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1 Introduction

Proof complexity studies the NP versus coNP problem — whether tautologies
can be recognized efficiently by nondeterministic machines. Typical results in
proof complexity deal with specific types of nondeterministic machines that
implement well-known proof systems, such as resolution. They establish strong
(superpolynomial or even exponential) lower bounds for the size of any proof
of certain families of tautologies within that system, and thus for the running
time of the corresponding nondeterministic machine deciding tautologies. We
refer to (Beame and Pitassi, 2001) for a survey of such results.

A more generic approach to the NP versus coNP problem follows along the
lines of the recent time-space lower bounds for satisfiability on deterministic
machines (Van Melkebeek, 2007). Similar arguments as in the deterministic
setting yield somewhat weaker lower bounds for satisfiability on conondeter-
ministic machines, or equivalently, for tautologies on nondeterministic ma-
chines. Those results show that no nondeterministic algorithm can decide tau-
tologies in time nd and space ne for certain nontrivial combinations of d and e.
The lower bounds obtained are very robust with respect to the model of com-
putation, and apply to any proof system. However, the arguments only work
in the polynomial time range (constant d) and sublinear space range (e < 1).
For example, Fortnow (Fortnow, 2000) established a slightly superlinear time
lower bound in the case of constant e < 1, and Fortnow and Van Melkebeek
(Fortnow and Van Melkebeek, 2000) (see also (Fortnow et al., 2005)) showed
a time lower bound of nd for any d <

√
2 in the case of subpolynomial space

bounds (e = o(1)).
In this paper we build on these generic techniques and boost the exponent

in the time lower bound for subpolynomial-space nondeterministic algorithms
recognizing tautologies from

√
2 ≈ 1.414 to 3

√
4 ≈ 1.587. More precisely, we

obtain the following result.

Theorem 1 For every real d < 3
√

4 there exists a positive real e such that
tautologies cannot be decided by nondeterministic algorithms running in time
nd and space ne.

Although raising the exponent from
√

2 to 3
√

4 may seem like a step that
could soon be further improved upon, there is some experimental evidence that
3
√

4 may be the best exponent that can be obtained within the framework of the
recent time-space lower bounds. All of the previous lower bound arguments fol-
low the paradigm of indirect diagonalization — they start from the hypothesis
that the lower bound fails and use a few simple rules (in increasingly com-
plex patterns) to obtain a contradiction with a direct diagonalization result.
This format provides structure amenable to computerized exhaustive search
for better proofs. In fact, it was the outcome of such a search that spurred
our current investigations. The search showed that a tiny improvement over√

2 was possible, and convinced us to revisit the conondeterministic setting.
This led us to a new intuitive idea, which we further developed analytically
in order to determine how far beyond

√
2 it could take us. The limit of this
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technique pushes the initial tiny improvement to 3
√

4, as stated in Theorem 1.
Following up on our analytical work, a subsequent large automated search did
not discover any proofs that lead to an exponent better than 3

√
4. We refer to

Williams (2009) for details of the automated searches.

The earlier result of Fortnow and Van Melkebeek (Fortnow and Van Melke-
beek, 2000) can be refined to rule out either nondeterministic algorithms solv-
ing tautologies in time nc (regardless of space) or nondeterministic algorithms
solving tautologies in simultaneous time nd and space ne for certain combina-
tions of c, d, and e. The precise relationship between the parameters is that
for every c and d such that (c2 − 1)d < c, there is a positive e such that the
statement holds. In particular, tautologies cannot have both a nondeterminis-
tic algorithm that runs in time n1+o(1) and a nondeterministic algorithm that
runs in logarithmic space (Fortnow, 2000). Correspondingly, our argument
yields the following refinement.

Theorem 2 For all reals c and d such that c2d < 4, there exists a positive
real e such that tautologies of length n cannot be solved by both

(i) a nondeterministic algorithm that runs in time nc and
(ii) a nondeterministic algorithm that runs in time nd and space ne.

In order to compare the condition c2d < 4 in Theorem 2 with the corre-
sponding condition (c2 − 1)d < c in (Fortnow and Van Melkebeek, 2000), we
include a plot of those bounds in Figure 1. Note that the interesting range of
parameters satisfies d ≥ c ≥ 1. This is because an algorithm of type (ii) is a
special case of an algorithm of type (i) for d ≤ c, and that an algorithm of type
(i) with c < 1 can be ruled out unconditionally by simple diagonalization. The
condition due to this paper, c2d < 4, is less restrictive for values of d not too
much larger than c. Thus, Theorem 2 gives a better lower bound in this range.
In particular, for c = d, our condition requires d < 3

√
4 ≈ 1.587, whereas that

of (Fortnow and Van Melkebeek, 2000) requires d <
√

2 ≈ 1.414; this setting
yields the improvement stated in Theorem 1.

Our main technical contribution is another level of sophistication in the
indirect diagonalization paradigm, corresponding to the transition from lin-
ear to nonlinear dynamics. We start from the hypothesis that tautologies are
easy in the sense that they have machines of types (i) and (ii), and aim to
derive a contradiction. Fortnow and Van Melkebeek (Fortnow and Van Melke-
beek, 2000) use (ii) to obtain a nondeterministic time-space efficient simulation
of conondeterministic computations. Next, they speed up the space-bounded
nondeterministic computation à la Savitch (Savitch, 1970) by introducing al-
ternations, and subsequently eliminate those alternations efficiently using (i).
When (c2 − 1)d < c, the net effect is a speedup of generic conondetermin-
istic computations on nondeterministic machines, implying the sought-after
contradiction.

The above argument exploits (ii) in a rather limited way, namely only in
the very first step. One could use (ii) instead of (i) to eliminate alternations.
Since d ≥ c this costs at least as much time as using (i), but the space bound
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Fig. 1 Tradeoff Curves for Tautologies: Tautologies cannot have both (i) a nondeterministic
algorithm that runs in time nc and (ii) a nondeterministic algorithm that runs in time nd

and space no(1). The function f(d) solves for the best bound on c due to the prior results of
(Fortnow and Van Melkebeek, 2000), and g(d) does the same for Theorem 2; the function
h(d) marks the case c = d, illustrating the bound in Theorem 1.

induced by (ii) allows us to run another layer of alternation-based speedups
and alternation eliminations. Earlier approaches to take advantage of the latter
possibility failed. We show how to do it and compensate for any extra cost in
running time, as long as d isn’t much larger than c. Due to the additional layer
involved in the argument, the recurrence relation for the net speedup becomes
of degree two (rather than one as before) and has nonconstant coefficients, but
we can still handle it analytically. We point out that this is the first application
of nonlinear dynamics in analyzing time-space lower bounds for satisfiability
and related problems.

Our main technical contribution is the introduction of another level of so-
phistication in the indirect diagonalization paradigm, corresponding to the
transition from linear to nonlinear dynamics. We start from the hypothe-
sis that tautologies are easy in the sense that they have machines of both
types (i) and (ii), and we aim to derive a contradiction. Fortnow and Van
Melkebeek (Fortnow and Van Melkebeek, 2000) use (ii) to obtain a time-space
efficient simulation of conondeterministic computations by nondeterministic
machines. Next, they speed up the space-bounded nondeterministic computa-
tion à la Savitch (Savitch, 1970) by introducing additional alternations and
subsequently eliminate those extra alternations using (i) at a moderate cost
in running time. When (c2 − 1)d < c, the net effect is a speedup of generic
conondeterministic computations on nondeterministic machines, which yields
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the sought-after contradiction. Note that this argument uses (ii) in a rather
limited way, namely only in the very first step. Approaches to exploit (ii) in
the rest of the argument have failed so far. Note that eliminating alternations
using (ii) costs at least as much time as using (i) in the interesting case where
d ≥ c. On the other hand, the space bound induced by (ii) allows us to run
another layer of alternation-based speedups and alternation eliminations. We
show how to take advantage of the latter possibility and compensate for any
extra cost in running time, provided d isn’t too much larger than c. The re-
currence relation for the net speedup becomes of degree two (rather than one
as before) and has nonconstant coefficients, but we can still handle it analyti-
cally. We point out that this is the first application of nonlinear dynamics in
the area of time-space lower bounds for satisfiability and related problems.

In the remainder of this paper, we focus on proving the condition c2d < 4
given in Theorem 2. Section 2 discusses our machine conventions and describes
some key techniques. We prove the main result in Section 3. Finally, Section
4 concludes with a brief discussion of future work.

2 Preliminaries

In this section we describe some definitions, conventions, and basic techniques
that we use throughout the paper.

2.1 Notation

For functions t and s we denote by NTIME(t) the class of languages recognized
by nondeterministic machines that run in time O(t), and by NTISP(t, s) those
recognized by nondeterministic machines that run in simultaneous time O(t)
and space O(s). We use the prefix “co” to represent the complementary classes.
We often use the same notation to refer to classes of machines rather than
classes of languages.

Our results are robust with respect to the choice of machine model un-
derlying our complexity classes; for concreteness, we use the random-access
machine model as described in (Van Melkebeek, 2007). We omit constructibil-
ity considerations for the bounds t and s in this paper as our final results apply
to polynomial bounds which satisfy all the constructibility properties needed.

Recall that a space-bounded nondeterministic machine does not have two-
way access to its guess bits unless it explicitly writes them down on its work-
tape at the expense of space. It is often important for us to take a finer-grained
view of such computations to separate out the resources required to write down
a nondeterministic guess string from those required to verify that the guess is
correct. To this end, we adopt the following notation.

Definition 1 Given a complexity class C and a function f , we define the class
∃fC to be the set of languages that can be described as

{x|∃y ∈ {0, 1}O(f(|x|))P (x, y)},
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where P is a predicate accepting a language in the class C when its complexity
is measured in terms of |x| (not |x| + |y|). We analogously define ∀fC.

2.2 Tautologies versus Conondeterministic Linear Time

All known time-space lower bounds for satisfiability or tautologies to date
hinge on the tight connection between the tautologies problem and the class of
languages recognized by conondeterministic linear-time machines, coNTIME(n).
The Cook-Levin Theorem, the seminal result showing that satisfiability is NP-
complete, can be interpreted as saying that satisfiability captures the time
complexity of all of NP up to polynomial factors; the complement of this
statement applies to the tautologies problem and coNP. Stronger versions
have been formulated for various machine models, showing that tautologies
captures the simultaneous time and space complexity of conondeterministic
linear time on nondeterministic machines up to polylogarithmic factors. As a
consequence, time-space lower bounds for coNTIME(n) on nondeterministic
machines transfer to tautologies with little loss in parameters. In particular we
use the following result; we refer to (Van Melkebeek, 2007) for an elementary
and model independent proof.

Lemma 1 For positive reals d and e, if

coNTIME(n) * NTISP(nd, ne),

then for any reals d′ < d and e′ < e,

Tautologies /∈ NTISP(nd′

, ne′

).

Since a lower bound for coNTIME(n) yields essentially the same lower bound
for tautologies, we shift our focus to proving lower bounds for the former.

2.3 Indirect Diagonalization

Our proofs follow the paradigm of indirect diagonalization. The paradigm
works by contradiction, i.e., we begin by assuming that the desired lower bound
does not hold. In the case of Theorem 2 we assume that

coNTIME(n) ⊆ NTIME(nc) ∩ NTISP(nd, ne). (1)

We then use this unlikely assumption to derive a series of more and more
unlikely inclusions of complexity classes. The argument concludes when we
derive an inclusion so unlikely that it contradicts a known diagonalization
result.

Most of the challenge in formulating an indirect diagonalization argument
lies in deriving new inclusions from the assumption (1). The main two tools
we use towards this end go in opposite directions:
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(a) Speed up nondeterministic space-bounded computations by adding alter-
nations, and

(b) Eliminate these alternations via assumption (1), at a moderate increase in
running time.

To envision the utility of these items, notice that the assumption (1) allows
the simulation of a conondeterministic machine by a space-bounded nonde-
terministic machine. Item (a) allows us to simulate the latter machine by an
alternating machine that runs in less time. Item (b) eliminates the alternations
from this simulation, increasing the running time modestly. In this way, we end
up back at a nondeterministic computation, so that overall we have derived
a simulation of a conondeterministic machine by a nondeterministic one. The
complexity class inclusion that this simulation yields is a complementation of
the form

coNTIME(t) ⊆ NTIME(f(t)), (2)

where we seek to make the function f as small as possible by carefully com-
pounding applications of (a) and (b).

In fact, we know how to rule out inclusions of the type (2) for small func-
tions f , say f(t) = t1−ǫ, by a folklore diagonalization argument. This supplies
us with the aforementioned result with which we ultimately derive a contra-
diction.

Lemma 2 Let a and b be positive reals such that a < b, then

coNTIME(nb) * NTIME(na).

Let us discuss how to achieve items (a) and (b). Item (a) is filled in by the
divide-and-conquer strategy that underlies Savitch’s Theorem (Savitch, 1970).
Briefly, the idea is to divide the computation tableau of a space-bounded
nondeterministic machine M into b time blocks. Observe that M accepts x
in time t if and only if there are b − 1 configurations C1, C2, . . . , Cb−1 at
the boundaries of these blocks such that for every block i, 1 ≤ i ≤ b, the
configuration at the beginning of that block, Ci−1, can reach the configuration
at the end of that block, Ci, in t/b steps, where C0 is the initial configuration
and Cb is the accepting configuration. This condition is implemented on an
alternating machine to realize a speedup of M : First existentially guess b − 1
configurations of M , universally guess a block number i, and conclude by
deciding if Ci−1 reaches Ci via a simulation of M for t/b steps. Thus, we can
derive that:

NTISP(t, s) ⊆ ∃bs∀log bNTISP(t/b, s). (3)

The above simulation runs in overall time O(bs + t/b). Choosing b =
O(

√

t/s) optimizes this running time to O(
√

ts). However, minimizing the
overall running time of (3) produces suboptimal results in our arguments. In-
stead, we apply (3) for an unspecified b and choose the optimal value after all
of our derivations.

We point out one important fact about the simulation underlying (3): The
final phase of this simulation, that of simulating M for t/b steps, does not need
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access to all of the configurations guessed during the initial existential phase
— it only reads the description of two configurations, Ci−1 and Ci, in addition
to the original input x. Thus, the input size of the final stage is O(n+s) rather
than the quantity O(n+bs) suggested by the general complexity-class inclusion
of (3). This fact has a subtle but key impact on our analysis in Section 3.

We now turn to item (b), that of eliminating the alternations introduced
by (3). In general, eliminating alternations comes at an exponential cost. How-
ever, in our case we are armed with the indirect diagonalization assumption
(1). The assumption that coNTIME(n) ⊆ NTIME(nc) allows us to eliminate
an alternation at the cost of raising the running time to the power of c. Al-
ternatively, the assumption that coNTIME(n) ⊆ NTISP(nd, ne) allows us to
eliminate an alternation at the cost of raising the running time to the power
of d while at the same time maintaining the space restriction of O(ne) on the
final stage. We use both of these techniques in our analysis.

However, it is important to point out an issue that arises in this context
due to the necessity of treating the guess bits of previous alternating stages as
input to the final stage: The running-time of the final stage must be linear in
the original input and the guess bits of the previous alternating stages in order
to apply the indirect diagonalization assumption. An example of accounting
for this effect is as follows:

Proposition 1 Suppose that

coNTIME(n) ⊆ NTIME(nc)

for some real c ≥ 1. Then for any time functions t and t′,

∃t′coNTIME(t) ⊆ NTIME((t + t′ + n)c).

Proof Consider a machine M recognizing a language in ∃t′coNTIME(t). Its
acceptance condition on input x can be written as

∃y ∈ {0, 1}O(t′)P (x, y),

where P (·, ·) is a predicate recognized by a conondeterministic machine run-
ning in time O(t) on input 〈x, y〉. Since P takes input of size O(n + t′), the
hypothesis allows P to be recognized by a nondeterministic machine running
in time O((t+t′+n)c) by a padding argument. In this way, we can characterize
the acceptance of M by two consecutive existential guesses. Thus, M can be
simulated by a nondeterministic machine that requires time O(t′) for its guess
of y and O((t+t′+n)c) for the part recognizing P , for a total of O((t+t′+n)c)
since c ≥ 1. ⊓⊔

In a typical setting of t = t′ = n1+Ω(1), Proposition 1 allows us to go from
the second level of the polynomial-time hierarchy to the first at the cost of
increasing the running-time to the power of c, as described above. The finer
point to make is that although the argument only applies the hypothesis to
the final conondeterministic phase, Proposition 1 indicates that, in general,
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the t′ guess bits of the initial phase factor into the cost of eliminating the
alternation as much as the running time of the final phase does, even when
the latter is much smaller. This point is where the special property of the
speedup (3) becomes important, since the input to the final stage is only a
small portion of the bits guessed in the initial stage, dramatically reducing the
effect just described.

We now have all the tools we need to carry out our indirect diagonalization
argument to prove Theorem 2.

3 Proof of the Lower Bound

We begin with a brief discussion of the techniques required to prove Fortnow
and Van Melkebeek’s condition of (c2 −1)d < c (Fortnow and Van Melkebeek,
2000). We then show how to build on these techniques to arrive at our new
condition c2d < 4.

The relevant technical lemma from (Fortnow and Van Melkebeek, 2000)
can be thought of as trading space for time within NP under the indirect
diagonalization assumption (1). More precisely, it tries to establish

NTISP(t, s) ⊆ NTIME(g(t, s)) (4)

for the smallest possible functions g, with the hope that g(t, s) ≪ t. In partic-
ular, for subpolynomial space bounds (s = to(1)) and sufficiently large polyno-
mial t, (Fortnow and Van Melkebeek, 2000) achieves g = tc−1/c+o(1),

NTISP(t, to(1)) ⊆ NTIME(tc−1/c+o(1)), (5)

which is smaller than t when c < φ ≈ 1.618.

As an example of the utility of the space-for-time statement represented

by (5), let us sketch the n
√

2−o(1) lower bound of (Fortnow and Van Melke-
beek, 2000; Fortnow et al., 2005) for subpolynomial-space nondeterministic
algorithms solving tautologies. We assume, by way of contradiction, that

coNTIME(n) ⊆ NTISP(nc, no(1)). (6)

Then, for sufficiently large polynomials t, we have that:

coNTIME(t) ⊆ NTISP(tc, to(1)) [by assumption (6)]

⊆ NTIME(tc
2−1+o(1)) [by trading space for time using (5)].

This is a contradiction with Lemma 2 when c <
√

2, yielding the desired lower
bound.

The space-for-time inclusion (5) is shown by an inductive argument that
derives statements of the type (4) for a sequence of smaller and smaller running
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times g = gℓ, ℓ = 1, 2, . . .. The idea can be summarized as follows: We start
with a space-bounded nondeterministic machine and apply the speedup (3):

NTISP(t, s) ⊆ ∃bs ∀log b NTISP(t/b, s)
︸ ︷︷ ︸

(7a)
︸ ︷︷ ︸

(7b)

. (7)

We then use the inductive hypothesis to trade the space bound of the final
stage (7a) of this Σ3-simulation for time:

NTISP(t, s) ⊆ ∃bs∀log bNTIME(gℓ−1(t/b, s)).

We conclude the inductive argument by using the assumption (6) to eliminate
the two alternations in this simulation, ending up with another statement of
the form

NTISP(t, s) ⊆ NTIME(gℓ(t, s)).

Notice that the above inductive argument does not rely on the space bound
in (6); the weaker assumption that coNTIME(n) ⊆ NTIME(nc) is enough to
eliminate the alternations introduced by the speedup. Our new argument does
exploit the fact that when we transform (7a) using the assumption (6), we
eliminate an alternation and re-introduce a space-bound. This allows us to
apply the inductive hypothesis for a second time and trade the space bound
for a speedup in time once more. This way, we hope to eliminate the alternation
in (7b) more efficiently than before, yielding a smaller gℓ after completing the
argument.

Some steps of our new argument exploit the space bound while others do
not. In the analysis we allow for different parameters in those two assumptions,
say we assume that

coNTIME(n) ⊆ NTISP(nc) ∩ NTISP(nd, no(1)),

where d ≥ c ≥ 1. The success of our approach to eliminate the alternation in
(7b) now depends on how large d is compared with c: If d is not too large com-
pared to c, then the increased cost of complementing via the space-bounded
assumption is counteracted by the benefit of trading this space bound for time.
That our approach works better in this range of c and d makes plausible the
behavior illustrated in Figure 1.

Two key ingredients that allow the above idea to yield a quantitative im-
provement for certain values of c and d are (i) that the conondeterministic
guess at the beginning of stage (7b) is only over log b bits and (ii) the fact
mentioned in Section 2 that (7a) has input size only O(n + s). Because of
(i), the running time of (7b) is dominated by that of (7a), allowing us to re-
duce the cost of simulating (7b) without an alternation by reducing the cost
of complementing (7a) into coNP. Item (ii) is important for the latter task
because the effective input size for the computation (7a) is much smaller than
the O(n + bs) bits taken by (7b); in particular, it does not increase with b.
This allows the use of larger block numbers b to achieve greater speedups while
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maintaining that the final stage runs in time at least linear in its input. The
latter behavior is crucial in allowing alternation removal at the expected cost
— raising the running time to the power of c or d — because we can pad the
indirect diagonalization assumption (1) up (to superlinear time) but not down
(to sublinear time), as exemplified by Proposition 1.

Now that we have sketched the intuition and key ingredients, we proceed
with the actual argument. The following lemma formalizes the inductive pro-
cess of speeding up nondeterministic space-bounded computations on space-
unbounded nondeterministic machines.

Lemma 3 If

coNTIME(n) ⊆ NTIME(nc) ∩ NTISP(nd, ne)

for some reals c, d, and e then for every nonnegative integer ℓ, time function
t, and space function s ≤ t,

NTISP(t, s) ⊆ NTIME
(
(tsℓ)γℓ + (n + s)aℓ

)
,

where γ0 = 1, a0 = 1, and γℓ and aℓ are defined recursively for ℓ > 0 as
follows: Let

µℓ = max(γℓ(d + eℓ), eaℓ), (8)

then
γℓ+1 = cγℓµℓ/(1 + γℓµℓ), (9)

and
aℓ+1 = caℓ · max(1, µℓ). (10)

Proof The proof is by induction on ℓ. The base case ℓ = 0 is trivial. To
argue the inductive step, ℓ → ℓ + 1, we consider a nondeterministic machine
M running in time t and space s and construct a simulation with the goal
of achieving a speedup at the cost of sacrificing the space bound. We begin
by simulating M in the third level of the polynomial-time hierarchy via the
speedup (3) using b > 0 blocks (to be determined later); this simulation is in

∃bs∀log t NTISP(t/b, s)
︸ ︷︷ ︸

(11a)

. (11)

We focus on simulating the computation of (11a) as described above. Recall
that the input to (11a) consists of the original input x of M as well as two
configuration descriptions of size O(s), for a total input size of O(n + s). The
inductive hypothesis allows the simulation of (11a) in

NTIME((
t

b
sℓ)γℓ + (n + s)aℓ). (12)

In turn, this simulation can be complemented while simultaneously intro-
ducing a space bound via the assumption of the lemma; namely, (12) is in

coNTISP

(

((
t

b
sℓ)γℓ + (n + s)aℓ)d, ((

t

b
sℓ)γℓ + (n + s)aℓ)e

)

, (13)
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where here the (n + s)aℓ term subsumes the O(n + s) term from the input
size because aℓ ≥ 1. The space bound allows for a simulation via the inductive
hypothesis once more, yielding a simulation of (11a) in

coNTIME
(
(( t

bs
ℓ)γℓ + (n + s)aℓ)γℓ(d+eℓ) + (n + s + (( t

bs
ℓ)γℓ + (n + s)aℓ)e)aℓ

)

⊆ coNTIME
(
( t

bs
ℓ)γℓµℓ + (n + s)aℓµℓ + (n + s)aℓ

)
.

(14)
Replacing (11a) in (11) by (14) eliminates an alternation, lowering the

simulation of M to the second level of the polynomial-time hierarchy:

∃bs ∀log tcoNTIME

(

(
t

b
sℓ)γℓµℓ + (n + s)aℓµℓ + (n + s)aℓ

)

︸ ︷︷ ︸

(15a)

(15)

We now complement the conondeterministic computation represented by
(15a) via the lemma’s assumption that NTIME(n) ⊆ coNTIME(nc), eliminat-
ing one more alternation in the simulation of M along the lines of Proposition
1. Specifically, since (15a) takes input of size O(n + bs), this places the simu-
lation in

∃bsNTIME
(((

t
bs

ℓ
)γℓµℓ + (n + s)aℓµℓ + (n + s)aℓ + (bs + n)

)c
)

⊆ NTIME















(
t

b
sℓ

)γℓµℓ

︸ ︷︷ ︸

(16a)

+(n + s)aℓµℓ + (n + s)aℓ + bs
︸︷︷︸

(16b)








c






,
(16)

where the inclusion holds by collapsing the adjacent existential phases (and
the time required to guess the O(bs) configuration bits is accounted for by the
observation that c ≥ 1).

Therefore, we have arrived at a simulation that gives rise to an inclusion
of NTISP(t, s) in NTIME(·); all that remains is to choose b to optimize the
running time. Notice that the running time of the simulation in (16) has one
term, (16b), that increases with b and one term, (16a), that decreases with b.
The running time is optimized up to a constant factor by choosing b to equate
the two terms, resulting in a choice of

b∗ =

(
(tsℓ)γℓµℓ

s

)1/(1+γℓµℓ)

.

When this value is at least 1, the running time of the nondeterministic simu-
lation (16) is

O
(

(tsℓ+1)cγℓµℓ/(1+γℓµℓ) + (n + s)caℓµℓ + (n + s)caℓ

)

,

resulting in the recurrences (9) and (10). If b∗ < 1, then b = 1 is the best we
can do; the desired bound still holds since in this case (16a) + (16b) = O(s),
which is dominated by the (n + s)aℓ+1 term. ⊓⊔
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Under the assumption of Lemma 3, we can further deduce that for a suffi-
ciently large polynomial τ ,

coNTIME(τ) ⊆ NTISP(τd, τe) ⊆ NTIME(τ (d+eℓ)γℓ + τeaℓ)

= NTIME(τµℓ ), (17)

which is a contradiction with Lemma 2 when µℓ < 1. Therefore, the key
question is for what values of c, d, and e does µℓ take on a value less than 1.
Our analysis focuses on small values of e and shows how such a setting allows
us to exhibit the desired behavior in µℓ.

Theorem 3 For all reals c and d such that c2d < 4 there exists a positive real
e such that

coNTIME(n) * NTIME(nc) ∩ NTISP(nd, ne).

Proof The case where either c < 1 or d < 1 is ruled out by Lemma 2. For
c ≥ 1 and d ≥ 1, assume (by way of contradiction) that

coNTIME(n) ⊆ NTIME(nc) ∩ NTISP(nd, ne)

for a value of e to be determined later. As noted above, the theorem’s assump-
tion in conjunction with Lemma 3 yields the complementation (17) for any
integer ℓ ≥ 0 and sufficiently large polynomial bound τ .

Our goal is now to characterize the behavior of µℓ in terms of c, d, and
e. This task is facilitated by focusing on values of e that are small enough to
smooth out the complex behavior of µℓ caused by (i) the appearance of the
nonconstant term eℓ in the recurrence and (ii) its definition via the maximum
of two functions.

We first handle item (i) by introducing a related, nicer sequence by substi-
tuting a real β (to be determined) as an upper bound for eℓ: Let

µ′
ℓ = max(γ′

ℓ(d + β), ea′
ℓ), (18)

where γ′
0 = 1, a′

0 = 1 and

γ′
ℓ+1 = cγ′

ℓµ
′
ℓ/(1 + γ′

ℓµ
′
ℓ), (19)

and
a′

ℓ+1 = ca′
ℓ · max(1, µ′

ℓ). (20)

As long as β behaves as intended, i.e., eℓ ≤ β, we can show by induction that
γℓ ≤ γ′

ℓ, aℓ ≤ a′
ℓ, and µℓ ≤ µ′

ℓ. Therefore, µ′
ℓ upper bounds µℓ up to a value

of ℓ that depends on e, and this ℓ-value becomes large when e is very small.
This allows us to use µ′

ℓ as a proxy for µℓ in our analysis.
To smooth out the behavior caused by issue (ii), we point out that the first

term in the definition (18) of µ′
ℓ is larger than the second when e is very small.

Provided that this is the case, µ′
ℓ equals the sequence νℓ defined as follows:

ν0 = d + β
νℓ+1 = ν2

ℓ c(d + β)/((d + β) + ν2
ℓ ).

(21)
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This delivers a simpler sequence to analyze. Notice that because the underlying
transformation

η → η2c(d + β)/((d + β) + η2) (22)

is increasing over the positive reals, the sequence νℓ is monotone in this range.
It is decreasing if and only if ν1 < ν0, which is equivalent to (c−1)(d+β) < 1.
Furthermore, when c2(d + β) < 4, the transformation has a unique real fixed
point at 0. Since the underlying transformation is also bounded and starts
positively, the sequence νℓ must decrease monotonically to 0 in this case.

Therefore, when c2d < 4 we can choose a positive β such that νℓ becomes as
small as we want for large ℓ. Provided that β, e, and ℓ satisfy the assumptions
required to smooth out items (i) and (ii), this also gives us that µℓ is small.
More formally, let ℓ∗ be the first value of ℓ such that νℓ < 1. Item (i) requires
that

eℓ∗ ≤ β. (23)

Item (ii) requires that the first term in the definition (18) of µ′
ℓ dominates the

second up to this point, namely,

γ′
ℓ(d + β) ≥ ea′

ℓ for all ℓ ≤ ℓ∗. (24)

When all of these conditions are satisfied, we have that

µℓ∗ ≤ µ′
ℓ∗ = νℓ∗ < 1,

and the running time of the nondeterministic simulation represented by (17)
for ℓ = ℓ∗ runs in time

O(τµℓ∗ ) = O(τµ′

ℓ∗ ) = O(τνℓ∗ ). (25)

Therefore, by choosing a small enough positive e to satisfy the finite num-
ber of constraints in (23) and (24), we arrive at our goal of exhibiting an
exponent cost in the complementation of (17) that is smaller than 1. This is a
contradiction, which proves the desired lower bound. ⊓⊔

The proof of Theorem 3 establishes c2d < 4 as a sufficient condition for
our approach to work but it isn’t clear that the condition is also necessary. For
completeness we include an argument showing that our analysis in the proof
is tight — our approach does not work for any setting with c2d ≥ 4.

Referring to the notation used in the proof of Theorem 3, our approach
works if we can find a value of µℓ < 1 so that (17) contradicts Lemma 3.
Without loss of generality, we can assume that the space-efficient simulation
only uses logarithmic space, in which case the sequence µℓ simplifies to νℓ

given by (21), where the term β is negligible. Since ν1 ≥ 1, νℓ has to decrease
in order to obtain a contradiction; as this happens when (c− 1)d < 1, we can
rule out success in settings with c2d ≥ 4 and d = 1, or c ≥ 2. For c2d = 4 and
d > 1, the underlying transformation (22) has a unique positive fixed point to
which the sequence νℓ converges, namely cd/2 =

√
d, which is less than d. If

we let c grow, the double fixed point separates into two positive fixed points
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that gradually diverge from but remain centered around cd/2. As long as the
largest of the two fixed points remains less than d, the sequence converges to
it in a monotone decreasing way. At the verge where that fixed point reaches
d, the sequence remains constant, which means that (c−1)d = 1. Beyond that
the sequence monotonically increases to the larger fixed point. This argument
implies that at all times νℓ ≥ cd/2. In order to have νℓ < 1, we would need
cd < 2, which is incompatible with our assumption that c2d ≥ 4 and d > 1.

4 Future Work

The most compelling avenue for future work is to improve the quantitative
strength of the lower bounds for tautologies. There is no a priori reason to
believe that the exponent of 3

√
4 could not be improved upon in the near

future by making modifications to current arguments. For example, one might
think that applying the inductive hypothesis more than twice per step and
switching to qubic or higher-order dynamics would lead to further progress,
but this seems to fail1. In fact, an automated search exploiting the regularity
within current indirect diagonalization practices revealed no evidence of any
proof doing better than 3

√
4 Williams (2009). Therefore, we believe that an

improvement to our lower bound for tautologies must involve a new approach
to proving lower bounds for NP-complete and related hard problems.
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