
Algorithms for Circuits and Circuits for Algorithms
(Invited Paper)

Ryan Williams
Computer Science Department

Stanford University
Stanford, CA, USA

Email: rrw@cs.stanford.edu

Abstract—The title of this paper is meant to highlight an
emerging duality between two fundamental topics in algorithms
and complexity theory.

Algorithms for circuits refers to the design of interesting
algorithms which can perform non-trivial circuit analysis of
some kind, on either a circuit or a Boolean function given as a
truth table. For instance, an algorithm determining whether a
given circuit has an input that forces a true output would solve
the NP-complete Circuit-SAT problem. Such an algorithm is of
course unlikely to run in polynomial time, but could possibly
be more efficient than exhaustively trying all possible inputs
to the circuit.

Circuits for algorithms refers to the modeling of uniform
algorithms with non-uniform circuit families (or proving such
modeling is impossible). For instance, the NEXP versus P/poly
question asks whether nondeterministic exponential-time algo-
rithms can be simulated using non-uniform circuit families of
polynomial size. It is widely believed that the answer is no,
however the present mathematical tools available are still too
crude to prove this kind of separation.

This paper surveys these two generic subjects, the ways in
which they arise, and connections that have been developed
between them, focusing on the connections between non-
trivial circuit-analysis algorithms and proofs of circuit size
lower bounds. To give one example, if there is a nontrivial
algorithm (running slightly faster than exhaustive search) that
can determine if a given circuit computes a constant function,
then it can be concluded that NEXP is not contained in P/poly.
Informally, this connection can be interpreted as saying “some
good algorithms for circuits imply there are no good circuits
for some algorithms.”

Keywords-satisfiability; derandomization; exact algorithms;
learning; circuit complexity; parameterized algorithms

I. INTRODUCTION

Budding theoretical computer scientists are generally
taught several dictums at an early age. One such dictum
is that the algorithm designers and the complexity theorists
(whoever they may be) are charged with opposing tasks. The
algorithm designer discovers interesting methods for solving
certain problems; along the way, she may also propose
new notions of what is interesting, to better understand the
scope and power of algorithms. The complexity theorist is
supposed to prove lower bounds, showing that sufficiently
interesting methods for solving certain problems do not
exist. Barring that, he develops a structural framework

of consequences of such impossibility results, as well as
consequences of possessing such interesting methods (in the
hopes of an eventual proof by contradiction).

Another dictum is that algorithm design and analysis is,
on the whole, an easier venture than proving lower bounds.
Conventional wisdom states that in algorithm design, one
only has to find a single efficient algorithm that will solve
the problem at hand, but a lower bound must reason about all
possible efficient algorithms, including bizarrely behaving
ones, and argue that none solve the problem at hand. This
dictum is also reflected in the literature: every year, many in-
teresting algorithms are discovered, analyzed, and published,
compared to the tiny number of lower bounds proved.1

Furthermore, there are theoretical reasons for believing that
lower bounds are hard to prove. The most compelling of
these are the three “barriers” of Relativization [BGS75],
Natural Proofs [RR97], and Algebrization [AW09]. These
“no-go” theorems demonstrate that the known lower bound
proof methods are simply too coarse to prove even weak
lower bounds, much weaker than P 6= NP. Subsequently,
complexity theory has been clouded with great pessimism
about resolving some of its central open problems.

While the problems of algorithm design and proving
lower bounds may arise from looking at opposing tasks,
the two tasks have deep similarities when viewed in the
appropriate way.2 This survey will concentrate on some of
the most counterintuitive similarities: from the design of
certain algorithms (the supposedly “easier” task), one can
derive new lower bounds (the supposedly “harder” task).
That is, there are senses in which algorithm design is at
least as hard as proving lower bounds. Such implications
present an excellent mathematical “arbitrage” opportunity
for complexity theorists, to potentially prove hard lower
bounds via supposedly easier algorithm design. (Moreover,
this approach has recently led to new lower bounds.)

Some connections take the following form. Suppose there

1Of course, there can be other reasons for this disparity, such as funding.
2Similarities can already be found in the proof(s) that the Halting Prob-

lem is undecidable: the workhorse behind such results is the construction
of a universal Turing machine that can run arbitrary Turing machine code
given as input. This is a canonical example of a positive algorithmic result
applied to prove an impossibility result.

is a Turing machine T which receives on its input tape a
description of a finite logical circuit C, and on all “struc-
tured” circuits C, T is guaranteed to perform some nontrivial
analysis of the function computed by C. (For example, T
could determine whether C outputs the same value on all
possible inputs to C, provided C is a “shallow” circuit with a
few layers of gates.) Such a T can then be used to construct
a function f that is computable “somewhat efficiently” by
a Turing machine but is not computable efficiently by non-
uniform circuit families possessing that structure. That is, an
interesting circuit-analysis algorithm can be applied to prove
an interesting circuit complexity lower bound.

It is worth emphasizing the quantifiers in the above
implication schema:

The existence of an algorithm T that can analyze all
structured circuits C, implies the existence of a function f
that is not computable by all structured circuit families.

That is, there are situations in which designing algorithms
for some problem X can be translated into “lower bound
design” for another problem Y . The key is that there
are two computational models under consideration here:
the algorithm model or the usual “Turing” style model of
algorithms, and the circuit model or the non-uniform circuit
family model. Careful design of algorithms for analyzing
given instances of the circuit model are used to construct
functions computable (in one sense) in the algorithm model
that are uncomputable (in another sense) in the circuit model.
There is a kind of duality lurking beneath which is not well-
understood.

This article will survey two generic topics in algorithms
and complexity, and connections between them:
• Circuits for algorithms refers to the modeling of pow-

erful uniform algorithms with non-uniform circuit fam-
ilies (or proving that such modeling is impossible).
For instance, the EXP versus P/poly question asks
whether exponential-time algorithms can be simulated
using non-uniform circuit families of polynomial size.

• Algorithms for circuits refers to designing interesting
algorithms which can perform some interesting circuit
analysis. The input may be a circuit or it may be
a Boolean function (given as a truth table), and the
algorithm checks whether the circuit (or truth table) sat-
isfies a simple property related to the circuit complexity
of the underlying function. To illustrate, an algorithm
determining if a given circuit has an input that forces
a true output solves the NP-complete Circuit-SAT
problem. It is an outstanding open question whether
one can asymptotically improve over the “brute force”
algorithm that tries all possible inputs to the circuit.

The rest of the paper is organized as follows. The next
section provides a bit of background from complexity theory
and circuit complexity. Section III surveys the topic of cir-
cuits for algorithms, modeling algorithms with non-uniform

circuit families. Section IV surveys existing knowledge of
circuit-analysis algorithms, which we call algorithms for
circuits. Section V discusses known connections between
the two, and prospects for future progress. Section VI briefly
concludes.

II. PRELIMINARIES

We assume familiarity with machine-based complexity
theory [AB09] but not necessarily circuit complexity.

Circuit complexity is concerned with how to construct
Boolean functions out of “simpler” functions, such as those
of the form g : {0, 1}2 → {0, 1}. Examples of Boolean
functions include:

• ORk(x1, . . . , xk), ANDk(x1, . . . , xk), with their usual
logical meanings,

• MODmk(x1, . . . , xk) for a fixed integer m > 1, which
outputs 1 if and only if

∑
i xi is divisible by m.

• MAJk(x1, . . . , xk) = 1 if and only if
∑
i xi ≥ dk/2e.

Circuit complexity: A basis set B is a set of Boolean
functions. Two popular choices for B are B2, the set of all
functions g : {0, 1}2 → {0, 1}, and U2, the set B2 without
MOD2 and the negation of MOD2. A Boolean circuit of size
s with n inputs x1, . . . , xn over basis B is a sequence of n+s
functions C = (f1, . . . , fn+s), with fi : {0, 1}n → {0, 1}
for all i, such that:

• for all i = 1, . . . , n, fi(x1, . . . , xn) = xi,
• for all j = n + 1, . . . , n + s, there is a func-

tion g : {0, 1}k → {0, 1} from B and in-
dices i1, . . . , ik < j such that fj(x1, . . . , xn) =
g(fi1(x1, . . . , xn), . . . , fik(x1, . . . , xn)).

The fi are called the gates of the circuit; f1, . . . , fn are
the input gates, fn+1, . . . , fn+s−1 are the internal gates,
and fn+s is the output gate. The circuit C can naturally be
thought of as a function as well: on an input string x =
(x1, . . . , xn) ∈ {0, 1}n, C(x) denotes fn+s(x).

Thinking of the connections between the gates as a
directed acyclic graph in the natural way, with the input gates
as n source nodes 1, . . . , n, and the jth gate with indices
i1, . . . , ik < j as a node j with incoming arcs from nodes
i1, . . . , ik, the depth of C is the longest path from an input
gate to the output gate. As a convention, we will not count
gates with fan-in 1 in the depth measure. That is, gates of
the form g(x) = x or g(x) = ¬x are not counted towards
the length of a path from input to output.

Given a basis set B and a function f : {0, 1}n → {0, 1},
what is the minimal size s of a Boolean circuit over B with
output gate fn+s = f? We call this quantity the B-circuit
complexity of f , and it is typically denoted by CB(f). The
minimal depth of a circuit computing f is also of interest for
parallel computing; the minimal depth is denoted by DB(f).

III. CIRCUITS FOR ALGORITHMS

The circuit model is excellent for understanding the diffi-
culty and efficiency of computing finite functions. Boolean
circuits should be contrasted with the typical uniform algo-
rithm models used in computability and complexity theory,
based on objects such as Turing machines deciding and/or
recognizing infinite languages of the form

L : {0, 1}? → {0, 1}. (1)

All finite functions are trivially computable by Turing ma-
chines in constant time.

There is a natural way to extend the Boolean circuit
model to also compute functions of type (1): simply provide
infinitely many circuits!

Definition 3.1: Let s : N → N, d : N → N, and L :
{0, 1}? → {0, 1}. L has size-s(n) depth-d(n) circuits if
there is an infinite family {Cn | n ∈ N} of Boolean circuits
over B2 such that, for every n, Cn has n inputs, size at
most s(n), depth at most d(n), and for all x ∈ {0, 1}n,
Cn(x) = L(x).

This provides an infinite (so-called non-uniform) computa-
tional model. If an L can be shown to have s(n)-size circuits
for small s(n), it means that the circuit complexities of all
finite segments of L scale well with the input length.

Every Boolean function has circuits of size 2n/n +
o(2n/n) size [Sha49], [Lup59], and this upper bound is tight
by a simple counting argument. The class of functions of
type (1) which are computable with polynomial-size circuits
is often called P/poly:

Definition 3.2: Let s : N→ N and L : {0, 1}? → {0, 1}.
Define SIZE(s(n)) to be the class of functions L such that L
has size-s(n) circuits, and P/poly to be the class of functions
L such that there is a k ≥ 1 satisfying L ∈ SIZE(nk + k).

Proving that a function is not in P/poly is a very strong
result, showing that even computing finite segments of the
problem requires quite “large” computations, relative to the
size of the segment we wish to compute.

Immediately one wonders how the two computational
models (algorithms and circuits) relate. The basic Circuits
for Algorithms question is:

What “normal” algorithms (efficient or not) can be
simulated in P/poly?

More precisely, take a complexity class C defined with
respect to the usual uniform algorithm model (P, NP,
PSPACE, EXP, NEXP, and so on). Which of these classes
are contained in P/poly? For which uniform algorithms
(efficient or inefficient) do efficient circuit families exist?
It is believed that in general, circuit families cannot really
solve NP-hard problems significantly more efficiently than

algorithms can, and NP 6⊂ P/poly. This would imply
P 6= NP, and complexity theory is very far from proving
this.

In general, because P/poly contains undecidable problems
and permits an “infinitely long” computational model, the fa-
miliar tools of computability theory are essentially powerless
for understanding P/poly, and complexity theory has not yet
discovered enough new tools. While nontrivial results (which
we now survey) are known, they are meager in comparison
to what is conjectured.

A. Classes with efficient circuits

It is well-known that P ⊂ P/poly and BPP ⊂ P/poly,
so both classes have efficient circuits. Aside from the occa-
sional undecidable problem, there are few known surprises
in terms of efficient circuit simulations. One surprise might
be:

Conjecture 3.1 (A. N. Kolmogorov [Lip94]): For every
L ∈ P, there is a k such that L has kn size circuits.3

The truth of the conjecture would be surprising, because
for languages that require (for example) n100100

time but
are contained in P, it appears unlikely that the complexity
of such problems would magically shrink to O(n) size,
merely because one can design a different circuit for each
input length. Kolmogorov’s conjecture would imply P 6=
NP [Kan82], [Lip94].

While it is generally believed that Conjecture 3.1 isn’t
true, a resolution looks very difficult. To see why, we sketch
here the lack of progress on circuit lower bounds for P. For
L : {0, 1}? → {0, 1}, define Ln : {0, 1}n → {0, 1} to be the
n-bit restriction of L: Ln agrees with L on all x ∈ {0, 1}n.
The best known circuit lower bounds for functions in P are
only small linear bounds:

Theorem 3.1 ([Blu84]): There is an L ∈ P with
CB2

(Ln) ≥ 3n− o(n) for all n.
Theorem 3.2 ([LR01], [IM02]): There is an L ∈ P with

CU2
(Ln) ≥ 5n− o(n) for all n.

Hence it is possible that every L ∈ P has circuits of
size 5.1n. Even if the L is allowed to be in NP, no better
circuit lower bounds are known. It is open whether every
L ∈ TIME[2O(n)]NP (functions in 2O(n) time with access
to an NP oracle) has 5.1n size circuits(!). In Section V we
will see a possible approach to this question.

It was recently shown that, if Kolmogorov’s conjecture
is true, then such O(n)-size circuits must be intractable to
construct algorithmically [SW13].4

3Apparently the conjecture was based on the affirmative answer by
Kolmogorov and Arnol’d of Hilbert’s 13th problem [Kol56], [Arn57], which
asks if every continuous function on three variables can be expressed as a
composition of finitely many continuous functions on two variables.

4More formally, there is a language L computable in nk time for some
k, such that for every ` and every algorithm A running in n` time, A(1n)
does not output an O(n) size circuit Cn computing L on n-bit inputs, for
infinitely many n.

B. Classes without efficient circuits

It’s believed that NP is not in P/poly, but the results stated
above show that a proof is probably distant. Let us survey
which functions are known to not be in P/poly.

Ehrenfeucht [Ehr75] showed that the problem of deciding
sentences in the first order theory of N with addition, multi-
plication, and exponentiation, where all quantified variables
are bounded by constants, requires (1 + δ)n-size circuits for
some δ > 0 (assuming a reasonable encoding of sentences
as binary strings). Meyer (1972, cf. [SM02]) and Sholo-
mov [Sho75] showed that the same problem is decidable by
a Turing machine using exponential (2O(n)) space. That is,
EXPSPACE 6⊂ SIZE((1 + δ)n). This result can be scaled
down to the presumably smaller complexity class Σ3EXP.

Kannan [Kan82] proved that Σ2EXP 6⊂ P/poly. (With
regards to Kolmogorov’s conjecture, his work also proves
that Σ2P 6⊂ SIZE(O(n)).) In fact his proof shows that
Σ2EXP 6⊂ SIZE(f(n)), for every f : N → N satisfying
f(f(n)) ≤ 2n (these are the half-exponential functions).
It is a longstanding open problem to show that Σ2EXP 6⊂
SIZE(2εn) for all ε > 0.

The P/poly lower bound of Kannan has been mildly
improved over the years, to the presumably smaller (but still
gigantic) complexity class MAEXP [BFT98] of exponential-
time Merlin-Arthur games. However, it is open whether
NEXP ⊂ P/poly. It looks extremely unlikely that problems
verifiable with exponentially-long witnesses could be com-
puted using only polynomial-size circuits, but the infinite
nature of the circuit complexity model has confounded all
proof attempts. Recently a new approach has been found to
attack this problem, which is a major subject of Section V.

C. Restricted circuits

The circuit model is extremely general. There are several
natural ways to restrict the model beyond just a polynomial
size measure, and still allow for complex circuit computa-
tions. In particular, restricting the depth leads to an array of
possibilities.

Let A be the basis of unbounded fan-in AND and OR
gates with NOT, i.e.,

A = {NOT} ∪
⋃
n∈N
{ORn,ANDn}.

For an integer m ≥ 2, let Mm be the basis of unbounded
fan-in MODm, AND, and OR gates with NOT:

Mm = {NOT} ∪
⋃
n∈N
{ORn,ANDn,MODmn}.

Let T be the basis of unbounded fan-in MAJ gates with
NOT:

T = {NOT} ∪
⋃
n∈N
{MAJn}.

The following complexity classes are all subsets of P/poly
that have been widely studied. Let k ≥ 0 be an integer.

• NCk: Languages computable with polynomial size,
O(logk n) depth circuits over the basis U2.5

• ACk: Languages computable with a polynomial size
and O(logk n) depth circuit family {Cn} over A. That
is, there is a fixed integer d ≥ 1 such that every Cn
has depth d logk n.6

• ACk[m]: Languages computable with polynomial size,
O(logk n) depth circuits over Mm.

• ACCk: The union over all m ≥ 2 of ACk[m].7

• TCk: Languages computable with polynomial size,
O(logk n) depth circuits over the basis T .8

A thorough survey of the above complexity classes cannot
be provided here; instead, let us focus attention on the
aspects most relevant to the present story. The most well-
studied of these classes are AC0, ACC0, TC0, and NC1, and
it is known that

AC0 (AC0[p] (ACC0 ⊆ TC0 ⊆ NC1,

where p is prime.
NC1 is well-motivated in several ways: for instance, it

is also the class of languages computable with infinite
families of polynomial-size Boolean formulas, or circuits
where all internal gates have outdegree one. The best known
formula size lower bound for a function in P is n3−o(1),
by Håstad [Hås98]. TC0 is also well-motivated from the
study of neural networks: the MAJ function is a primitive
model of a neuron, and the constant depth criterion reflects
the massive parallelism of the human brain. Less primitive
models of the neuron, such as linear threshold functions, end
up defining the same class TC0. (Recall a linear threshold
function is a Boolean function f defined by a linear form∑n
i=1 wixi for some wi ∈ Z, and a threshold value t ∈ Z.

For all (x1, . . . , xn) ∈ {0, 1}n, f(x1, . . . , xn) = 1 if and
only if

∑
i wixi ≥ t.)

The appearance of MODm operations may look a bit
strange, but they arose out of a specific program to under-
stand circuit complexity in a “bottom up” way, by starting
with very restricted circuits and attempting to gradually
relax the restrictions. First, it was shown that MOD2 6∈
AC0 [Ajt83], [FSS81]. This made it natural to ask what is
computable when the MOD2 function is provided among
the basis functions in constant-depth circuits, leading to the
definition of AC0[2]. Then it was proved that for distinct
primes p and q, MODq 6∈ AC0[q] [Raz87], [Smo87],
hence MOD3 6∈ AC0[2]. Naturally one then wonders what

5The acronym NC stands for “Nick’s Class,” named after Nick Pippenger.
6AC stands for “Alternating Circuits,” alternating between AND and OR.

We remind the reader that NOT gates are not counted in the depth bounds
of AC, ACC, and TC circuits.

7ACC stands for “Alternating Circuits with Counting.”
8TC stands for “Threshold Circuits.”

is computable when MOD3 and MOD2 are both allowed
in the basis. It is not hard to see that including MOD6
as a basis function is equivalent to including MOD3 and
MOD2. Attention turned to AC0[6]. (There were many other
separate threads of research, such as lower bounds on further
restricted versions of TC0 [HMP+93], which we do not have
space to cover here.)

At this point, the trail was lost. It is still open whether
every language in P/poly has depth-three circuit families
over M6. It’s also open whether AC0[6] can compute
every problem in EXP. It has been shown only recently
that NEXP 6⊂ ACC0, via a generic connection between
algorithms-for-circuits and circuits-for-algorithms [Wil10],
[Wil11]. Yet it is open whether NEXP is contained in TC0,
even for TC0 circuits of depth three.

IV. ALGORITHMS FOR CIRCUITS

Circuit analysis problems can take multiple forms. The
most common form takes a circuit as input, and decides
some property of the function computed by the circuit. Let
P be a function from the set of all Boolean functions {f :
{0, 1}n → {0, 1} | n ≥ 0} to the set {0, 1}.

Generic Circuit Analysis
Input: A logical circuit C
Output: A property P (f) of the function f computed
by C

The canonical example of such a problem is the Circuit
Satisfiability problem (a.k.a. Circuit-SAT), which we shall
survey in detail.

Circuit-SAT
Input: A logical circuit C
Output: Does the function f computed by C output 1
on some input?

As Circuit-SAT is NP-complete, it is unlikely that there
is an efficient algorithm for it, and the brute force algorithm
takes Ω(2n ·|C|) time steps, where n is the number of inputs
to C, and |C| is the size of the circuit. Is there a slightly
faster algorithm, running in (for example) 1.99n · |C|2 time?
Fine-grained questions of this variety are basic to two emerg-
ing areas of research: parameterized algorithms [DF99],
[FG06] and exact algorithms [Woe03], [FK10]. For many
NP-hard problems, asymptotically improved algorithms over
exhaustive search do exist, and researchers actively study the
extent to which exhaustive search can be avoided.

Could Circuit-SAT be solved in (1 + ε)n|C|2 time, for
every constant ε > 0? A central conjecture in the area,
known as the Exponential Time Hypothesis (ETH for short),

would imply that such algorithms do not exist. We will speak
more about ETH shortly.

A. Flavors of Circuit-SAT

As seen in Section III, there are many interesting restric-
tions one can place on circuits. For each restriction, a new
satisfiability problem emerges. Here we survey the known
algorithms for satisfiability for restricted circuit classes.

In this section, we construe the classes AC0, ACC, TC0,
NC1, and P/poly as not as classes of languages,but as
classes of circuit families: collections of infinite circuit
families satisfying the appropriate restrictions. For each
circuit class C, a satisfiability problem can be defined:

C-SAT
Input: A circuit C from a family in class C
Output: Is there an input on which C evaluates to true?

Of course, C-SAT is NP-complete for all interesting cir-
cuit classes. But for simple enough C, C-SAT algorithms run-
ning significantly faster than exhaustive search are known,
although C-SAT is NP-complete.

k-SAT algorithms: The k-SAT problem is perhaps the
simplest NP-hard satisfiability problem, the circuit being
an AND of ORs of k literals, in conjunctive normal form
(CNF). 3-SAT can be solved in 1.331n time deterministi-
cally [MTY11], or in 1.308n time [Her11] with a random-
ized algorithm. These running times form the tail end of a
long line of successive improvements, with each subsequent
algorithm decreasing the base of the exponent by a little bit.
(See the survey of Dantsin and Hirsch [DH09].)

How much faster can 3-SAT be solved? The Exponential
Time Hypothesis of Impagliazzo and Paturi [IP01] asserts
that this line of work must “converge” to some base of
exponent greater than 1:

Exponential Time Hypothesis (ETH): There is a
δ > 0 such that 3-SAT on n variables cannot be solved
in O((1 + δ)n) time.

Impagliazzo, Paturi, and Zane [IPZ01] showed that ETH
implies that many other NP-hard problems require essen-
tially exponential time to solve, using clever subexponential
time reductions. Therefore, this is not just a hypothesis
about one NP-complete problem: it says that many problems
will not admit subexponential time algorithms (running in
(1+δ)n for any prescribed δ > 0). Many other consequences
of ETH have been found [LMS11].

The k-SAT problem for general k has also been exten-
sively studied. The best known algorithms for k-SAT all run
in 2n−n/(ck) time, for a fixed constant c [PPZ97], [Sch02],

[PPSZ98], [DH09]. That is, for k > 3, the savings in running
time over 2n slowly disappears as k increases. The Strong
Exponential Time Hypothesis [IP01], [CIP09] asserts that
this phenomenon is inherent in all SAT algorithms:

Strong Exponential Time Hypothesis (SETH): For
every δ < 1 there is a k such that k-SAT on n variables
cannot be solved in 2δn time.

For example, SETH implies that even 2.99999n is not
enough time for solving k-SAT over all constants k. (It is
known that SETH implies ETH.)9

AC0-SAT: The next more expressive class of circuits is
AC0, with arbitrary constant depth. There has been less work
on this case, but recent years have seen progress [CIP09],
[BIS12], [IMP12]. The fastest known AC0-SAT algorithm
is that of Impagliazzo, Matthews, and Paturi [IMP12], who
give an O(2n−Ω(n/(log s)d−1)) time algorithm on circuits
with n inputs, s gates, and depth d.

ACC0-SAT: Further more expressive is the circuit class
ACC0. The author [Wil11] gave an algorithm running in
O(2n−n

ε

) time for ACC0 circuits of 2n
ε

size, where ε ∈
(0, 1) is a function of the depth d of the given circuit and
the modulus m used in the MODm gates. This algorithm
was recently extended to handle the presumably larger
circuit class ACC0 ◦ THR; that is, ACC0 augmented with
an additional layer of arbitrary linear threshold gates near
the inputs [Wil14].

TC0-SAT: For depth-two TC0, Impagliazzo, Paturi, and
Schneider [IPS13] showed that satisfiability of circuits on n
inputs and cn wires can be determined in 2δn time for some
δ < 1 that depends on c. No nontrivial algorithms are known
for satisfiability of depth-three TC0 (and nothing is known
in terms of circuit lower bounds for this class, either).

Formula-SAT: Santhanam [San10] proved that satisfi-
ability of cn size formulas over U2 can be determined in
2δn, for some δ < 1 depending on c. His algorithm was
extended to the basis B2 by Seto and Tamaki [ST12], and
to larger size formulas over U2 by Chen et al. [CKK+14].
Applying recent concentration results of Komargodski, Raz
and Tal [KRT13], the algorithm of Chen et al. can solve
SAT for formulas over U2 of size n3−o(1) in randomized
2n−n

Ω(1)

time with zero error. (Recall that the best known
formula lower bound is n3−o(1) size as well; these Formula-
SAT algorithms exploit similar ideas as in the lower bound
methods.)

Circuit-SAT: For Circuit-SAT, there is no known algo-
rithm for solving the problem on generic circuits of size s

9The author can’t help but confess his belief here that SETH is false.
Many of his papers were conceived by finding an approach to refute SETH
which ultimately failed, but was applicable to another problem instead
(Max-2-SAT, ACC-SAT, All-Pairs Shortest Paths, etc.)

and n inputs that is asymptotically faster than the cost of
exhaustive search, i.e., O(2n · s) time.

B. Approximate Circuit Analysis

A different form of circuit analysis is that of (additive)
approximate counting; that is, approximating the fraction of
satisfying assignments to a given circuit:

Circuit Approximation Probability Problem
(CAPP)
Input: A circuit C
Output: The quantity Prx[C(x) = 1], to within ±
1/10.

Here, the constant 1/10 is arbitrary, and could be any
sufficiently small constant in (0, 1/2).

As with C-SAT, the problem C-CAPP can be defined
for a restricted circuit class C. Approximate counting has
been extensively studied in complexity theory, due to its
connections to derandomization. We cannot hope to cover
all work on this topic in the space of this article, and can
only provide highlights. The structure of this subsection will
parallel that of the previous coverage of C-SAT.10

Several algorithms we shall mention give a stronger
property than the ability to approximately count satisfying
assignments: they are pseudorandom generators which out-
put a fixed collection of assignments to evaluate the circuit
on, prior to viewing the circuit. Pseudorandom generators
are inherently tied to lower bounds. Indeed, lower bounds
against a circuit class C are a prerequisite for constructing
efficient pseudorandom generators fooling C.

Ajtai and Wigderson [AW85] showed that AC0-CAPP
is solvable in 2n

ε

time for every ε > 0, by providing
a pseudorandom generator. Nisan [Nis91] gave a pseudo-
random generator which yields an approximate counting
algorithm running in nlogO(d) s time, where s is the size
and d is the depth. There has been much work since then;
most recently, Trevisan and Xue [TX13] construct tighter
pseudorandom generators for AC0, showing that AC0-CAPP
can be computed in nÕ(logd−1 s) time.

The depth-two case is especially interesting. Luby and
Velickovic [LV96] showed in this case that CAPP is solv-
able in nexp(O(

√
log logn)) time. Gopalan, Meka, and Rein-

gold [GMR13] improved this to about nO(log logn) time. It
appears that a deterministic polynomial-time algorithm for
approximate counting satisfying assignments to CNFs may
be within reach.

10We should also note that many algorithms from the previous subsection
not only solve C-SAT, but can exactly count the number of satisfying
assignments (or can be modified to do so), yielding a C-CAPP algorithm.

For the class ACC0, exact counting of satisfying assign-
ments can be done in about the same (best known) running
time as computing satisfiability [Wil14].

To our knowledge, no nontrivial approximate counting
algorithm for depth-two TC0 circuits is known. However,
here is a good place to mention two other threads of work in
this area that relate. The problem of approximately counting
the number of zeroes in {0, 1}n of a low-degree polynomial
over a finite field is equivalent to the problem of computing
CAPP on a MODp of AND gates of fan-in d. This problem
is now known to be solvable essentially optimally for fixed
d, in deterministic time Od(nd) [NN93], [LVW93], [BV10],
[Lov09], [Vio09]. A polynomial threshold function of degree
d (PTF) has the form f : {−1, 1}n → {−1, 1} and is
representable by the sign of a multivariate degree-d poly-
nomial over the integers. (Such functions can be construed
as Boolean; the convention is that −1 corresponds to true
and 1 corresponds to false.) Approximating the number of
zeroes to a degree-d PTF can be modeled by solving CAPP
on a linear threshold gate of MOD2 gates of fan-in d. It
is known that for every fixed d, approximate counting of
degree-d PTFs can be done in polynomial time [MZ13].

For Boolean formulas, Impagliazzo, Meka, Zucker-
man [IMZ12] give a pseudorandom generator yielding an
2O(s1/3+o(1)) time algorithm for Formula-CAPP on size-s
formulas over U2. For formulas of size s over B2 and
branching programs of size s, their pseudorandom generator
can be used to approximately count in 2O(s1/2+o(1)) time.

No nontrivial results for CAPP are known for unrestricted
Boolean circuits.

C. Truth Table Analysis

So far, we have only considered circuit analysis problems
where the input to be analyzed is a circuit. Another class
of circuit analysis problems take a Boolean function on n
variables as input, specified as a 2n-bit string, and the goal is
to compute some property of “good” circuits which compute
the function f .

Generic Truth Table Analysis
Input: A function f : {0, 1}n → {0, 1}
Output: Property P (f) of circuits computing f

A natural and notoriously hard example of such a problem
is that of minimizing a circuit given its truth table:

Circuit-Min [Yab59], [KC00]
Input: A function f : {0, 1}n → {0, 1} and k ∈ Z+

Output: Is CB2(f) ≤ k?

That is, the task is to decide if the circuit complexity

of f is at most k. As with Circuit-SAT and CAPP, we
can also define the C-Min problem for restricted circuit
classes C. The problem is easily seen to be in NP. It
is widely conjectured that Circuit-Min is intractable: for
one, if the problem were in P, then there would be no
pseudorandom functions, contradicting conventional wisdom
in cryptography. Informally, a pseudorandom function is a
function f implementable with polynomial-size circuits that
“behaves like” a random function, to all efficient processes
with input/output access to f . Since random functions have
high circuit complexity with high probability, and f has low
circuit complexity, an efficient algorithm for Circuit-Min be
used to could tell the two apart with non-negligible success
probability, after querying them at poly(n) points.

Indeed, putting Circuit-Min in P would consequently
provide a “P-natural property useful against exponential-size
circuits” in the sense of Razborov and Rudich [RR97]. As a
result, some restricted versions of Circuit-Min, such as NC1-
Min and TC0-Min are also intractable under cryptographic
assumptions.

However, proving that Circuit-Min is NP-hard is a diffi-
cult open problem. To obtain a polynomial-time reduction
from (say) SAT to Circuit-Min, unsatisfiable formulas have
to be efficiently mapped into functions without small cir-
cuits; however, recall that we do not know explicit functions
with high circuit complexity! Kabanets and Cai [KC00]
show that if the NP-hardness of Circuit-Min could be proved
under a natural notion of reduction, then long-open circuit
lower bounds like EXP 6⊂ P/poly would follow.

One restricted case of Circuit-Min is known to be NP-
complete: DNF-Min, the problem of minimizing a DNF
formula (an OR of ANDs of literals) given its truth
table [Qui52], [McC56], [Mas79], [AHM+08]. However,
one can efficiently find an approximately minimum-sized
DNF [AHM+08].

Another truth table analysis problem has recently been
introduced is that of compression:

Compression of C [CKK+14]
Input: A function f : {0, 1}n → {0, 1} computable
with a circuit from C
Output: A (possibly unrestricted) circuit C computing
f with size � 2n/n

Chen et al. [CKK+14] show that the techniques used in
many existing circuit lower bound proofs can be “mined” to
obtain interesting (faster than exhaustive search) compres-
sion algorithms for AC0, small Boolean formulas, and small
branching programs. They pose as an open problem whether
ACC0 admits such a compression algorithm.

Learning circuits: There is one more important form
of circuit analysis that can be viewed as restricted access to

the truth table of a function: that of learning a function
f : {0, 1}n → {0, 1} which is initially hidden, but is
known or assumed to be implementable in some restricted
circuit class C. In this survey we focus on the problem
of exact learning of C with membership and equivalence
queries [Ang87], where a learning algorithm does not see f
in its entirety, but has the ability to:

• query f on an arbitrary x ∈ {0, 1}n (a membership
query), and

• pose a hypothesis circuit H on n bits, asking if H
and f compute the same function (an equivalence
query). If H 6= f , the algorithm is provided with a
counterexample point x on which H(x) 6= f(x).

It’s well known that pseudorandomness and cryptography
naturally connect with computational learning: a pseudoran-
dom function is one implemented with small circuits yet
“looks like a random function” when it’s queried a small
number of times—the kind of function which isn’t easily
learnable. Hence learning of Boolean functions computable
in TC0 and NC1 is believed to be intractable. Other exam-
ples can be found in the references [Val84], [KV94].

V. CONNECTIONS

In the Circuits for Algorithms space, we wish to design
small circuits to simulate complex algorithms, or prove
that no small circuits exist for this task. In Algorithms
for Circuits, the goal is to design faster circuit-analysis
algorithms. It is perhaps natural to hypothesize that these
tasks may be used to inform the other. A provably nontrivial
algorithm for analyzing all possible circuits from a class
must exhibit, at its core, some nontrivial understanding
about the limitations of that circuit class. In the converse
direction, if a simple function cannot be computed by small
circuits, then algorithms may be able to use this function to
exploit this limitation, and analyze small circuits faster than
exhaustive search would take.

For sufficiently restricted classes of circuits, one can adapt
the known techniques for proving lower bounds to derive
faster satisfiability algorithms (or pseudorandom generators)
for those circuits. For instance, the progress on Formula-SAT
algorithms and on pseudorandom generators for Boolean
formulas, both mentioned in Section IV, came out of tighter
analyses of the random restriction method originally used
for proving formula lower bounds [Sub61], [Hås98].

In the following, we restrict attention to more generic
connections (i.e., formal implications) between the existence
of efficient circuit-analysis algorithms and circuit lower
bounds.

A. Circuit lower bounds and derandomization/CAPP

Perhaps the earliest explicit study of how algorithms and
lower bounds connect can be found in the formal theory

of cryptographic pseudorandomness, initiated by Blum and
Micali [BM84] and Yao [Yao82]. There, the existence of
cryptographic pseudorandom generators imply subexponen-
tial time deterministic simulations of randomized polynomial
time algorithms. Nisan and Wigderson [NW94] defined a
relaxed notion of pseudorandom generator explicitly for the
purposes of derandomizing randomized algorithms (instead
of for cryptography) and gave some connections between
circuit lower bounds and the existence of pseudorandom
generators. Subsequent work [BFNW93], [IW97], [KvM02],
[IKW02] improved these connections. These papers give
an effective equivalence between (for example) functions
in 2O(n) time requiring “high” circuit complexity, and the
existence of pseudorandom generators computable in 2O(n)

time that are effective against all “low complexity” circuits.
Babai, Fortnow, Nisan, and Wigderson [BFNW93]

showed that EXP 6⊂ P/poly implies the existence of pseu-
dorandom generators that can deterministically simulate any
randomized polynomial-time algorithm in subexponential
time. Formally speaking:

Theorem 5.1 ([BFNW93]): EXP 6⊂ P/poly implies
BPP ⊆ ioSUBEXP.

This connection was sharpened by Impagliazzo and
Wigderson:

Theorem 5.2 ([IW97]): If there is a δ > 0 and some
function computable in 2O(n) time that needs circuits of
size at least (1 + δ)n for almost all input lengths n, then
P = BPP.

That is, from exponential-size circuit lower bounds, every
randomized polynomial-time algorithm can be simulated
in deterministic polynomial time. Impagliazzo, Kabanets,
and Wigderson [IKW02] showed that even a seemingly
weak lower bound like NEXP 6⊂ P/poly would imply a
derandomization result: namely, that there is a simulation
of Merlin-Arthur games (a probabilistic version of NP)
computable in nondeterministic subexponential time.

In the opposite direction, they showed how a subexpo-
nential time algorithm for approximating the acceptance
probability of a circuit implies lower bounds:

Theorem 5.3 ([IKW02]): If CAPP can be computed in
2n

o(1)

time for all circuits of size n, then NEXP 6⊂ P/poly.
The fastest known algorithm for CAPP is exhaustive

search, requiring Ω(2n) time. An improvement in the run-
ning time from 2n time to 2n

ε

time for every ε > 0 would
be an incredible accomplishment, and a remote possibility
for the near future. However, the hypothesis of Theorem 5.3
can be significantly weakened. Essentially any nontrivial im-
provement over exhaustive search for CAPP would already
yield the desired lower bounds:

Theorem 5.4 ([Wil10]): Suppose for every k, CAPP on
circuits of size nk and n inputs can be solved in O(2n/nk)
time (even nondeterministically). Then NEXP 6⊂ P/poly.

Furthermore, it is also known that computing CAPP for
a restricted circuit class C faster than exhaustive search
would imply that NEXP 6⊂ C [Wil10], [SW13]. Theo-
rem 5.4 requires that C satisfy certain closure properties
(all classes covered in this survey satisfy them). Ben-Sasson
and Viola [BSV14] have recently sharpened the connection
between CAPP algorithms and circuit lower bounds, by care-
fully modifying a known construction of probabilistically
checkable proofs.

B. Circuit lower bounds from SAT algorithms

We now survey the impact of Circuit-SAT algorithms
on the topic of Circuits for Algorithms. First, if we have
“perfect” circuit analysis, i.e., Circuit-SAT is solvable in
polynomial time, then there is a function in EXP that does
not have small circuits. This result is quite old in complexity-
theory years:

Theorem 5.5 (Meyer [KL82]): If P = NP then EXP 6⊂
P/poly.

This is an interesting conditional statement, but it may be
of limited utility since we do not believe the hypothesis.
Nevertheless, Theorem 5.5 is a good starting point for
thinking about how circuit analysis can relate to circuit lower
bounds. A proof can be quickly sketched: assuming P = NP,
we obtain many collapses of existing complexity classes,
including Σ3EXP = EXP. However, as stated in Section III,
Σ3EXP contains a language requiring circuits of maximum
complexity (by directly “diagonalizing” against all circuits
up to the maximum size). Therefore EXP now contains such
a language as well.

This simple argument shows how the feasibility offered
by a hypothesis like P = NP implies a reduction in the
algorithmic complexity of hard functions. It is tantalizing
to wonder if a lower bound could be obtained via proof
by contradiction, in this way: assert a feasibility hypothesis
strong enough that the complexity of another provably hard
function reduces drastically, to the point where it becomes
contradictorily easy. Sure enough, the recent progress of
the author on ACC0 circuit lower bounds (described below)
takes this approach.

Studying the proof more carefully, Theorem 5.5 can be
improved in a few ways. Considering the contrapositive of
the proof sketch, we find that if every function in 2O(n)

time has less than the maximum possible circuit complexity
(1 + o(1))2n/n, then P 6= NP. In other words, if non-
uniform circuits can gain even a small advantage over
exponential-time algorithms in simulation, then P 6= NP
would follow. Another improvement of Theorem 5.5 comes
from observing we do not exactly need polynomial time
Circuit-SAT algorithms: weaker guarantees such as n(logn)k

time would suffice to conclude EXP 6⊂ P/poly. Assuming
ETH, this sort of running time is still beyond what is
expected.

Combining these results with our earlier remarks on
derandomization, we see that either EXP has less than
maximum size circuits, and hence P 6= NP, or EXP requires
maximum size circuits, and every randomized algorithm
could then be efficiently simulated deterministically, by
Theorem 5.2! So no matter how the EXP vs P/poly problem
is resolved, the consequences will be very interesting.

Modern times: Theorem 5.5 and its offshoots only work
for Circuit-SAT algorithms that run in subexponential time.
An indication that techniques for weak SAT algorithms may
still be useful for circuit lower bounds can be found in work
of Paturi, Pudlak, and Zane [PPZ97]. They gave a structure
lemma on k-SAT instances, and used it to not only prove
that k-SAT can be solved in about 2n−n/k time, but also to
prove lower bounds for depth-three AC0 circuits.

In recent years, the author showed that very weak im-
provements over exhaustive search for C-SAT would imply
circuit lower bounds for NEXP:

Theorem 5.6 ([Wil10], [Wil11]): There is a c > 0 such
that, if C-SAT can be solved on circuits with n inputs and
nk size in O(2n/nc) time for every k, then NEXP 6⊂ C.

While the conclusion is weaker than Theorem 5.5, the
hypothesis is extremely weak compared to P = NP; indeed,
it even looks plausible. The above theorem was combined
with the ACC0-SAT algorithm mentioned in Section IV-A
to conclude:

Theorem 5.7 ([Wil11]): NEXP 6⊂ ACC0.
Since Theorem 5.7 was proved, it has been concretely

extended twice. The first extension slightly lowers the
complexity of NEXP, down to complexity classes such as
NEXP/1 ∩ coNEXP/1 [Wil13]. (In fact a generic connec-
tion is proved between C-SAT algorithms and C circuit
lower bounds for NEXP/1 ∩ coNEXP/1, with a slightly
stronger hypothesis: we have to assume SAT algorithms for
npoly(logn) size circuits.) The second extension strengthens
ACC0 up to the class ACC0 ◦ THR, or ACC0 circuits
augmented with a layer of linear threshold gates near the
inputs [Wil14].

Theorem 5.6 holds for all circuit classes C mentioned in
the survey, but one may need (for example) a satisfiability
algorithm for 2d-depth circuits to obtain a d-depth circuit
lower bound. The project of tightening parameters to make
C-SAT algorithms directly correspond to the same C circuit
lower bounds has seen much progress [SW13], [JMV13],
[Oli13], [BSV14]. Now (for example) it is known that SAT
algorithms for depth d+ 1 or d+ 2 (depending on the gate
basis) imply depth-d lower bounds.

Perhaps Circuit-SAT looks too daunting to improve upon.
Are there other connections between SAT algorithms and
circuit lower bounds? Indeed, from faster 3-SAT algorithms
we can conclude superlinear size lower bounds:

Theorem 5.8 ([Wil10]): Suppose the Exponential Time
Hypothesis is false: that is, 3-SAT is in 2εn time for every

ε > 0. Then there is a language L ∈ TIME[2O(n)]NP such
that, for every c ≥ 1, L does not have cn-size circuits.

The hypothesis was discussed in Section IV-A, and the
conclusion was discussed as open in Section III-A. Refut-
ing the Strong Exponential Time Hypothesis (SETH) from
Section IV-A also implies (weaker) circuit lower bounds:

Theorem 5.9 ([JMV13]): Suppose SETH is false: that is,
there is a δ < 1 such that k-SAT is in O(2δn) time for all k.
Then there is a language L ∈ TIME[2O(n)]NP such that, for
every c ≥ 1, L does not have cn-size series-parallel circuits.

Intuition for the connections: One intuition is that a
faster circuit-analysis algorithm (say, for C-SAT) demon-
strates a specific weakness in representing computations
with circuits from C. A circuit family from C is not like
a collection of black boxes which can easily hide satisfying
inputs. (If we could only query the circuit as a black box,
viewing only its input/output behavior, we could not solve C-
SAT in o(2n) time.) Another intuition is that the existence
of a faster circuit-analysis algorithm for C demonstrates a
strength of algorithms that run in less-than-2n time: they
can solve problems like satisfiability. Hence from assuming
a less-than-2n time C-SAT algorithm, we should be capable
of inferring that “less-than-2n time algorithms are strong”
and “C-circuits are weak.”

These observations hint at a proof that, assuming a C-SAT
algorithm, there is a language in NEXP without polynomial-
size C circuits. The actual proof does not resemble these
hints; it is by contradiction. We assert that both a faster
algorithm for analyzing C exists, and that NEXP ⊂ C.
Then, it is shown that these two assumptions imply an
algorithm which is too good to be true: a way to sim-
ulate every language solvable in nondeterministic O(2n)
time, in only o(2n) time. This simulation contradicts the
nondeterministic time hierarchy theorem [Ž8́3]. The faster
nondeterministic simulation works by using NEXP ⊂ C
to nondeterministically guess C circuits that help perform
a arbitrary 2O(n) time computation, and using the faster
circuit-analysis algorithm to verify that these C circuits do
the job correctly.

C. Circuit lower bounds from learning

Intuitively, circuit lower bounds require understanding
something deep about the circuit class under considera-
tion, which would seem to be necessary for any efficient
learning algorithm for circuits. Fortnow and Klivans proved
a theorem modeling this intuition. Let C be a restricted
circuit class, such as those defined in Section III-C. In the
following, we say that C is exactly learnable if there is an
algorithm for learning every hidden function from C using
membership and equivalence queries (cf. Section IV-C).

Theorem 5.10 ([FK09]): If all n-bit functions from C are
exactly learnable in deterministic 2n

o(1)

time, then EXPNP 6⊂
C.

Theorem 5.11 ([FK09]): If all n-bit functions from C
are exactly learnable in randomized polynomial time, then
randomized exponential time (BPEXP) is not contained in
C.

Recently, these connections between learning circuits and
circuit lower bounds have been somewhat strengthened:

Theorem 5.12 ([KKO13]): If C is exactly learnable in
2n

o(1)

time, then there is a language in TIME[2n
o(1)

] that
is not in C.

Theorem 5.13 ([KKO13]): If C is exactly learnable in
polynomial time, then there is a language in TIME[nω(1)]
that is not in C.

These proofs follow a clever “diagonalization” argument,
where the learning algorithm is used to construct an ef-
ficiently computable function f that plays the role of a
contrarian teacher for the learning algorithm: when the
learner asks a membership query x, f tells the learner true if
f has not already committed to a value for x (otherwise, f
reports f(x)). For every equivalence query, f tells the learner
“not equivalent” and outputs the first string y for which
it has not already committed to an output value (thereby
committing to a value for y). As f is constructed to never
be equivalent to any hypothesis proposed by the learning
algorithm, it cannot have circuits in C.

D. Circuit analysis as a complexity barrier

The Algorithms for Circuits problem connects with circuit
lower bounds in a negative way as well. The Natural
Proofs Barrier [RR97] has the following setup. Suppose one
establishes a superpolynomial circuit lower bound against a
language L, by giving an algorithm A that, given the truth
table of a function f : {0, 1}n → {0, 1}:
• [A is constructive] A runs in time 2O(n), polynomial

in the input length.
• [A is large] A accepts at least a 1/2O(n) fraction of all

2n-bit inputs.
• [A is useful] For all k, there are infinitely many n such

that A accepts the truth table of Ln and A rejects all strings
which are truth tables for circuits of size nk.11

Then A is said to be natural. One can see that the algo-
rithm A is basically a weak algorithm for the Circuit-Min
problem (cf. Section IV-C): the algorithm can distinguish
many functions that are “hard” from all functions which
are sufficiently “easy.” Practically all known circuit lower
bound proofs (with rare exception) effectively construct such
natural algorithms A for distinguishing the function they
want to prove hard from a given circuit class.

Razborov and Rudich proved that when an algorithm A
exists which is useful against a circuit class C, then that

11This is the definition of usefulness for polynomial size circuits. For
restricted circuit classes, one would add other conditions in a natural way.

circuit class C is too weak to support modern cryptography!
(In particular, C cannot support pseudorandom functions.)
Therefore, if we believe that it is possible to prove circuit
lower bounds which are strong enough for doing uncondi-
tionally secure cryptography with circuit class C, then we
must also believe that such “natural” approaches to lower
bounds cannot establish results like P 6= NP.

Equivalences between circuit analysis and circuit lower
bounds: Earlier it was mentioned that there are rough
equivalences between pseudorandom generators and circuit
lower bounds. Pseudorandom generators can be viewed as
“circuit analysis” algorithms, in the context of solving CAPP.
Impagliazzo, Kabanets, and Wigderson [IKW02] proved an
explicit form of such an equivalence:

Theorem 5.14 ([IKW02]): NEXP 6⊂ P/poly if and only
if for all ε > 0, CAPP is in ioNTIME[2n

ε

]/nε.
That is, NEXP circuit lower bounds are equivalent to the

existence of nontrivial nondeterministic subexponential time
algorithms for approximately counting SAT assignments to
circuits.

The author recently proved a related equivalence between
the NEXP 6⊂ C problem (for various circuit classes C) and
circuit-analysis algorithms. Call an algorithm A non-trivial
for C-Min if

• A(f) runs in poly(2n) time on a given f : {0, 1}n →
{0, 1}, and

• for all constants k and for infinitely many input lengths
n, there is a f : {0, 1}n → {0, 1} such that A(f)
outputs 1, and for all f : {0, 1}n → {0, 1} computable
with an nk + k-size circuit from C, A(f) outputs 0.

That is, on infinitely many n, algorithm A outputs 1 on at
least one Boolean function on n bits, and 0 on all functions
with polynomial circuit complexity. This is a very weak
algorithmic guarantee.

Theorem 5.15 ([Wil13]): NEXP 6⊂ C if and only if there
is an algorithm A which is non-trivial for C-Min.

Using the language of Natural Proofs, this theorem says:
NEXP 6⊂ C if and only if there is a constructive property
useful against C circuits. Recall that the Natural Proofs
barrier teaches us that we must find lower bound proofs
which avoid constructivity, largeness, and usefulness. Hence
one may interpret the theorem as saying that largeness
can always be “avoided”: from any proof of an NEXP
circuit lower bound we can extract a constructive and useful
property.

Connections in an algebraic setting: In this survey,
we have restricted our attention to Boolean functions and
circuits computing them. However, connections between
circuit-analysis algorithms and circuit lower bounds also
hold in an algebraic framework, where Boolean functions
are replaced by polynomials over a ring R, and Boolean
circuits are replaced by algebraic circuits, which defined

analogously to Boolean circuits, but we allow side constants
from the ring as extra inputs to an algebraic circuit, and
the gates are either additions or multiplications over the
ring. Typically, R is taken to be a finite field, or Z. Each
algebraic circuit C(x1, . . . , xn) computes some polynomial
p(x1, . . . , xn) over R.

The canonical circuit-analysis problem in this setting is:

Polynomial Identity Testing (PIT): Given an alge-
braic circuit C, does C compute the identically zero
polynomial?

It’s natural to think of PIT as a type of satisfiability
problem. However, PIT is probably not NP-hard: the prob-
lem is easily solvable in randomized polynomial time by
substituting random elements (possibly over an extension
field) [DL78], [Zip79], [Sch80]. A very interesting open
problem is to determine whether randomness is necessary
for efficiently solving PIT. Kabanets and Impagliazzo [KI04]
proved that an efficient deterministic algorithm for PIT
would imply algebraic circuit lower bounds: either NEXP 6⊂
P/poly, or computing the permanent of a matrix requires
superpolynomial-size algebraic circuits.

VI. CONCLUSION

This survey has shown how a host of open problems
in algorithms have direct bearing on some of the central
problems in complexity theory. It is quite likely that there
exist deeper interactions between Algorithms for Circuits
and Circuits for Algorithms which await our discovery.
Hopefully the reader has been persuaded to think a little
more about how algorithms and lower bounds relate to each
other.

ACKNOWLEDGMENT

The author acknowledges support by the Alfred P. Sloan
foundation, Microsoft Research, and the NSF under grant
CCF-1212372.

REFERENCES

[AB09] Sanjeev Arora and Boaz Barak. Computational Com-
plexity - A Modern Approach. Cambridge University
Press, 2009.

[AHM+08] Eric Allender, Lisa Hellerstein, Paul McCabe, Toniann
Pitassi, and Michael Saks. Minimizing DNF formulas
and AC0 circuits given a truth table. SIAM J. Comput.,
38(1):63–84, 2008.

[Ajt83] Miklos Ajtai. Σ1
1-formulae on finite structures. Annals

of Pure and Applied Logic, 24:1–48, 1983.

[Ang87] Dana Angluin. Queries and concept learning. Machine
Learning, 2(4):319–342, 1987.

[Arn57] V. I. Arnol’d. On functions of three variables. Dokl.
Akad. Nauk SSSR, 114:679–681, 1957.

[AW85] Miklós Ajtai and Avi Wigderson. Deterministic simu-
lation of probabilistic constant depth circuits (prelim-
inary version). In FOCS, pages 11–19, 1985.

[AW09] Scott Aaronson and Avi Wigderson. Algebrization:
A new barrier in complexity theory. ACM TOCT, 1,
2009.

[BFNW93] László Babai, Lance Fortnow, Noam Nisan, and Avi
Wigderson. BPP has subexponential time simulations
unless EXPTIME has publishable proofs. Computa-
tional Complexity, 3(4):307–318, 1993.

[BFT98] Harry Buhrman, Lance Fortnow, and Thomas Thier-
auf. Nonrelativizing separations. In CCC, pages 8–12,
1998.

[BGS75] Theodore Baker, John Gill, and Robert Solovay. Rela-
tivizations of the P =? NP question. SIAM J. Comput.,
4(4):431–442, 1975.

[BIS12] Paul Beame, Russell Impagliazzo, and Srikanth Srini-
vasan. Approximating AC0 by small height decision
trees and a deterministic algorithm for # ac0sat. In
CCC, pages 117–125, 2012.

[Blu84] Norbert Blum. A boolean function requiring 3n
network size. Theoretical Computer Science, 28:337–
345, 1984.

[BM84] Manuel Blum and Silvio Micali. How to generate
cryptographically strong sequence of pseudo-random
bits. SIAM J. Comput., 13:850–864, 1984.

[BSV14] Eli Ben-Sasson and Emanuele Viola. Short pcps with
projection queries. In ICALP, page to appear, 2014.

[BV10] Andrej Bogdanov and Emanuele Viola. Pseudorandom
bits for polynomials. SIAM J. Comput., 39(6):2464–
2486, 2010.

[CIP09] Chris Calabro, Russell Impagliazzo, and Ramamohan
Paturi. The complexity of satisfiability of small depth
circuits. In Parameterized and Exact Complexity
(IWPEC), pages 75–85, 2009.

[CKK+14] Ruiwen Chen, Valentine Kabanets, Antonina
Kolokolova, Ronen Shaltiel, and David Zuckerman.
Mining circuit lower bound proofs for meta-
algorithms. In CCC, page to appear, 2014.

[DF99] Rodney G. Downey and Michael R. Fellows. Springer-
Verlag, 1999.

[DH09] Evgeny Dantsin and Edward A. Hirsch. Worst-case
upper bounds. In Handbook of Satisfiability. Frontiers
in Artificial Intelligence and Applications, volume
185, pages 403–424. IOS Press, 2009.

[DL78] Richard A. DeMillo and Richard J. Lipton. A prob-
abilistic remark on algebraic program testing. Infor-
mation Processing Letters, 7(4):192–195, 1978.

[Ehr75] Andrzej Ehrenfeucht. Practical decidability. J. Com-
put. Syst. Sci., 11:392–396, 1975.

[FG06] Jörg Flum and Martin Grohe. Parameterized complex-
ity theory. Springer Heidelberg, 2006.

[FK09] Lance Fortnow and Adam R. Klivans. Efficient
learning algorithms yield circuit lower bounds. J.
Comput. Syst. Sci., 75(1), 2009.

[FK10] Fedor V. Fomin and Dieter Kratsch. Exact Exponential
Algorithms. Springer, 2010.

[FSS81] Merrick Furst, James Saxe, and Michael Sipser. Parity,
circuits, and the polynomial-time hierarchy. Mathe-
matical Systems Theory, 17(1):13–27, April 1984. See
also FOCS’81.

[GMR13] Parikshit Gopalan, Raghu Meka, and Omer Reingold.
Dnf sparsification and a faster deterministic counting
algorithm. Computational Complexity, 22(2):275–310,
2013.

[Hås98] Johan Håstad. The shrinkage exponent of de morgan
formulae is 2. SIAM J. Comput., 27:48–64, 1998.

[Her11] Timon Hertli. 3-SAT faster and simpler - Unique-SAT
bounds for PPSZ hold in general. In FOCS, pages
277–284, 2011.

[HMP+93] András Hajnal, Wolfgang Maass, Pavel Pudlák, Mario
Szegedy, and György Turán. Threshold circuits of
bounded depth. J. Comput. Syst. Sci., 46(2):129–154,
1993.

[IKW02] Russell Impagliazzo, Valentine Kabanets, and Avi
Wigderson. In search of an easy witness: Exponential
time vs. probabilistic polynomial time. J. Comput.
Syst. Sci., 65(4):672–694, 2002.

[IM02] Kazuo Iwama and Hiroki Morizumi. An explicit lower
bound of 5n - o(n) for boolean circuits. In MFCS,
pages 353–364, 2002.

[IMP12] Russell Impagliazzo, William Matthews, and Ra-
mamohan Paturi. A satisfiability algorithm for AC0.
In SODA, pages 961–972, 2012.

[IMZ12] Russell Impagliazzo, Raghu Meka, and David Zuck-
erman. Pseudorandomness from shrinkage. In FOCS,
pages 111–119, 2012.

[IP01] Russell Impagliazzo and Ramamohan Paturi. On
the complexity of k-SAT. J. Comput. Syst. Sci.,
62(2):367–375, 2001.

[IPS13] Russell Impagliazzo, Ramamohan Paturi, and Stefan
Schneider. A satisfiability algorithm for sparse depth
two threshold circuits. In FOCS, pages 479–488,
2013.

[IPZ01] Russell Impagliazzo, Ramamohan Paturi, and Francis
Zane. Which problems have strongly exponential
complexity? J. Comput. Syst. Sci., 63(4):512–530,
2001.

[IW97] Russell Impagliazzo and Avi Wigderson. P = BPP
if E requires exponential circuits: Derandomizing the
XOR lemma. In STOC, pages 220–229, 1997.

[JMV13] Hamidreza Jahanjou, Eric Miles, and Emanuele Viola.
Local reductions. Technical Report TR13-099, Elec-
tronic Colloquium on Computational Complexity, July
2013.

[Kan82] Ravi Kannan. Circuit-size lower bounds and non-
reducibility to sparse sets. Information and Control,
55(1):40–56, 1982.

[KC00] Valentine Kabanets and Jin-Yi Cai. Circuit minimiza-
tion problem. In STOC, pages 73–79, 2000.

[KI04] Valentine Kabanets and Russell Impagliazzo. De-
randomizing polynomial identity tests means proving
circuit lower bounds. Computational Complexity,
13(1-2):1–46, 2004.

[KKO13] Adam Klivans, Pravesh Kothari, and Igor C. Oliveira.
Constructing hard functions using learning algorithms.
In CCC, pages 86–97, 2013.

[KL82] Richard Karp and Richard Lipton. Turing machines
that take advice. L’Enseignement Mathématique,
28(2):191–209, 1982.

[Kol56] A. N. Kolmogorov. On the representation of continu-
ous functions of several variables by superposition of
continuous functions of a smaller number of variables.
Dokl. Akad. Nauk SSSR, 108:179–182, 1956.

[KRT13] Ilan Komargodski, Ran Raz, and Avishay Tal. Im-
proved average-case lower bounds for DeMorgan for-
mulas. In FOCS, pages 588–597, 2013.

[KV94] Michael J. Kearns and Leslie G. Valiant. Crypto-
graphic limitations on learning boolean formulae and
finite automata. JACM, 41(1):67–95, 1994.

[KvM02] Adam Klivans and Dieter van Melkebeek. Graph
nonisomorphism has subexponential size proofs unless
the polynomial hierarchy collapses. SIAM J. Comput.,
31(5):1501–1526, 2002.

[Lip94] Richard Lipton. Some consequences of our failure to
prove non-linear lower bounds on explicit functions.
In Structure in Complexity Theory Conference, pages
79–87, 1994.

[LMS11] Daniel Lokshtanov, Dániel Marx, and Saket Saurabh.
Lower bounds based on the exponential time hypoth-
esis. Bulletin of the EATCS, 105:41–72, 2011.

[Lov09] Shachar Lovett. Unconditional pseudorandom gener-
ators for low degree polynomials. Theory of Comput-
ing, 5(1):69–82, 2009.

[LR01] Oded Lachish and Ran Raz. Explicit lower bound
of 4.5n - o(n) for boolena circuits. In STOC, pages
399–408, 2001.

[Lup59] O. B. Lupanov. A method of circuit synthesis.
Izvestiya VUZ, Radiofizika, 1(1):120–140, 1959.

[LV96] Michael Luby and Boban Velickovic. On deterministic
approximation of DNF. Algorithmica, 16(4/5):415–
433, 1996.

[LVW93] Michael Luby, Boban Velickovic, and Avi Wigder-
son. Deterministic approximate counting of depth-2
circuits. In Proceedings of the 2nd ISTCS, pages 18–
24, 1993.

[Mas79] W. J. Masek. Some np-complete set covering prob-
lems. Manuscript, 1979.

[McC56] E. L. McCluskey Jr. Minimization of boolean func-
tions. Bell System Tech. J., 35:1417–1444, 1956.

[MTY11] Kazuhisa Makino, Suguru Tamaki, and Masaki Ya-
mamoto. Derandomizing hssw algorithm for 3-sat. In
COCOON, pages 1–12. 2011.

[MZ13] Raghu Meka and David Zuckerman. Pseudorandom
generators for polynomial threshold functions. SIAM
J. Comput., 42(3):1275–1301, 2013.

[Nis91] Noam Nisan. Pseudorandom bits for constant depth
circuits. Combinatorica, 11(1):63–70, 1991.

[NN93] Joseph Naor and Moni Naor. Small-bias probability
spaces: Efficient constructions and applications. SIAM
J. Comput., 22(4):838–856, 1993.

[NW94] Noam Nisan and Avi Wigderson. Hardness vs ran-
domness. J. Comput. Syst. Sci., 49(2):149–167, 1994.

[Oli13] Igor Oliveira. Algorithms versus circuit lower bounds.
Technical Report TR13-117, ECCC, September 2013.

[PPSZ98] Ramamohan Paturi, Pavel Pudlák, Michael E. Saks,
and Francis Zane. An improved exponential-time
algorithm for k-sat. JACM, 52(3):337–364, 2005. (See
also FOCS’98).

[PPZ97] Ramamohan Paturi, Pavel Pudlák, and Francis Zane.
Satisfiability coding lemma. Chicago J. Theor. Com-
put. Sci., 1999, 1999. See also FOCS’97.

[Qui52] W. V. Quine. The problem of simplifying truth
functions. Amer. Math. Monthly, 59:521–531, 1952.

[Raz87] Alexander A. Razborov. Lower bounds on the size of
bounded-depth networks over the complete basis with
logical addition. Mathematical Notes of the Academy
of Sciences of the USSR, 41(4):333–338, 1987.

[RR97] Alexander Razborov and Steven Rudich. Natural
proofs. J. Comput. Syst. Sci., 55(1):24–35, 1997.

[San10] Rahul Santhanam. Fighting perebor: New and im-
proved algorithms for formula and qbf satisfiability.
In FOCS, pages 183–192, 2010.

[Sch80] Jacob Schwartz. Fast probabilistic algorithms for ver-
ification of polynomial identities. JACM, 27(4):701–
717, 1980.

[Sch02] Uwe Schöning. A probabilistic algorithm for k-SAT
based on limited local search and restart. Algorith-
mica, 32(4):615–623, 2002.

[Sha49] Claude E. Shannon. The synthesis of two-terminal
switching circuits. Bell Syst. Techn. J., 28:59–98,
1949.

[Sho75] L. A. Sholomov. On one sequence of functions which
is hard to compute. Mat. Zametki, 17:957–966, 1975.

[SM02] Larry J. Stockmeyer and Albert R. Meyer. Cosmolog-
ical lower bound on the circuit complexity of a small
problem in logic. JACM, 49(6):753–784, 2002.

[Smo87] Roman Smolensky. Algebraic methods in the theory
of lower bounds for Boolean circuit complexity. In
STOC, pages 77–82, 1987.

[ST12] Kazuhisa Seto and Suguru Tamaki. A satisfiability
algorithm and average-case hardness for formulas over
the full binary basis. Computational Complexity,
22(2):245–274, 2013. See also CCC’12.

[Sub61] B. A. Subbotovskaya. Realizations of linear functions
by formulas using +,*,-. Soviet Mathematics Doklady,
2:110–112, 1961.

[SW13] Rahul Santhanam and Ryan Williams. On medium-
uniformity and circuit lower bounds. In CCC, pages
15–23, 2013.

[TX13] Luca Trevisan and TongKe Xue. A derandomized
switching lemma and an improved derandomization
of AC0. In CCC, pages 242–247, 2013.

[Val84] Leslie G. Valiant. A theory of the learnable. In ACM
STOC, pages 436–445, 1984.

[Vio09] Emanuele Viola. The sum of d small-bias generators
fools polynomials of degree d. Computational Com-
plexity, 18(2):209–217, 2009.

[Wil13] Ryan Williams. Natural proofs versus derandomiza-
tion. In STOC, pages 21–30, 2013.

[Wil14] Ryan Williams. New algorithms and lower bounds for
circuits with linear threshold gates. In STOC, page to
appear, 2014.

[Wil11] Ryan Williams. Nonuniform ACC circuit lower
bounds. JACM, 61(1):2, 2014. See also CCC’11.

[Wil10] Ryan Williams. Improving exhaustive search implies
superpolynomial lower bounds. SIAM J. Comput.,
42(3):1218–1244, 2013. See also STOC’10.

[Woe03] Gerhard J Woeginger. Exact algorithms for NP-hard
problems: A survey. In Combinatorial Optimization—
Eureka, You Shrink!, pages 185–207. Springer, 2003.

[Yab59] S. V. Yablonksi. The algorithmic difficulties of synthe-
sizing minimal switching circuits. Dokl. Akad. Nauk
SSSR, 124(1):44–47, 1959.

[Yao82] Andrew Yao. Theory and application of trapdoor
functions. In FOCS, pages 80–91, 1982.

[Ž8́3] Stanislav Žák. A Turing machine time hierarchy.
Theoretical Computer Science, 26(3):327–333, 1983.

[Zip79] R. E. Zippel. Probabilistic algorithms for sparse
polynomials. In International Symposium on Symbolic
and Algebraic Manipulation, pages 216–226, 1979.

