \mathbf{DTS}[n^{\sqrt{2}-\varepsilon}]$ [Lipton-Viglas'99] because if $\mathbf{NTIME}[n] \subseteq \mathbf{DTS}[n^{\sqrt{2}-\varepsilon}]$, then

There is an alternation-trading proof of $SAT \notin DTS[n^{\sqrt{2}-\varepsilon}]$ [Lipton-Viglas'99] because if $NTIME[n] \subseteq DTS[n^{\sqrt{2}-\varepsilon}]$, then $DTS[n^2] \subseteq (\exists n) (\forall \log n) DTS[n]$ (Speedup)

There is an alternation-trading proof of $SAT \notin DTS[n^{\sqrt{2}-\varepsilon}]$ [Lipton-Viglas'99] because if $NTIME[n] \subseteq DTS[n^{\sqrt{2}-\varepsilon}]$, then $DTS[n^2] \subseteq (\exists n)(\forall \log n)DTS[n]$ (Speedup) $\subseteq (\exists n)DTS[n^c]$ (Slowdown)

There is an alternation-trading proof of $SAT \notin DTS[n^{\sqrt{2}-\varepsilon}]$ [Lipton-Viglas'99] because if $NTIME[n] \subseteq DTS[n^{\sqrt{2}-\varepsilon}]$, then $DTS[n^2] \subseteq (\exists n)(\forall \log n)DTS[n]$ (Speedup) $\subseteq (\exists n)DTS[n^c]$ (Slowdown) $\subseteq DTS[n^{c^2}]$ (Slowdown)

There is an alternation-trading proof of $SAT \notin DTS[n^{\sqrt{2}-\varepsilon}]$ [Lipton-Viglas'99] because if $NTIME[n] \subseteq DTS[n^{\sqrt{2}-\varepsilon}]$, then $DTS[n^2] \subseteq (\exists n)(\forall \log n)DTS[n]$ (Speedup) $\subseteq (\exists n)DTS[n^c]$ (Slowdown) $\subseteq DTS[n^{c^2}]$ (Slowdown)

Contradiction when $c^2 < 2$.

There is an alternation-trading proof of $SAT \notin DTS[n^{\sqrt{2}-\varepsilon}]$ [Lipton-Viglas'99] because if $NTIME[n] \subseteq DTS[n^{\sqrt{2}-\varepsilon}]$, then $DTS[n^2] \subseteq (\exists n)(\forall \log n)DTS[n]$ (Speedup) $\subseteq (\exists n)DTS[n^c]$ (Slowdown) $\subseteq DTS[n^{c^2}]$ (Slowdown)

Contradiction when $c^2 < 2$.

Can prove SAT \notin DTS $[n^{2\cos(\pi/7)-\varepsilon}]$ using alternation-trading.

Let c > 1. If there is an *alternation-trading proof* that

Let c > 1. If there is an *alternation-trading proof* that

SAT \notin DTS $[n^c]$,

then for every $\varepsilon > 0$ and primes $p \neq q$, there is a proof that:

Either MOD_p SAT \notin DTS $[n^{c-\varepsilon}]$, or MOD_q SAT \notin DTS $[n^{c-\varepsilon}]$.

Let c > 1. If there is an *alternation-trading proof* that

SAT \notin DTS $[n^c]$,

then for every $\varepsilon > 0$ and primes $p \neq q$, there is a proof that:

Either $MOD_p \text{ SAT} \notin DTS[n^{c-\varepsilon}]$, or $MOD_q \text{ SAT} \notin DTS[n^{c-\varepsilon}]$.

Corollary: For every prime p (except for possibly one of them) $MOD_p \text{ SAT} \notin DTS[n^{1.8}].$

Let c > 1. If there is an *alternation-trading proof* that

SAT \notin DTS $[n^c]$,

then for every $\varepsilon > 0$ and primes $p \neq q$, there is a proof that:

Either MOD_p SAT \notin DTS $[n^{c-\varepsilon}]$, or MOD_q SAT \notin DTS $[n^{c-\varepsilon}]$.

Corollary: For every prime p (except for possibly one of them) $MOD_p \text{ SAT} \notin \text{DTS}[n^{1.8}].$

Corollary: MOD_6 **SAT** \notin $DTS[n^{1.8}]$.

Proof: If not, then both MOD_2 SAT and MOD_3 SAT are in $DTS[n^{1.8}]$, a contradiction.

• $MOD_p SAT \in DTS[n^c] \Rightarrow MOD_p TIME[n] \subseteq DTS[n^c]$

(easy-uses reduction from NTIME[n] to SAT)

- $MOD_p \text{ SAT} \in DTS[n^c] \Rightarrow MOD_p TIME[n] \subseteq DTS[n^c]$ (easy-uses reduction from NTIME[n] to SAT)
- The alternation-trading rules have "modular counting counterparts":

For all primes $p \neq q$ and $\varepsilon > 0$,

(Speedup) $\mathsf{DTS}[n^b] \subseteq (\mathsf{MOD}_p \ n^a)(\mathsf{MOD}_q \ \log n)\mathsf{DTS}[n^{b-a+\varepsilon}]$ (Slowdown) $\mathsf{MOD}_q\mathsf{TIME}[n] \subseteq \mathsf{DTS}[n^c]$ implies $(\mathsf{MOD}_p \ n^a)(\mathsf{MOD}_q \ n^b)\mathsf{DTS}[n^b] \subseteq (\mathsf{MOD}_p \ n^a)\mathsf{DTS}[n^{bc}]$

(Combination)

 $(\mathsf{MOD}_p \ n^a)(\mathsf{MOD}_p \ n^b)\mathsf{DTS}[n^d] \subseteq (\mathsf{MOD}_p \ n^a + n^b)\mathsf{DTS}[n^d]$

- $MOD_p \text{ SAT} \in DTS[n^c] \Rightarrow MOD_p TIME[n] \subseteq DTS[n^c]$ (easy-uses reduction from NTIME[n] to SAT)
- The alternation-trading rules have "modular counting counterparts":

For all primes $p \neq q$ and $\varepsilon > 0$,

(Speedup) $\mathsf{DTS}[n^b] \subseteq (\mathsf{MOD}_p \ n^a)(\mathsf{MOD}_q \ \log n)\mathsf{DTS}[n^{b-a+\varepsilon}]$ (Slowdown) $\mathsf{MOD}_q\mathsf{TIME}[n] \subseteq \mathsf{DTS}[n^c]$ implies $(\mathsf{MOD}_p \ n^a)(\mathsf{MOD}_q \ n^b)\mathsf{DTS}[n^b] \subseteq (\mathsf{MOD}_p \ n^a)\mathsf{DTS}[n^{bc}]$ (Combination)

(Combination)

 $(\mathsf{MOD}_p \ n^a)(\mathsf{MOD}_p \ n^b)\mathsf{DTS}[n^d] \subseteq (\mathsf{MOD}_p \ n^a + n^b)\mathsf{DTS}[n^d]$

Informally, if SAT \in DTS $[n^c]$ implies DTS $[t] \subseteq$ DTS $[t^{1-\varepsilon}]$, then MOD_p SAT and MOD_q SAT are in DTS $[n^{c-\varepsilon}]$ also implies it.

Speedup of DTISP via Modular Counting

Speedup of DTISP via Modular Counting

Theorem: For all $\varepsilon > 0$ and $b \ge a \ge 1$, $\mathsf{DTS}[n^b] \subseteq (\mathsf{MOD}_p \ n^a)(\mathsf{MOD}_q \ \log n)\mathsf{DTS}[n^{b-a+\varepsilon}]$

Speedup of DTISP via Modular Counting

Theorem: For all $\varepsilon > 0$ and $b \ge a \ge 1$, $\mathsf{DTS}[n^b] \subseteq (\mathsf{MOD}_p \ n^a)(\mathsf{MOD}_q \ \log n)\mathsf{DTS}[n^{b-a+\varepsilon}]$ **Proof Steps:**

- 1. Convert $\mathsf{DTS}[n^b]$ machine into a "canonical form" that runs in time $n^{b+\varepsilon}$ and space $n^{o(1)}$
- 2. By essentially replacing " \exists " with " MOD_p " and " \forall " with " MOD_q ", the Alternating Speedup Theorem works on a canonical machine.

1. Convert $DTS[n^b]$ machine into a "canonical form"

1. Convert $DTS[n^b]$ machine into a "canonical form"

Recall the notion of a configuration graph for M on x:

1. Convert $DTS[n^b]$ machine into a "canonical form"

Recall the notion of a configuration graph for M on x:

 $G_{M,x}$:

1. Convert $DTS[n^b]$ machine into a "canonical form"

Recall the notion of a configuration graph for M on x:

 $G_{M,x}$:

Nodes = Configurations C of M(x), Edge $(C, C') \iff C \vdash C'$ M is deterministic $\Longrightarrow outdeg(G_{M,x}) \leq 1$.

1. Convert $DTS[n^b]$ machine into a "canonical form"

A deterministic machine M is *canonical* if, for every input x,

 $indeg(G_{M,x}) = outdeg(G_{M,x}) = 1.$

1. Convert $DTS[n^b]$ machine into a "canonical form"

A deterministic machine M is *canonical* if, for every input x,

 $indeg(G_{M,x}) = outdeg(G_{M,x}) = 1.$

1. Convert $DTS[n^b]$ machine into a "canonical form"

A deterministic machine M is *canonical* if, for every input x,

 $indeg(G_{M,x}) = outdeg(G_{M,x}) = 1.$

1. Convert $DTS[n^b]$ machine into a "canonical form"

More Details:

How can we make a machine canonical?

1. Convert $DTS[n^b]$ machine into a "canonical form"

More Details:

How can we make a machine canonical?

First, make it reversible

$\mathsf{DTS}[n^b] \subseteq (\mathsf{MOD}_p \ n^a)(\mathsf{MOD}_q \ \log n)\mathsf{DTS}[n^{b-a+\varepsilon}]$ **1. Convert** $\mathsf{DTS}[n^b]$ machine into a "canonical form" More Details:

How can we make a machine canonical?

First, make it reversible

A deterministic machine M is *reversible* if, for every input x,

 $indeg(G_{M,x}) \leq 1.$

$DTS[n^b] \subseteq (MOD_p \ n^a)(MOD_q \ \log n)DTS[n^{b-a+\varepsilon}]$ 1. Convert $DTS[n^b]$ machine into a "canonical form" More Details:

How can we make a machine canonical?

First, make it reversible

A deterministic machine M is *reversible* if, for every input x,

 $indeg(G_{M,x}) \leq 1.$

Define

 $\mathsf{rTISP}[t,s] =$

problems solvable by reversible machines in time t, space s.

$DTS[n^b] \subseteq (MOD_p \ n^a)(MOD_q \ \log n)DTS[n^{b-a+\varepsilon}]$ 1. Convert $DTS[n^b]$ machine into a "canonical form" More Details:

How can we make a machine canonical?

First, make it reversible

A deterministic machine M is *reversible* if, for every input x,

 $indeg(G_{M,x}) \leq 1.$

Define

 $\mathbf{rTISP}[t,s] =$

problems solvable by reversible machines in time t, space s.

Theorem: [Bennett'89] $\mathsf{DTISP}[t, s] \subseteq \mathsf{rTISP}[t^{1+\varepsilon}, s \log t].$

Conversion to Canonical Machines

Conversion to Canonical Machines

Take a $DTS[n^b]$ machine M and make it reversible using Bennett. On an input, its config graph looks like:

From Reversible Machine to Canonical Machine

From Reversible Machine to Canonical Machine

From Reversible Machine to Canonical Machine

From Reversible Machine to Canonical Machine

1. Convert $DTS[n^b]$ machine into a "canonical form"

2. By replacing " \exists " with " MOD_p " and " \forall " with " MOD_q ",

the Alternating Speedup Theorem works on a canonical machine.

1. Convert $DTS[n^b]$ machine into a "canonical form"

2. By replacing " \exists " with "MOD_p" and " \forall " with "MOD_q",

the Alternating Speedup Theorem works on a canonical machine.

More Details: Let T be the runtime of the canonical machine.

 Convert DTS[n^b] machine into a "canonical form"
By replacing "∃" with "MOD_p" and "∀" with "MOD_q", the Alternating Speedup Theorem works on a canonical machine.
More Details: Let *T* be the runtime of the canonical machine.

• If we count (mod p) the number of config sequences C_1, \ldots, C_{b+1} where the number of i satisfying $C_i \vdash^{T/b} C_{i+1}$ is divisible by q, this mod-p residue is *different* in the accepting and rejecting cases.

 Convert DTS[n^b] machine into a "canonical form"
By replacing "∃" with "MOD_p" and "∀" with "MOD_q", the Alternating Speedup Theorem works on a canonical machine.
More Details: Let *T* be the runtime of the canonical machine.

- If we count (mod p) the number of config sequences C_1, \ldots, C_{b+1} where the number of i satisfying $C_i \vdash^{T/b} C_{i+1}$ is divisible by q, this mod-p residue is *different* in the accepting and rejecting cases.
- Can pre-compute the mod-p residue for the accepting case.

For a canonical machine, input x, integer ℓ , and given configuration C:

• There are unique configurations D and E s.t. $C \vdash^{\ell} D$ and $E \vdash^{\ell} C$.

For a canonical machine, input x, integer ℓ , and given configuration C:

• There are unique configurations D and E s.t. $C \vdash^{\ell} D$ and $E \vdash^{\ell} C$.

A configuration sequence C_1, \ldots, C_{b+1} has k mistakes for M(x) iff there are exactly k pairs (C_i, C_{i+1}) s.t. $\neg (C_i \vdash^{T/b} C_{i+1})$.

For a canonical machine, input x, integer ℓ , and given configuration C:

• There are unique configurations D and E s.t. $C \vdash^{\ell} D$ and $E \vdash^{\ell} C$.

A configuration sequence C_1, \ldots, C_{b+1} has k mistakes for M(x) iff there are exactly k pairs (C_i, C_{i+1}) s.t. $\neg (C_i \vdash^{T/b} C_{i+1})$.

Can show that the number of configuration sequences with k mistakes:

- depends *only* on time-space usage and accepting/rejecting condition
- *not* on subtle properties of the machine's behavior

Formal Statement

Let a complete configuration sequence C_1, \ldots, C_{b+1} have C_1 as initial and C_{b+1} as accepting.

Formal Statement

Let a complete configuration sequence C_1, \ldots, C_{b+1} have C_1 as initial and C_{b+1} as accepting.

Counting Lemma: Let *n* be an integer, let $k \in \{0, 1, ..., b+1\}$, and let \hat{M} be canonical. Then there are positive integers $N_A(n, k, b)$ and $N_R(n, k, b)$ such that, for all inputs *x* of length *n*:

- 1. If $\hat{M}(x)$ accepts, then the number of complete *b*-configuration sequences for $\hat{M}(x)$ with *k* mistakes is $N_A(n, k, b)$.
- 2. If $\hat{M}(x)$ rejects, then the number of complete *b*-configuration sequences for $\hat{M}(x)$ with *k* mistakes is $N_R(n, k, b)$.
- **3.** $N_A(n,k,b) N_R(n,k,b) = (-1)^k {\binom{b+1}{k}}.$

• A mapping from time-space lower bounds for nondeterminism to analogous lower bounds for modular counting of solutions

- A mapping from time-space lower bounds for nondeterminism to analogous lower bounds for modular counting of solutions
- Relies on properties of alternation-trading proofs and determinism

- A mapping from time-space lower bounds for nondeterminism to analogous lower bounds for modular counting of solutions
- Relies on properties of alternation-trading proofs and determinism
- Can we prove better time lower bounds for MAJORITY SAT? *(It's PP-complete...)*
- How far can alternation-trading proofs go?

• Automated Time Lower Bounds:

Formalization of alternation-trading proofs

 \implies Implementation of a theorem prover

Proofs found by a combo of exhaustive search and linear programming

• Automated Time Lower Bounds:

Formalization of alternation-trading proofs

 \implies Implementation of a theorem prover

Proofs found by a combo of exhaustive search and linear programming

• Experiments suggest that our $\Omega(n^{2\cos(\pi/7)})$ time lower bound for SAT is the best possible with the current tools(!)

• Automated Time Lower Bounds:

Formalization of alternation-trading proofs

 \implies Implementation of a theorem prover

Proofs found by a combo of exhaustive search and linear programming

• Experiments suggest that our $\Omega(n^{2\cos(\pi/7)})$ time lower bound for SAT is the best possible with the current tools(!)

If this is correct, then some REALLY NEW IDEAS will be required

to make further progress on time-space lower bounds

Thank you!