
Fixed-Polynomial Size Circuit Bounds

Lance Fortnow
Northwestern University

Evanston, IL, USA
fortnow@eecs.northwestern.edu

Rahul Santhanam
University of Edinburgh
Edinburgh, Scotland, UK

rsanthan@inf.ed.ac.uk

Ryan Williams
Institute for Advanced Study

Princeton, NJ, USA
ryanw@ias.edu

Abstract—In 1982, Kannan showed thatΣP
2 does not have

nk-sized circuits for any k. Do smaller classes also admit
such circuit lower bounds? Despite several improvements of
Kannan’s result, we still cannot prove that PNP does not have
linear size circuits. Work of Aaronson and Wigderson provides
strong evidence – the “algebrization” barrier – that current
techniques have inherent limitations in this respect.

We explore questions about fixed-polynomial size circuit
lower bounds around and beyond the algebrization barrier.
We find several connections, including

• The following are equivalent:
– NP is in SIZE(nk) (has O(nk)-size circuit families)

for some k
– For each c, PNP[nc] is in SIZE(nk) for some k
– ONP/1 is in SIZE(nk) for somek, where ONP is the

class of languages acceptedobliviously by NP ma-
chines, with witnesses for “yes” instances depending
only on the input length.

• For a large number of natural classesC and all k > 1, C
is in SIZE(nk) if and only if C/1∩P/poly is in SIZE(nk).

• If there is a d such that MATIME(n) ⊆ NTIME(nd), then
PNP does not haveO(nk) size circuits for any k > 0.

• One cannot shown2-size circuit lower bounds for ⊕P
without new nonrelativizing techniques. In particular,
the proof that PP 6⊆ SIZE(nk) for all k relies on the
(relativizing) result that PPP ⊆ MA =⇒ PP 6⊆ SIZE(nk),
and we give an oracle relative to whichP⊕P ⊆ MA and
⊕P ⊆ SIZE(n2) both hold.

I. I NTRODUCTION

Proving lower bounds for general nonuniform circuits
remains one of the most difficult tasks in computational
complexity. One has to go to the exponential-time version of
Merlin-Arthur games to find a class provably not having a
polynomial-size circuit family [BFT98]. Currently we do not
have any techniques for provingEXP cannot have poly-size
circuits, and certainly no techniques for super-polynomial
lower bounds forNP.

A more modest goal is to show fixed-polynomial size
lower bounds, i.e., lower bounds of the formnk for some
fixed k. Apart from being a first step towards super-
polynomial bounds, this question is closely related to ques-
tions in derandomization, thanks to known tradeoffs between
hardness and randomness ([BM84], [Yao82], [NW94]). Even

this question remains open forNP – we do not even know
of superlinear size lower bounds forNP.

However, we do have such lower bounds for some classes
slightly aboveNP. In 1982, Kannan [Kan82] proved that
ΣP

2 does not havenk-sized circuits for anyk. This re-
sult was progressively improved using relativizing tech-
niques ([BCG+96], [KW98], [Cai07]) culminating in the
analogous circuit lower bound forSP

2 [Cai07].

Recently, non-relativizing techniques from the theory of
interactive proofs have been applied to this problem. In 2005,
Vinodchandran [Vin05] showed that the classPP does not
havenk-sized circuits. Santhanam [San07] improved on this
result by showing that the promise version ofMA does
not havenk circuits for any fixedk. The proofs of Vinod-
chandran and Santhanam evade not only the relativization
obstacle, but also the natural proofs obstacle [RR97].

A natural question is to ask whether these techniques can
be pushed even further. Can similar results be obtained for
other classes likeNP, PNP

‖ , ⊕P andMA? This would have
significant implications – for instance,nk size lower bounds
in NP for any k would separateNEXP from BPP, a long-
standing open problem. In a recent influential paper [AW09],
Aaronson and Wigderson give strong evidence that the
answer is negative. They formalize a variant of relativization
called “algebrization”, and show that essentially all known
structural complexity results at the polynomial time level
algebrize, while several important lower bound problems,
such as showing fixed-polynomial size lower bounds forNP

cannot be resolved by algebrizing methods.

Thus, though we might have techniques that evade rela-
tivization and natural proofs, there is still a significant barrier
to showing fixed-polynomial lower bounds forNP or even
PNP. In this paper, we explore the world of fixed-polynomial
size lower bounds “beyond the barrier”. We show some
surprising connections and equivalences between questions
about fixed-polynomial size circuits in this regime.

In our first batch of results, we consider various pairs of
classes and show that a fixed-polynomial size lower bound
for the larger class actually implies a lower bound for the
smaller class. We begin with a simple observation: ifAM

does not havenk-size circuits then neither doesMA. We

then show that fixed-polynomial circuit lower bounds for
NP are equivalent to fixed polynomial-circuit lower bounds
for the larger classPNP[nc] given any fixedc, where the
latter class is polynomial time withnc adaptive queries
to an NP oracle. In particular, this implies that showing
fixed-polynomial lower bounds for polynomial time with
nonadaptive access to anNP oracle is as hard as showing
such lower bounds forNP itself.

We explore the classONP, “Oblivious NP”, implicitly
defined by Chakaravarthy and Roy [CR06]. A languageL
is in ONP if for every n there is a single polynomial-
size witnesswn, for every x in L with |x| = n. Thus
ONP is a rather restrictive subclass ofNP. Nevertheless, we
show thatONP nearly captures the hardness of showingNP

does not have small circuits: IfNP does not havenk-sized
circuits thenONP/1 does not havenk-sized circuits. This
result highlights a difference between the fixed-polynomial
lower bound question and the super-polynomial lower bound
question. The classONP/1 is solvable with polynomial size
circuits, and we strongly believe thatNP is not. Yet, from
the perspective of fixed-polynomial size bounds, these two
classes are equivalent!

A similar phenomenon holds more generally. We prove
a result that holds for a wide variety of complexity classes
such asNP, PNP, MA, BPP andPP. For all these classesC
and many more, ifC does not havenk-size circuit families
thenC/1 ∩ P/poly does not havenk-size circuits either.

We next consider the question ofPNP being in fixed-
polynomial size. We use results from holographic proofs
to show that fixed-polynomial size circuits forPNP would
imply that NP can be simulated by Merlin-Arthur games
operating in a fixed polynomial time bound, which would
be very surprising. We use this to show that a strong
derandomization ofMA would imply circuit lower bounds
for PNP, continuing a line of results relating derandomization
to circuit lower bounds ([IKW02], [KI04], [San07]).

As mentioned earlier, Vinodchandran and Santhanam’s
circuit lower bounds ([Vin05], [San07]) use nonrelativizing
techniques. The only nonrelativizing technique they use is
based on interactive proof systems (see [BFL91]), arguably
the only true nonrelativizing technique currently available
in computational complexity. We exhibit a relativized world
where⊕P has an2-sized circuit family and the conclusions
of the nonrelativizing techniques used by Vinodchandran and
Santhanam also hold. This shows that a barrier analogous
to algebrization also holds when trying to prove that⊕P

does not have quadratic-size circuit families. Actually, our
oracle result rules out a certain class of techniques which
algebrization is silent about – techniques in which a non-
relatizing result is used in more than one way.

Questions about fixed polynomial size circuits forP and
NP have also been explored by Lipton [Lip94], but with

a different emphasis, namely to derive several unlikely
consequences of small circuits for those classes and thereby
give more evidence that lower bounds are likely to hold.

II. PRELIMINARIES

A. Complexity Classes, Promise Problems and Advice

We assume a basic familiarity with complexity classes
such as P, RP, BPP, NP, PNP, MA, AM, ΣP

2 ,
⊕P, PP, EXP, and NEXP. The Complexity Zoo
(http://qwiki.caltech.edu/wiki/ComplexityZoo) is an excel-
lent resource for basic definitions and statements of results.

Given a complexity classC, coC is the class of languages
L such thatL̄ ∈ C. Given a functions : N → N, SIZE(s) is
the class of Boolean functionsf = {fn} such that for each
n, fn has Boolean circuits of sizeO(s(n)). For a Boolean
function f , Ckt(f) is the circuit complexity off , i.e., the
size of the smallest circuit computingf . Given a language
L and an integern, Ln = L ∩ {0, 1}n.

We also require the notion of circuit size for other circuit
models. These are typically defined by having one or more
auxiliary inputs to a deterministic circuit and defining the
language accepted by the circuit using some condition on
acceptance of auxiliary inputs.⊕SIZE(s) is the class of
Boolean functionsf computed by Parity-circuits of size
O(s), i.e., f(x) = 1 iff the circuit for f on x accepts on an
odd number of auxiliary inputs.

In order to deal with promise classes in a general way,
we take as fundamental the notion of a complexity measure.
A complexity measureCTIME is a mapping which assigns
to each pair(M,x), whereM is a time-bounded machine
(here a time functiontM (x) is implicit) andx an input, one
of three values “0” (accept), “1” (reject) and “?” (failure
of CTIME promise). We distinguish betweensyntacticand
semantic complexity measures. Syntactic measures have
as their range{0, 1} while semantic measures may map
some machine-input pairs to “?”. The complexity measures
DTIME andNTIME are syntactic (each halting deterministic
or non-deterministic machine either accepts or rejects on
each input), while complexity measures such asBPTIME

and MATIME are semantic (a probabilistic machine may
accept on an input with probability 1/2, thus failing the
bounded-error promise). For syntactic measures, any halting
machine defines a language, while for semantic measures,
only a subset of halting machines define languages.

A promise problem is a pair(Y,N), where Y,N ⊆
{0, 1}∗ andY ∩N = ∅. A promise problem(Y,N) belongs
to a classCTIME(t) if there is a machineM halting in time
t on all inputs of lengthn such thatM fulfils the CTIME

promise on inputs inY ∪N , accepting on inputs inY and
rejecting on inputs inN .

For a complexity classC, Promise-C is the class of

promise problems which belong toC. Sometimes, whenC is
a syntactic class, we abuse notation and useC andPromise-C
interchangeably.

A languageL is in CTIME(t)/a if there is a machine
M halting in timet(·) taking an auxiliaryadvicestring of
lengtha(·) such that for eachn, there is some advice string
bn, |bn| = a(n) such thatM fulfils the CTIME promise for
each inputx with advice stringbn and acceptsx iff x ∈ L.

For syntactic classes, a lower bound with advice or for
the promise version of the class translates to a lower bound
for the class itself.

Proposition 1: Let CTIME be a syntactic complexity
measure. IfCTIME(poly(n))/O(n) 6⊆ SIZE(s(n)), then
CTIME(poly(n)) 6⊆ SIZE(s(o(n))).

Proposition 2: Let CTIME be a syntactic complexity
measure. IfPromise-CTIME(poly(n)) 6⊆ SIZE(s(n)), then
CTIME(poly(n)) 6⊆ SIZE(s(n)).

B. Oblivious Classes

Intuitively, if a class C is defined using “proofs of
acceptance” for each input and some condition on the
verifiability of proofs, the oblivious version of the classC
is the class of languages for which thesameproof can be
used on any input of a certain length. Oblivious versions of
symmetric alternation classes were defined by Chakaravarthy
and Roy [CR06] for the purpose of obtaining tight uniform
characterizations ofNP ⊆ SIZE(poly). Here, we extend the
definitions to non-deterministic and Merlin-Arthur classes.

Definition 3: A languageL is in ONTIME(t) if there is
a relationR(x, y) computable in deterministic timet(|x|),
and a sequence of witnesses{wn}, n = 1 . . .∞ with |wn| 6

t(n) such that:

1) If x ∈ L, thenR(x,w|x|) holds.
2) If x 6∈ L, then for ally, R(x, y) does not hold.

Definition 4: A languageL is in OMATIME(t) if there is
a relationR(x, y, z) computable in deterministic timet(|x|)
and a sequence of witnesses{wn}, n = 1 . . .∞ with |wn| 6

t(n) such that:

1) If x ∈ L, then for allz, R(x,w|x|, z) holds.
2) If x 6∈ L, then for anyy, Prz R(x, y, z) < 1/2.

We have thatONP ⊆ OMA ⊆ SIZE(poly). The first
inclusion is immediate; for the second inclusion, note that
we can amplify the success probability of anOMA protocol
above1 − 2−n just as we do for anMA protocol. By the
union bound, there must be some random stringz that gives
the correct answer for every input when we have guessed
the oblivious witnessy. Giving y and z as advice for each
input length is sufficient to decide the language.

On the other hand, all sparse languages inNP are con-
tained inONP, and all sparse languages inMA are contained

in OMA. Thus we do not expect either of these classes
to be easy – indeed,ONP = P implies NEXP = EXP.
Nor is it likely to be easy to showOMA ⊆ NP, since
that would imply MAE = NE, and resolve long-standing
derandomization questions.

Using the notions above, we can get tight uniform charac-
terizations ofC ⊆ SIZE(poly) for several interesting classes
C.

Proposition 5: NP ⊆ SIZE(poly) iff NP ⊆ ONP iff
NP ⊆ OMA.

Proof: From the preceding discussion, it is clear that
NP ⊆ ONP implies NP ⊆ OMA, andNP ⊆ OMA implies
NP ⊆ SIZE(poly). Thus we just need to show thatNP ⊆
SIZE(poly) implies NP = ONP. We will show that under
this assumption,SAT ∈ ONP, and then use the fact that
ONP is closed under m-reductions to concludeNP = ONP.

AssumeSAT ∈ SIZE(nk) for somek. We define the
following ONP machineM for SAT . Given a formulaφ of
sizen, M guesses a circuitC of sizenk for SAT on inputs
of lengthn. If C accepts onφ, M usesC to find a candidate
satisfying assignmentw via self-reducibility and paddability
of SAT . If w is a valid assignment,M accepts, otherwise it
rejects. Note that no unsatisfiable formula is ever accepted
in this process, moreover ifC is a correct circuit forSAT ,
all satisfiable formulae are accepted. ThusC is an oblivious
witness forSAT on lengthn.

Proposition 6: EXP ⊆ SIZE(poly) iff EXP = OMA.

Proof: The backward direction follows sinceOMA ⊆
SIZE(poly). For the forward direction, it follows from
work on instance checkers and interactive proofs ([BFL91],
[BFNW93]) that if EXP ⊆ SIZE(poly), then EXP = MA.
The proof of this result also givesEXP = OMA.

Since Impagliazzo, Kabanets and Wigderson [IKW02]
showed thatNEXP ⊆ SIZE(poly) implies NEXP = EXP

we have the following corollary.

Corollary 7: NEXP ⊆ SIZE(poly) iff NEXP = MA iff
NEXP = OMA.

III. T RANSLATIONS OFCIRCUIT LOWER BOUNDS

The question of fixed polynomial size circuit lower
bounds was first considered by Kannan, who proved lower
bounds forΣP

2 .

Theorem 8 (Kannan [Kan82]):For any k > 0, ΣP
2 6⊆

SIZE(nk).

Theorem 8 has been strengthened progressively in a
sequence of papers ([BCG+96], [KW98], [Cai07]) and the
smallest uniform complexity class for which we can show
unconditional lower bounds isSP

2 [Cai07]. Circuit lower
bounds have recently been shown for the promise version
of MA [San07] but showing such lower bounds for uniform

MA and smaller classes remains an important open question.
Such lower bounds forNP, apart from being interesting in
their own right, would also separateBPP andNEXP, which
would be a major breakthrough in the area of derandomiza-
tion.

One obstacle to proving lower bounds for classes smaller
than SP

2 is that such results cannot relativize. There have
been non-relativizing results in this area ([Vin05], [San07])
but there is a paucity of non-relativizing techniques apart
from the arithmetization technique used in work on inter-
active proofs ([LFKN92], [Sha92]). Recently, Aaronson and
Wigderson [AW09] have introduced the notion of algebriza-
tion which in fact covers all known complexity-theoretic
techniques for lower bounds at the polynomial-time level;
they show that fixed-polynomial size lower bounds forNP

cannot be proven by algebrizing methods.

Given the insufficiency of current techniques to prove
unconditional lower bounds, we focus on reductions between
circuit lower bounds for various classes. We show for
various pairs of classesB and C, where B ⊆ C, that a
fixed polynomial lower bound forC also implies a fixed
polynomial lower bound for the smaller classB. We call
such resultstranslationsof circuit lower bounds.

Such a translation result can be interpreted in two ways.
An optimist would say that we are making our lower bound
task easier: in order to prove a lower bound forB we now
only need to prove a lower bound for the weaker classC.
A pessimist would say that this gives additional evidence
that proving a lower bound forC is hard, since this would
automatically result in a stronger lower bound.

One example of a translation is the result that if the poly-
nomial hierarchy contains a language of superpolynomial
circuit complexity, then so doesNP. However, this result no
longer holds if we consider fixed polynomial size. Indeed,
if it did, we would already have a superlinear circuit lower
bound forNP, by Theorem 8.

We begin by giving a simple example: translating circuit
lower bounds forAM to circuit lower bounds forMA. This
result seems to have been observed independently by several
researchers.

Theorem 9:For anyk > 0, AM 6⊆ SIZE(nk) iff MA 6⊆
SIZE(nk).

Proof: For the forward direction, ifMA ⊆ SIZE(nk)
then NP ⊆ SIZE(poly), which is known to implyAM =
MA [AKSS95]. The backward direction follows from the
fact thatMA ⊆ AM [BM88].

Next, we consider fixed polynomial size lower bounds
for the classPNP[nq], which lies betweenNP andPNP. We
show that such lower bounds would in fact imply fixed
polynomial lower bounds forNP. This result also shows that
fixed polynomial lower bounds forPNP

‖ yield lower bounds

for NP, sincePNP
‖ = PNP[O(log n)] ([BH91], [Hem89]).

We note that improving our results to show thatNP ⊆
SIZE(nk) implies PNP ⊆ SIZE(nk′

) for some fixedk′ de-
pending only onk would require nonrelativizing techniques.
This is because there is a relativized world [BFFT01] where
NEXP ⊆ PNP ∩ SIZE(poly). In this world, NP has fixed
polynomial-size circuits, butPNP does not.

Theorem 10:Fix any constantq. There is ak such that
NP ⊆ SIZE(nk) iff there is a k′ such thatPNP[nq] ⊆
SIZE(nk′

).

Proof: One direction is obvious. We prove that choosing
k′ = qk2 is sufficient in the reverse direction. Namely, we
show thatNP ⊆ SIZE(nk) implies PNP[nq] ⊆ SIZE(nqk2

).

Let M be an deterministic polynomial time machine that
makesnq oracle calls toSAT . Let b1, . . . , bj be Boolean,
where j 6 nq. Define thepseudo-simulationof M(x) on
b1, . . . , bj to be the following nondeterministic computation:

SimulateM(x) over its firstj queries, simulating theith
oracle call as follows: (fori = 1, . . . , j):

• if bi = 0 then the simulation continues, presuming that
the ith query answered “no”,

• if bi = 1 then a variable assignment to theith query is
guessed, and the simulation continues if the assignment
satisfies theith query, otherwise itrejects.

If the simulation itself accepts or rejects at any time, then
acceptor reject accordingly. If the simulation passes allj
query steps above without rejecting, thenaccept. Otherwise,
reject.

Define the languageLq to be the set of〈x, j, b1, . . . , bnq〉
such that1 6 j 6 nq, bi ∈ {0, 1}, and for all i = 1, . . . , j,
the pseudo-simulation ofM(x) on b1, . . . , bj accepts.

(Note on input〈x, j, b1, . . . , bnq〉, the bitsbj+1, . . . , bnq

are ignored. We choose this definition ofLq so that the
final circuit family is easy to describe.)

Intuitively, Lq takes some candidate query answers, and
checks that the “yes” query answers are correct up to some
point. (We need a trick to determine that “no” query answers
are correct.)

ClearlyLq is in NP. Thus it is captured by a circuit family
{Cq

n} of nk size, by assumption. Now define a machineN
that on inputx and circuitC does the following:

Guess bitsb1, . . . , bnq . For j = 1, . . . , nq, check if
C(x, j, b1, . . . , bj−1, 1, bj+1, . . . , bnq) = bj. Accept iff all
checks passed, and the pseudo-simulation ofM(x) on
b1, . . . , bnq accepts.

Intuitively,N tries to use the circuitC to determine that its
guessesb1, . . . , bnq are the correct query outcomes. Notice
that L(N) is in NP. ThereforeL(N) is also captured by
a circuit family {CN

n } of nk size. Finally, set up a circuit

family {Dn} defined as:

Dn(x) := CN
n+(n+nq)k+c(x,C

q
n+nq+c),

for an appropriate constantc. Note the circuitDn is of size
O(nqk2

).

We now prove that for allx,Dn(x) = 1 iff M(x) accepts.
Consider the for-loop ofN . We claim the following invariant
holds:

For all j = 1, . . . , nq, the jth iteration of the for-loop
in N is reached without failing a check, iff the firstj bits
of b1, . . . , bnq are the answers to the firstj queries thatM
makes onx.

The claim can be proved for allj by induction. Whenj =
1 andbj = 1, the call toCq checks that there is a satisfying
assignment to the first query. Whenj = 1 and bj = 0, the
call toCq still checks that there is a satisfying assignment to
the first query (by flippingbj to be1), butN only continues
if Cq outputs 0. That is, the pseudo-simulation onb1 rejects,
hence there is no satisfying assignment for the first query.
In thejth iteration, we have (by induction) thatb1, . . . , bj−1

are the answers to the firstj − 1 queries ofM(x). Then
for bj = 1, the respective check succeeds iff thejth query
can be satisfied by an assignment. Whenbj = 0, the check
succeeds iff thejth query is unsatisfiable.

It follows that Dn(x) = 1 iff the pseudo-simulation of
M(x) on b1, . . . , bnq accepts wherebi is the outcome of the
ith query onM(x), which is true iffM(x) accepts. This
completes the proof.

The next result shows that fixed polynomial lower bounds
for NP also translate to fixed polynomial lower bounds
for the oblivious version ofNP (using 1 bit of advice).
An interesting aspect of this result is that it illustrates
that proving superpolynomial circuit lower bounds is a
very different problem than proving fixed polynomial lower
bounds. On the one hand,ONP/1 ⊆ SIZE(poly) and we
do not expectNP ⊆ SIZE(poly), thus the two inclusions
are very unlikely to be equivalent. On the other hand, the
inclusions of the two classes in fixed polynomial size are
equivalent.

Theorem 11:For anyk, NP 6⊆ SIZE(nk) iff ONP/1 6⊆
SIZE(nk).

Proof: The “if” direction is easy. IfONP/1 does not
have circuits of sizenk, thenNP/1 does not have circuits
of sizenk. SinceNP is a syntactic class, this implies that
NP does not have circuits of sizenk.

The other direction is more involved. AssumeNP does not
have circuits of sizenk. We consider two cases. IfNP ⊆
SIZE(poly), then by Proposition 5,NP = ONP, henceONP

does not have circuits of sizenk.

If NP 6⊆ SIZE(poly), thenSAT 6∈ SIZE(poly). We use
the fact that there is a “smoothly parameterized” version

of Proposition 5. IfNP ⊆ SIZE(s), then we getNP ⊆⋃
c>0 ONTIME(sc), for arbitrary circuit sizes. By letting

s be the circuit complexity ofSAT , we get thatSAT ∈
ONTIME(sc) for somec, but SAT does not have circuits
of size s− 1. We then scale this separation down using an
advice-efficient padding argument to conclude that a padded
version ofSAT is in ONP but does not have circuits of size
O(nk).

The above is a brief sketch. We now proceed more
formally. We define the following languageL:

L = {x1r | x ∈ SAT, r is a power of2,

r > |x|, Ckt(SAT|x|) 6 (|x| + r)2k}.

First we showL ∈ ONP/1, and then we showL 6∈
SIZE(nk).

We define a non-deterministic polynomial time machine
M taking one bit of advice, such that when the advice bit is
correct for lengthn, there is a polynomial-size witnesswn

which works for any input of that length. Given an inputy of
lengthn,M first checks if it can be decomposed asx1r for r
a power of 2, such thatr > |x|. For any inputy, there can be
at most one such decomposition since|y| > r > |y|/2. This
check can be performed in linear time, and if it succeeds, the
correspondingx and r can be obtained. The bit of advice
for M is assumed to be1 if and only if Ckt(SAT|x|) 6

(|x| + r)2k. This is just one bit of information givenn,
sincen uniquely determines|x| and r. If the advice bit is
0, thenM rejects. Otherwise,M guesses a circuitC of
size n2k. It simulatesC on x. If C accepts onx, it uses
self-reducibility and paddability ofSAT to find a candidate
satisfying assignment forx. If the assignment works,M
accepts, otherwiseM rejects.

Clearly,M runs in polynomial time. Also, there is a single
witness of sizepoly(n), namely a correct circuitC for SAT
on inputs of length|x| which works for any inputx1r ∈ L,
whenM is given the correct bit of advice. ThusL ∈ ONP/1.

Assume, for the purpose of contradiction, thatL ∈
SIZE(nk). Hence there is a sequence of circuitsDn of size
O(nk) decidingLn for eachn. We show that this implies
that for infinitely manym, there is a circuitCm of size
less thanCkt(SATm) decidingSAT on inputs of length
m. We define the circuitsCm as follows. Given an inputx
of lengthm, our Cm has hard-coded the leastr(m) = 2i

such thatr(m) > m andCkt(SATm) 6 (m + r(m))2k.
Such an r(m) exists for eachm. Also, there must be
infinitely many m such thatr(m) > 2m, for otherwise
Ckt(SATm) 6 (3m)2k = O(poly(m)) almost everywhere,
which is a contradiction to our assumption thatSAT does
not have polynomial-size circuits.

Now, for eachm such that r(m) > 2m, we have
Ckt(SATm) > (m + r(m)/2)2k, just by assumption on
minimality of r(m). Thus for thesem, Ckt(SATm) >

(m + r(m))2k/22k. When Cm is given x of length m,
it runs Dm+r(m)(x1

r(m)), using the hard-coded value for
r(m) and a hard-coded copy ofDm+r(m). Cm decides
SATm correctly and has size at mostO((m + r(m))k),
by the assumption on size of{Dn}. For large enoughm,
O((m + r(m))k) < (m+ r(m))2k/22k, which implies that
for infinitely manym, SATm has circuits of size less than
Ckt(SATm) – a contradiction.

A corollary of Theorem 11 is that ifNP doesn’t have
circuits of sizeO(nk), then NP/1 ∩ SIZE(poly) doesn’t
have circuits of sizeO(nk). This follows sinceONP/1 ⊆
NP/1 ∩ SIZE(poly). In fact, this kind of translation result,
showing that a fixed polynomial circuit lower bound for a
class implies a fixed polynomial circuit lower bound for a
language in the class with polynomial-size circuits, holds
much more generally, foranycomplexity measure satisfying
a certain natural condition. This condition corresponds to
“closure under deterministic transductions” as defined by
van Melkebeek and Pervyshev [vMP06], but rather than state
it formally, we just observe that our proof works for any
reasonable complexity class for which we wish to show a
circuit lower bound. The proof abstracts out the padding
argument in the proof of Theorem 11.

Theorem 12:Let C be a complexity class such asNP,
PNP, MA, BPP or PP. If C does not have circuits of size
O(nk), thenC/1∩SIZE(poly) does not have circuits of size
O(nk).

Theorem 12 can be stated as anequivalencefor the
polynomial-time versions of syntactic measures.

Corollary 13: Let CTIME be a syntactic measure, and
C be the polynomial-time version of that measure, such as
NP,PNP or PP. C does not have circuits of sizenk iff C/1∩
SIZE(poly) does not have circuits of sizenk.

The forward implication in Corollary 13 follows from
Theorem 12, and the backward implication from Proposi-
tion 1.

Proof of Theorem 12.Let L′ ∈ C be a language such that
L′ does not have circuits of sizeO(nk). We define a padded
languageL′′ such thatL′′ in C/1∩SIZE(poly) andL′′ does
not have circuits of sizeO(nk). L′′ is defined fromL′ in
exactly the same way as the languageL is defined from
SAT in the proof of Theorem 11:

L′′ = {x1r | x ∈ L′, r is a power of2,

r > |x|, Ckt(L′
|x|) 6 (|x| + r)2k}.

The proof thatL′′ 6∈ SIZE(nk) is exactly as in the proof
of Theorem 11. For the upper bound, we define aCTIME

machineM with one bit of advice acceptingL′′. Given an
input y of lengthn, M first decomposesy as x1r, where
r is a power of 2 andr > |x|, if such a decomposition is
possible. If not,M rejects. If such a decomposition exists,

it uniquely determines|x| and r. The bit of advice just
specifies ifCkt(L′

|x|) 6 (|x| + r)2k. If yes, M simulates
theCTIME machine forL′′ onx, accepting iff the simulated
machine does. If not,M rejects.

If CTIME is able to simulate deterministic time, as is the
case for all the complexity classes in the statement of the
theorem, thenL′′ ∈ C/1, since every stage of the process
above, including the simulation of the machine forL′, can
be implemented in polynomial time. Also, just by using the
optimal circuits forL′ to decideL′′ on appropriately padded
inputs, it follows thatL′′ has polynomial size circuits, in fact
circuits of sizeO(n2k). �

IV. ON SMALL CIRCUITS FOR PNP

We show that if there were circuits forPNP[nc] having
size smaller thannc, then one can speed up nondeterministic
computations by adding randomness. This is a result in the
spirit of Lipton’s work [Lip94] on consequences of classes
having small circuits.

Theorem 14:If PNP[nc] has O(nk) size circuits, then
NTIME[nc] ⊆ MATIME[nkpolylog(n)].

Proof: Let M be a nondeterministicO(nc) time ma-
chine. Define a nondeterministic machineM ′ as follows.
On an inputx, first compute an equivalentSAT instance
φM,x of lengthO(ncpolylog(n)) using a succinct version
of Cook’s theorem [Coo88]. Then transformφM,x into a
formula ψM,x which has PCPs of lengthO(ncpolylog(n))
with the property that any proposed proof can be verified
in O(polylog(n)) time. Such PCPs exist, due to work of
Ben-Sasson et al. [BSGH+05]. Finally, nondeterministically
guess a proof, and accept iff the proof is valid.

Note the lexicographically first valid proof ofψM,x can
easily be computed inPNP[ncpolylog(n)]. Thus the hypothesis
of the theorem implies that there is anO(nkpolylog(n))
size circuit family{Cn} with the following properties. On
an input 〈x, i〉 with |i| = log |x|, if M ′(x) accepts, then
C|〈x,i〉|(〈x, i〉) outputs theith bit of the lexicographically
first valid proof of ψM,x. (We assume without loss of
generality that the proof begins with a description ofψM,x.)
If M ′(x) rejects, then the circuit outputs0 on every input.

Our MA simulation ofM on inputx existentially guesses
a circuitC′ = C|x|+log |x| of sizeO(nkpolylog(n)). Then it
runs the polylogarithmic time verifier forψM,x. When a bit
of ψM,x or a bit of the proof is requested by the verifier, the
bit is obtained by simulatingC′(x, i) with the appropriate
index i, returning the output. The simulation requires only
O(nkpolylog(n)) time.

From Theorem 14, we derive a new example of the phe-
nomenon that derandomization results imply circuit lower
bounds ([IKW02], [KI04], [San07]).

Theorem 15:If there is a d such thatMATIME(n) ⊆
NTIME(nd), then PNP does not haveO(nk) size circuits
for any k > 0.

Proof: Suppose, on the contrary, that the assumption
holds andPNP does have circuits of sizeO(nk) for some
k. We derive a contradiction. From Theorem 14, we have
that NP ⊆ MATIME(nkpolylog(n)). From the assumption
that MATIME(n) ⊆ NTIME(nd), by padding, we have
that MATIME(nk+1) ⊆ NTIME(nd(k+1)). Thus we have
NP ⊆ NTIME(nd(k+1)), which is a contradiction to the non-
deterministic time hierarchy theorem ([Coo72], [SFM78],
[Ž8́3]).

Theorem 15 can be interpreted as a “low-end” analogue
of the Impagliazzo-Kabanets-Wigderson result [IKW02] that
MA 6= NEXP implies NEXP 6⊆ SIZE(poly).

V. RELATIVIZED CIRCUIT UPPERBOUND

Vinodchandran’s circuit lower bound forPP [Vin05]
raises the possibility that similar lower bounds might be
provable for other counting classes. A natural candidate for
such a class is⊕P, since Toda’s landmark result [Tod91]
proves that the Polynomial Hierarchy randomly reduces to
⊕P, and we know fixed polynomial-size lower bounds for
the Polynomial Hierarchy. Thus far, even the relativized
status of the question of whether⊕P has small circuits has
remained unresolved.

We first give an oracle relative to which⊕P has quadratic-
size circuits. We use a previously published oracle due to
Beigel, Buhrman and Fortnow [BBF98] and show using
relativizing arguments that this oracle gives us what we
require.

Theorem 16:There exists an oracle relative to which
⊕P ⊆ SIZE(nk), for some constantk.

Proof: Beigel, Buhrman and Fortnow [BBF98] created
an oracle relative to which

P = ⊕P andNP = EXP.

We will use the same oracle.

By Valiant-Vazirani [VV86],NP is in BPP⊕P. Since we
have⊕P = P and BPP ⊆ SIZE(poly) we haveEXP =
NP ⊆ SIZE(poly).

Under a standard padding argument⊕P = P implies
⊕E = E and so we have

⊕E ⊆ EXP ⊆ SIZE(poly).

Let L be a linear-time complete set for⊕E. There is some
k such thatL is in SIZE(nk) and sinceL is linear-time
complete we have

⊕P ⊆ ⊕E ⊆ SIZE(nk).

By an analysis of the proof of Beigel, Buhrman and
Fortnow [BBF98], we can show that⊕P ⊆ SIZE(n4)
relative to their oracle. With a more careful reworking of
their proof we can show⊕P ⊆ SIZE(n2) for a relativized
world (proof omitted).

The fact that⊕P has small circuits in a relativized world
does not compel skepticism that a lower bound can be
proved, since for instance Vinodchandran’s lower bound for
PP doesn’t relativize ([Vin05], [Aar06]). We show some-
thing stronger: that a new non-relativizing idea is required
to get circuit lower bounds for⊕P.

The nonrelativizing part of Vinodchandran’s proof utilizes
the fact that PPP ⊆ SIZE(poly) implies PPP ⊆ MA

(see [BFL91]). HoweverP⊕P ⊆ MA (and more strongly,
EXP = BPP) relative to the Beigel-Buhrman-Fortnow
oracle. We have the following contrasting results.

Corollary 17 (Vinodchandran):Relative to all oracles, if
PPP ⊆ MA thenPP 6⊆ SIZE(nk) for any fixedk.

Corollary 18 (Theorem 16):There is an oracle relative to
which P⊕P ⊆ MA and⊕P ⊆ SIZE(n2).

Thus to prove⊕P 6⊆ SIZE(n2), one would need nonrel-
ativizing techniques beyond those used by Vinodchandran.
It’s an interesting open problem to show an analogue of
Theorem 16 in the Aaronson-Wigderson framework of al-
gebrization [AW09].

REFERENCES

[Aar06] Scott Aaronson. Oracles are subtle but not malicious.
In Proceedings of 21st Annual IEEE Conference on
Computational Complexity, pages 340–354, 2006.

[AKSS95] Vikraman Arvind, Johannes Kobler, Uwe Schoning,
and Rainer Schuler. If NP has polynomial-size cir-
cuits, then MA=AM. Theoretical Computer Science,
137(2):279–282, 1995.

[AW09] Scott Aaronson and Avi Wigderson. Algebrization:
A new barrier in complexity theory. ACM Trans.
Comput. Theory, 1(1):1–54, 2009.

[BBF98] Richard Beigel, Harry Buhrman, and Lance Fortnow.
NP might not be as easy as detecting unique so-
lutions. In Proceedings of 30th STOC Conference,
pages 203–208. ACM, New York, 1998.

[BCG+96] Nader Bshouty, Richard Cleve, Ricard Gavalda, Sam-
path Kannan, and Christino Tamon. Oracles and
queries that are sufficient for exact learning.Journal
of Computer and System Sciences, 52(2):268–286,
1996.

[BFFT01] Harry Buhrman, Steve Fenner, Lance Fortnow, and
Leen Torenvliet. Two oracles that force a big crunch.
Computational Complexity, 10(2):93–116, 2001.

[BFL91] László Babai, Lance Fortnow, and Carsten Lund.
Non-deterministic exponential time has two-prover
interactive protocols. Computational Complexity,
1:3–40, 1991.

[BFNW93] László Babai, Lance Fortnow, Noam Nisan, and Avi
Wigderson. BPP has subexponential time simulations
unless EXPTIME has publishable proofs.Computa-
tional Complexity, 3(4):307–318, 1993.

[BFT98] Harry Buhrman, Lance Fortnow, and Thomas Thier-
auf. Nonrelativizing separations. InProceedings
of 13th Annual IEEE Conference on Computational
Complexity, pages 8–12, 1998.

[BH91] Samuel R. Buss and Louise Hay. On truth-table
reducibility to SAT. Information and Control,
90(2):86–102, 1991.

[BM84] Manuel Blum and Silvio Micali. How to generate
cryptographically strong sequence of pseudo-random
bits. SIAM Journal on Computing, 13:850–864, 1984.

[BM88] László Babai and Shlomo Moran. Arthur-Merlin
games: A randomized proof system, and a hierarchy
of complexity classes. J. Computing and System
Sciences, 36(2):254–276, 1988.

[BSGH+05] Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha,
Madhu Sudan, and Salil P. Vadhan. Short PCPs
verifiable in polylogarithmic time. InProceedings of
the 20th Annual IEEE Conference on Computational
Complexity, pages 120–134, 2005.

[Cai07] Jin-Yi Cai.SP
2 ⊆ ZPPNP. Journal of Computer and

System Sciences, 73(1):25 – 35, 2007.

[Coo72] Stephen Cook. A hierarchy for nondeterministic time
complexity. InProceedings of the 4th Annual ACM
Symposium on Theory of Computing, pages 187–192,
Denver, Colorado, 1–3 May 1972.

[Coo88] Stephen Cook. Short propositional formulas represent
nondeterministic computations.Inf. Process. Lett.,
26(5):269–270, 1988.

[CR06] Venkat Chakaravarthy and Sambuddha Roy. Obliv-
ious symmetric alternation. InProceedings of Sym-
posium on Theoretical Aspects of Computer Science,
pages 230–241, 2006.

[Hem89] Lane Hemachandra. The strong exponential hierarchy
collapses.Journal of Computer and System Sciences,
39(3):299–322, 1989.

[IKW02] Russell Impagliazzo, Valentine Kabanets, and Avi
Wigderson. In search of an easy witness: Exponential
time vs. probabilistic polynomial time. Journal
of Computer and System Sciences, 65(4):672–694,
2002.

[Kan82] Ravi Kannan. Circuit-size lower bounds and non-
reducibility to sparse sets.Information and Control,
55(1):40–56, 1982.

[KI04] Valentine Kabanets and Russell Impagliazzo. De-
randomizing polynomial identity tests means proving
circuit lower bounds. Computational Complexity,
13(1-2):1–46, 2004.

[KW98] Johannes Kobler and Osamu Watanabe. New collapse
consequences of NP having small circuits.SIAM
Journal on Computing, 28(1):311–324, 1998.

[LFKN92] Carsten Lund, Lance Fortnow, Howard Karloff, and
Noam Nisan. Algebraic methods for interactive proof
systems. Journal of the Association for Computing
Machinery, 39(4):859–868, 1992.

[Lip94] Richard Lipton. Some consequences of our failure to
prove non-linear lower bounds on explicit functions.
In Proceedings of 9th Annual Structure in Complexity
Theory Conference, pages 79–87, 1994.

[NW94] Noam Nisan and Avi Wigderson. Hardness vs ran-
domness.Journal of Computer and System Sciences,
49(2):149–167, 1994.

[RR97] Alexander Razborov and Steven Rudich. Natural
proofs. Journal of Computer and System Sciences,
55(1):24–35, 1997.

[San07] Rahul Santhanam. Circuit lower bounds for Merlin-
Arthur classes. InProceedings of 39th Annual
Symposium on Theory of Computing, pages 275–283,
2007.

[SFM78] Joel Seiferas, Michael Fischer, and Albert Meyer.
Separating nondeterministic time complexity classes.
Journal of the ACM, 25(1):146–167, January 1978.

[Sha92] Adi Shamir. IP= PSPACE.Journal of the Associa-
tion for Computing Machinery, 39(4):869–877, 1992.

[Tod91] Seinosuke Toda. PP is as hard as the polynomial-time
hierarchy. SIAM Journal on Computing, 20(5):865–
877, 1991.

[Vin05] Variyam Vinodchandran. A note on the circuit
complexity of PP. Theoretical Computer Science,
347(1-2):415–418, 2005.

[vMP06] Dieter van Melkebeek and Konstantin Pervyshev. A
generic time hierarchy for semantic models with
one bit of advice. InProceedings of 21st An-
nual IEEE Conference on Computational Complexity,
pages 129–144, 2006.

[VV86] Leslie Valiant and Vijay Vazirani. NP is as easy
as detecting unique solutions.Theoretical Computer
Science, 47:85–93, 1986.

[Yao82] Andrew Yao. Theory and application of trapdoor
functions. InProceedings of the 23rd Annual IEEE
Symposium on Foundations of Computer Science,
pages 80–91, 1982.

[Ž8́3] Stanislav̌Zák. A Turing machine time hierarchy.The-
oretical Computer Science, 26(3):327–333, October
1983.

