
Stanford University — CS154: Automata and Complexity Handout 5
Luca Trevisan and Ryan Williams 2/23/2012

Notes on NP-Completeness

1 Circuits

We refer to Sipser Section 9.3 for the definition of Boolean circuit.

Lemma 1 Let f : {0, 1}n → {0, 1} be an arbitrary Boolean function. Then
there is a circuit of size O(2n) that computes f .

Proof: We give a recursive construction of the circuit. If n = 1, then either
f(x) = x, in which case it is computed by a circuit of zero gates, or f(x) =
¬x, which can be computed by a circuit of size one, or f(x) = 0 = (x∧¬x),
which is computed by a circuit of size two, or f(x) = 1 = (x∨¬x), which is
also computed by a circuit of size 2.

Let now f be an arbitrary function of n variables. We can write it as

f(x1, . . . , xn) = (xn ∧ f(x1, . . . , xn−1, 1)) ∨ (¬xn ∧ f(x1, . . . , xn−1, 0))

Where both f(x1, . . . , xn−1, 1) and f(x1, . . . , xn−1, 0) are functions of n− 1
variables, that can be recursively realized by a circuit.

The size S(n) of the circuit constructed this way satisfies the recursion
S(1) ≤ 2, S(n) ≤ 4 + 2S(n− 1), which solves to S(n) ≤ 3 · 2n − 4. �

Boolean circuits can simulate Turing machines, as shown in the following
theorem.

Theorem 2 Let M = (Q,Σ,Γ, δ, q0, qA, qR) be a Turing machine that, on
inputs of length n, runs in time at most t. Then there is a circuit of size
O((|Γ| · |Q|)3 · t2) that, given an input x of length n, outputs 1 if and only if
M accepts x.

Proof: We first construct a circuit Cnext that, given a configuration of M
that uses ≤ t cells of tape, computes the configuration at the following step.
A final configuration is left unchanged.

Let M have tape alphabet Γ and set of states Q. We represent a configu-
ration by using t blocks of bits. The i-th block of bits contains the alphabet
element of the i-th cell of the tape (represented as a sequence of dlog |Γ|e

1

bits), a bit that says whether the head of the machine is over the i-th cell
of the tape, and, if so, the current state of the machine, represented as a
sequence of dlog |Q|e bits. Each block, therefore, is 1 + dlog |Γ|e+ dlog |Q|e
bits long. Let us call this number B. (Note that, for a fixed machine M , B
is a constant.)

We want to build a circuit Cnext that, given ct bits in input representing
a configuration, produces ct bits in output representing the next-step con-
figuration.1 It suffices to observe that every bit of the output depends on
only ≤ 3B bits of the input, and so each output bit of the circuit can be
computed using O(23B) gates, so that the entire circuit has size O(t · 23B).
To justify the previous observation, let c be an input configuration for the
circuit and c′ be the desired output. The portion of c′ corresponding to the
i-th cell of the tape depends only on the portion of c corresponding to the
(i − 1)-th, i-th, and (i + 1)-th cells of the tape; in one step, the content of
no other cell can have any effect on the i-th cell. In total, these three cells
are described by 3B bits, including a description of where the head of the
machine is and what is the state.

Let us now construct a circuit Ct by layering t copies of circuit Cnext one
on top of the other, that is, with the outputs of the i-th copy fed as inputs of
the (i+ 1)-th copy. Clearly, Ct has size O(t2 ·23c) and, given a configuration
c, Ct(c) computes the configuration reached by M starting from c in t steps.
We can modify it into a circuit C ′t of size O(t2 ·23c) that has only one output
and such that C ′t(c) = 1 if and only if M reaches an accepting configuration
starting from c and running for at most t steps.

Finally, let us hard-wire into C ′t that the head is in the first cell, that the
state is q0, and that all the cells except the first n contain a blank symbol,
and let us call C the resulting circuit. Now, on input x, C(x) = 1 if and
only if M accepts x in at most t steps.2 �

1There is one more detail to take care of: what happens if the input is a configuration
c that uses t cells of tape and the next-step configuration c′ uses t + 1 cells of tape? In
this case, we will let the circuit output only the content of the first t cells of the tape of
c′.

2There is one final detail: Ct and C′
t expect in input a configuration, which is a sequence

of triples (b, q, a) where b is a bit that tells whether the head is on that cell of the tape,
q tells, if b = 1, what is the state of the machine, and a is the tape alphabet element on
that cell of the tape. After we hard-wire the values of b and q, we still cannot let a be the
input of the circuit, because each a is a sequence of dlog2 |Γ|e bits designed to represent
an element of Γ, while we want our final circuit to have only one input bit per cell of the
tape. We can solve this problem by assuming that Γ is represented in binary so that 0 is
mapped into 0 · · · 00 and 1 is mapped into 0 · · · 01, then we just have to hardwire zeroes
into all the input bits corresponding to an alphabet element except for the last bit in each
cell.

2

2 Satisfiability Problems

Definition 3 (Circuit-SAT) Define the Circuit Satisfiability (Circuit-SAT)
problem as follows: given a circuit C the question is whether there is an input
x such that C(x) = 1.

Using Theorem 2 it is easy to prove that Circuit Satisfiability is NP-
complete.

Theorem 4 Circuit-SAT is NP-complete.

Proof: Circuit-SAT is in NP because, given a circuit C, a witness that C is
in the language is an input x such that C(x) = 1, such a witness is at most
as long as the circuit itself, and its validity can be checked in polynomial
time by evaluating the circuit.

Let now L be a problem in NP, thus there is a polynomial time algorithm
V (·, ·) and a polynomial p(·) such that x ∈ L if and only if there exists a w
such that |w| ≤ p(|x|) and V (x,w) = 1.

We reduce L to Circuit-SAT in the following way: given an input x of
length n we construct a circuit C such that for every z of length n and every
w of length ≤ p(n) we have V (z, y) = C(z, y). Since V runs in polynomial
time, the circuit C has size polynomial in n and can be constructed in
time polynomial in n. Then we “hard wire” x as the z-input of C, thus
getting a new circuit C ′ such that for every w of length ≤ p(n) we have
C ′(w) = C(x,w) = V (x,w). The circuit C ′ is the output of the reduction,
and we see that C ′ is in Circuit-SAT if and only if there is a w such that
C(w) = V (x,w) = 1, which happens if and only if x is in L. �

Next we define the problem 3SAT. In 3SAT, an input is a Boolean for-
mula in 3-Conjunctive-Normal-Form (3CNF). A 3CNF formula is a AND-of-
ORs, with each OR being over precisely three distinct variables. Variables
are allowed to be completed.

Definition 5 (3SAT) The 3SAT problem is: given a 3CNF formula φ, is
there an assignment of values to the variables that satisfies φ?

It is easy to see that 3SAT is in NP.

Theorem 6 Circuit-SAT ≤p
m 3SAT. Therefore 3SAT is NP-hard, and so

NP-complete.

This is Theorem 9.27 in Sipser’s book.

3

3 Graph Problems

Definition 7 In an undirected graph G = (V,E):

• A clique is a subset K ⊆ V such that all the pairs u, v ∈ K are
connected by an edge in E.

• An independent set is a subset S ⊆ V such that no pair u, v ∈ S is
connected by an edge in E.

• A vertex cover is a subset C ⊆ V such that for every edge (u, v) ∈ E
at least one of u or v is an element of C.

Definition 8 (Clique) The Clique problem is: given a graph G and an
integer k, is there a clique of size at least k?

Definition 9 (IS) The Independent Set (IS) problem is: given a graph G
and an integer k, is there an independent set of size at least k?

Definition 10 (VC) The Vertex Cover (VC) problem is: given a graph G
and an integer k, is there a vertex cover of size at most k?

It is easy to see that Clique, IS and VC are all NP problems.

Theorem 11 3SAT ≤p
m IS. Therefore IS is NP-complete.

Proof: Let φ be a formula with m clauses and n variables, and with
precisely three distinct literals in each clause.

We construct a graph G = (V,E) as follows. The graph has 3m vertices,
three for each clause. The three vertices corresponding to a clause form a
triangle and each of them is labeled with one of the literals in the clause.
So, if, for example, the variable xi occurrs three times positively and twice
negated in φ, then the graph G will have three vertices labeled xi and two
vertices labeled x̄i. Then we add an edge between any two vertices that are
labeled by complementary literals. This completes the construction of the
graph G.

Claim 12 If φ is satisfiable, then G has an independent set of size m.

Proof: Consider a satisfying assignment for φ; then in each clause C of φ
there is at least a literal that is made true by the assignment. Let vC be
the vertex in G that corresponds to the first literal in C that is satisfied by

4

the assingment. Consider the set of m vertices S = {vC : C ∈ φ}, and let
us see that it is an independent set. There are only two types of edges in
the graph: edges between the three vertices corresponding to a clause (let
us call them “triangle edges”) and edges between complementary literals
(let us call them “consistency edges”). The vertices in S belong to distinct
triangles, so they do not share any triangle edge; furthermore, their labels
are all consistent with a fixed assignment, and so they cannot share any
consistency edge. So S is an independent set of size m. �

Claim 13 If G has an independent set of size m, then φ is satisfiable.

Proof: Let S be an independent set of size m. For every variable xi in φ,
set xi to TRUE if there is a vertex labeled xi in S, and set xi to FALSE if
there is a vertex labeled x̄i in S (note that, since S is an independent set,
S cannot contain both types of vertices). If neither type of vertices is in S,
set xi to FALSE. Let us call this assignment a.

Since S is an independent set, it cannot contain more than one vertex
from each triangle, and since there are only m triangles in the graph it means
that S contains precisely one vertex from each triangle.

Let now C be any clause in φ. One of the vertices of the triangle corre-
sponding to C is in S, and so a satisfies one of the literals of C, and so C is
satisfied by a. This is true for every clause C, so φ is satisfied by a. �

The reduction from 3SAT to IS is then the mapping of φ into the pair
(G,m). �

Theorem 14 IS ≤p
m VC. Therefore VC is NP-complete.

Proof: In a graph G = (V,E), a set S is an independent set if and only if
V −S is a vertex cover. (This statement follows easily from the definitions.)
Here is the reduction from IS to VC: on input (G, k), output (G, |V | − k).
�

Theorem 15 IS ≤p
m Clique. Therefore Clique is NP-complete.

Proof: If G = (V,E) is a graph, define the complement of G to be the
graph Ḡ = (V, Ē) with the same set of vertices and with precisely those
edges that are not in G. In a graph G = (V,E), a set S is an independent
set if and only if S is a clique in Ḡ. (This statement follows again easily
from the definitions.) Here is the reduction from IS to Clique : on input
(G, k), output (Ḡ, k). �

5

4 Problems About Subsets of Integers

Definition 16 (Subset Sum) In Subset Sum the input is a sequence of
non-negative integers a1, . . . , an and a target value t. The question is whether
there is a subset S ⊆ {1, . . . , n} such that

∑
i∈S ai = t.

You may think of the subset sum problem as the problem of giving exact
change using coins of various denominations. There is an algorithm for this
problem that uses dynamic programming and that runs in time polynomial
in n and t. Since the size of the input is roughly n log t, this running time
may not be polynomial in the length of the input. We show that the problem
is NP-complete and that a polynomial time algorithm is unlikely to exist.
By the way, notice that the problem is easily seen to be in NP.

Theorem 17 VC ≤p
m Subset Sum. Therefore Subset Sum is NP-complete.

Proof: Sipser’s book has a different reduction in Theorem 7.37.
In the reduction from VC we start from a graph G = (V,E) with n

vertices and m edges and a parameter k, and we define an instance of Subset
Sum witn n+m integers, an integer av for every vertex v ∈ V and an integer
be for every edge e ∈ E. We write each integer in base 4, with a digit for
each edge in E. For j = 0, . . . , |E| − 1, let e = (u, v) be the j-th edge of E,
then the integers au, av and bu,v have a 1 as their j-th digit in base 4, and
all other integers have a zero. The integers av, in addition, have a 1 as their
|E|-th digit, while the integers bu,v have a zero.

We set the target to be t = k · 4|E| +
∑|E|−1

j=0 2 · 4j .
Suppose that there is a vertex cover in G with at most k vertices. Then,

in particular, there is a vertex cover C with precisely k vertices. (Adding
vertices to a vertex cover maintains the property of being a vertex cover.)
Consider the set of integers that consists of all the av such that v ∈ C and
all the bu,v such that precisely one of u or v is in C. If we sum these integers,
and we write the sum in base 4, we will see that all the first |E| digits are 2.
Each of the first |E| digits corresponds to an edge (u, v) in the graph, and
only three integers have a 1 in that digit: au, av and bu,v; by our choice,
precisely two of these integers are part of our sum, and so we get a 2, with
no carry, in that digit. Finally, we sum k integers of the form av, and so the
total has a leading term k · 4|E|.

For the other direction, suppose that there are subsets S ⊆ V and T ⊆ V
such that

∑
u∈S au +

∑
(u,v)∈T bu,v = t. We want to claim that S is a vertex

cover of size at most k. First of all, it is clear that |S| ≤ k, because each

6

au is bigger than 4|E| but t < (k + 1) · 4|E|. It remains to prove that it is
a vertex cover. When we compute the sum of the integers in base 4, we
note that we never have a carry in the first |E| digits, because, in each digit,
there are only three integers in our instance that have a 1 in that digit, and
all others have a zero. If no carry occurrs, and if we have a 2 in each of the
first |E| digits, it means that, for each edge (u, v), at least one of au or av
participates in the summation, and so at least one of u or v is in S, and so
S is a vertex cover. �

We define three more problems: Partition, Knapsack and Bin Packing.

Definition 18 (Partition) In the Partition problem we are given integers
a1, . . . , an and the question is whether there is a subset S ⊆ {1, . . . , n} such
that

∑
i∈S ai =

∑
j 6∈S aj.

Definition 19 (Knapsack) In the Knapsack problem we are given integer
costs c1, . . . , cn and volumes v1, . . . , vn, a cost target t and a volume bound
B. The question is whether there is a subset S ⊆ {1, . . . , n} such that∑

i∈S ci ≥ t and
∑

i vi ≤ B.

The interpretation of Knapsack is that we have n objects, and object
i has volume vi and cost ci. We have a bag of size B and we want to fit
objects of maximum total cost into the bag. In the decision version, we want
to know if it is possible to fit objects of total cost at least t into the bag.
The problem is solvable in time polynomial in n, t and B using dynamic
programming. The size of the problem is about n(log t+ logB), and so the
dynamic programming algorithm may be exponential in the input length if
the integers are very large compared to n.

Definition 20 (Bin Packing) In the Bin Packing problem we are given
volumes v1, . . . , vn, a volume bound B, and a target k. The question is
whether we can partion the integers v1, . . . , vn into k subsets such that the
integers in each subset sum to at most B.

The interpretation of Bin Packing is that we have n objects, with object
i having volume vi. We are given k bins, each of size B, and we want to fit
all the objects into the k bins.

It is easy to see that Partition, Knapsack and Bin Packing are in NP.

Theorem 21 Subset Sum ≤p
m Knapsack. Therefore Knapsack is NP-complete.

7

Proof: Start from an instance a1, . . . , an, t of Subset Sum. Define an in-
stance of Knapsack with n items by setting ci = vi = ai, that is, the cost
and the volume of object i are precisely the integer ai. Then set t = B = k.
This is clearly a YES-instance of Knapsack if and only (a1, . . . , an, t) is a
YES-instance of Subset Sum. �

Theorem 22 Subset Sum ≤p
m Partition. Therefore Partition is NP-complete.

Proof: Given an instance I = (a1, . . . , an, t) of Subset Sum, define A =∑n
i=1 ai to be the total sum of the integers. Consider the instance of Par-

tition I ′ = (a1, . . . , an, an+1, an+2) where an+1 = 2A − t and an+2 = A + t.
The total sum of the integers in I ′ is 4A, so I ′ is a YES-instance of Partition
if and only if there is a subset of the integers that sums to 2A.

If I is a YES-instance of Subset Sum, let S ⊆ {1, . . . , n} be the solution
such that

∑
i∈S ai = t. Then S ∪ {an+1} is a solution that shows that I ′ is

a YES-instance of Partition.
If I ′ is a YES-instance of Partition, let S ⊆ {1, . . . , n+2} be the solution

such that
∑

i∈S ai = 2A. Clearly, precisely one of n + 1 or n + 2 belongs
to S. If (n + 1) ∈ S, then S − {n + 1} is a solution that proves that I is a
YES-instance of Subset Sum. Otherwise, if n + 2 ∈ S, then

∑
i∈S,i≤n ai =

2A− an+2 = A− t, from which we deduce that
∑

i 6∈S,i≤n ai = t and the set
S′ = {i : i ≤ n, i 6∈ S} proves that I is a YES-instance of Subset Sum. �

Theorem 23 Partition ≤p
m Bin Packing. Therefore Bin Packing is NP-

complete.

Proof: Given an instance a1, . . . , an of Partition, create an instance of Bin
Packing by setting vi = ai, B = (

∑n
i=1 ai)/2 and k = 2. �

5 The Traveling Salesman Problem

Definition 24 (Hamiltonian Tour) In the Hamiltonian Tour problem we
are given a graph G = (V,E). The question is whether there exists a Hamil-
tonian tour in G, that is, a cycle that goes through every vertex exactly
once.

Theorem 25 Vertex Cover ≤p
m Hamiltonian Tour. Therefore Hamiltonian

Tour is NP-complete.

8

Definition 26 (TSP) In the Traveling Salesman Problem (TSP) we are
given a set C of “cities,” a non-negative “distance” d(u, v) = d(v, u) for
each pair of cities u, v, and a bound L. The question is whether there exists
a tour that goes through every city and whose total length is at most L.

Theorem 27 Hamiltonian Tour ≤p
m TSP. Therefore TSP is NP-complete.

Proof: Let G = (V,E) be the instance of Hamiltonian Tour. Construct
a TSP instance where C = V , d(u, v) = 1 if (u, v) ∈ E, d(u, v) = 2 if
(u, v) 6∈ E, and L = |V |. �

9

