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Abstract
The frequent items problem is to process a stream of items 
and find all those which occur more than a given fraction of 
the time. It is one of the most heavily studied problems in 
mining data streams, dating back to the 1980s. Many other 
applications rely directly or indirectly on finding the frequent 
items, and implementations are in use in large-scale indus-
trial systems. In this paper, we describe the most important 
algorithms for this problem in a common framework. We 
place the different solutions in their historical context, and 
describe the connections between them, with the aim of 
clarifying some of the confusion that has surrounded their 
properties.

To further illustrate the different properties of the algo-
rithms, we provide baseline implementations. This allows 
us to give empirical evidence that there is considerable vari-
ation in the performance of frequent items algorithms. The 
best methods can be implemented to find frequent items 
with high accuracy using only tens of kilobytes of memory, 
at rates of millions of items per second on cheap modern 
hardware.

1. INTRODUCTION
Many data generation processes can be modeled as data 
streams. They produce huge numbers of pieces of data, each 
of which is simple in isolation, but which taken together 
lead to a complex whole. For example, the sequence of que-
ries posed to an Internet search engine can be thought of 
as a stream, as can the collection of transactions across all 
branches of a supermarket chain. In aggregate, this data can 
arrive at enormous rates, easily in the realm of hundreds of 
gigabytes per day or higher. While this data may be archived 
and indexed within a data warehouse, it is also important to 
process the data “as it happens,” to provide up to the minute 
analysis and statistics on current trends. Methods to achieve 
this must be quick to respond to each new piece of informa-
tion, and use resources which are very small when compared 
to the total quantity of data.

These applications and others like them have led to 
the formulation of the so-called “streaming model.” In 
this abstraction, algorithms take only a single pass over 
their input, and must accurately compute various func-
tions while using resources (space and time per item) 
that are strictly sublinear in the size of the input—ideally, 
polynomial in the logarithm of the input size. The output 
must be produced at the end of the stream, or when que-
ried on the prefix of the stream that has been observed so 
far. (Other variations ask for the output to be maintained 
continuously in the presence of updates, or on a “sliding 

window” of only the most recent updates.) Some problems 
are simple in this model: for example, given a stream of 
transactions, finding the mean and standard deviation of 
the bill totals can be accomplished by retaining a few “suf-
ficient statistics” (sum of all values, sum of squared val-
ues, etc.). Others can be shown to require a large amount 
of information to be stored, such as determining whether 
a particular search query has already appeared anywhere 
within a large stream of queries. Determining which prob-
lems can be solved effectively within this model remains 
an active research area.

The frequent items problem (also known as the heavy hit-
ters problem) is one of the most heavily studied questions in 
data streams. The problem is popular due to its simplicity 
to state, and its intuitive interest and value. It is important 
both in itself, and as a subroutine within more advanced 
data stream computations. Informally, given a sequence of 
items, the problem is simply to find those items which occur 
most frequently. Typically, this is formalized as finding all 
items whose frequency exceeds a specified fraction of the 
total number of items. This is shown in Figure 1. Variations 
arise when the items are given weights, and further when 
these weights can also be negative.

This abstract problem captures a wide variety of settings. 
The items can represent packets on the Internet, and the 
weights are the size of the packets. Then the frequent items 
represent the most popular destinations, or the heaviest band-
width users (depending on how the items are extracted from 
the flow identifiers). This knowledge can help in optimizing 
routing decisions, for in-network caching, and for planning 
where to add new capacity. Or, the items can represent queries 

Figure 1. A stream of items defines a frequency distribution over 
items. In this example, with a threshold of f = 20% over the 19 items 
grouped in bins, the problem is to find all items with frequency at 
least 3.8—in this case, the green and red items (middle two bins).

A previous version of this paper was published in 
Proceedings of the International Conference on Very Large 
Data Bases (Aug. 2008). 
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made to an Internet search engine, and the frequent items are 
now the (currently) popular terms. These are not simply hypo-
thetical examples, but genuine cases where algorithms for 
this problem have been applied by large corporations: AT&T11 
and Google,23 respectively. Given the size of the data (which is 
being generated at high speed), it is important to find algo-
rithms which are capable of processing each new update very 
quickly, without blocking. It also helps if the working space 
of the algorithm is very small, so that the analysis can hap-
pen over many different groups in parallel, and because small 
structures are likely to have better cache behavior and hence 
further help increase the throughput.

Obtaining efficient and scalable solutions to the frequent 
items problem is also important since many streaming 
applications need to find frequent items as a subroutine of 
another, more complex computation. Most directly, min-
ing frequent itemsets inherently builds on finding frequent 
items as a basic building block. Finding the entropy of a 
stream requires learning the most frequent items in order 
to directly compute their contribution to the entropy, and 
remove their contribution before approximating the entropy 
of the residual stream.8 The HSS (Hierarchical Sampling 
from Sketches) technique uses hashing to derive multiple 
substreams, the frequent elements of which are extracted 
to estimate the frequency moments of the stream.4 The fre-
quent items problem is also related to the recently popular 
area of Compressed Sensing.

Other work solves generalized versions of frequent items 
problems by building on algorithms for the “vanilla” version 
of the problem. Several techniques for finding the frequent 
items in a “sliding window” of recent updates (instead of 
all updates) operate by keeping track of the frequent items 
in many sub-windows.2, 13 In the “heavy hitters distinct” 
problem, with applications to detecting network scanning 
attacks, the count of an item is the number of distinct pairs 
containing that item paired with a secondary item. It is typi-
cally solved extending a frequent items algorithm with dis-
tinct counting algorithms.25 Frequent items have also been 
applied to models of probabilistic streaming data,17 and 
within faster “skipping” techniques.3

Thus the problem is an important one to understand and 
study in order to produce efficient streaming implementa-
tions. It remains an active area, with many new research 
contributions produced every year on the core problem and 
its variations. Due to the amount of work on this problem, 
it is easy to miss out some important references or fail to 
appreciate the properties of certain algorithms. There are 
several cases where algorithms first published in the 1980s 
have been “rediscovered” two decades later; existing work 
is sometimes claimed to be incapable of a certain guaran-
tee, which in truth it can provide with only minor modifica-
tions; and experimental evaluations do not always compare 
against the most suitable methods.

In this paper, we present the main ideas in this area, by 
describing some of the most significant algorithms for the core 
problem of finding frequent items using common notation 
and terminology. In doing so, we also present the historical 
development of these algorithms. Studying these algorithms 
is instructive, as they are relatively simple, but can be shown 

to provide formal guarantees on the quality of their output as a 
function of an accuracy parameter e. We also provide baseline 
implementations of many of these algorithms against which 
future algorithms can be compared, and on top of which algo-
rithms for different problems can be built. We perform experi-
mental evaluation of the algorithms over a variety of data sets 
to indicate their performance in practice. From this, we are 
able to identify clear distinctions among the algorithms that 
are not apparent from their theoretical analysis alone.

2. DEFINITIONS
We first provide formal definition of the stream and the fre-
quencies fi of the items within the stream as the number of 
times item i is seen in the stream.

Definition 1. Given a stream S of n items t1 … tn, the fre-
quency of an item i is fi = |{ j|tj = i}|. The exact f-frequent 
items comprise the set {i| fi > fn}.

Example. The stream S = (a, b, a, c, c, a, b, d) has fa = 3,  fb = 2,  
fc = 2,  fd = 1. For f = 0.2, the frequent items are a, b, and c.

A streaming algorithm which finds the exact f-frequent 
items must use a lot of space, even for large values of f, based 
on the following information-theoretic argument. Given 
an algorithm that claims to solve this problem for f = 50%, 
we could insert a set S of N items, where every item has fre-
quency 1. Then, we could also insert N − 1 copies of item i. 
If i is now reported as a frequent item (occurring more than 
50% of the time) then i ∈ S, else i ∉ S. Consequently, since cor-
rectly storing a set of size N requires Ω(N) space, Ω(N) space 
is also required to solve the frequent items problem. That is, 
any algorithm which promises to solve the exact problem on a 
stream of length n must (in the worst case) store an amount of 
information that is proportional to the length of the stream, 
which is impractical for the large stream sizes we consider.

Because of this fundamental difficulty in solving the exact 
problem, an approximate version is defined based on a tol-
erance for error, which is parametrized by e.

Definition 2. Given a stream S of n items, the e-approximate 
frequent items problem is to return a set of items F so that for 
all items i ∈ F,  fi > (f − e)n, and there is no i ∉ F such that fi > fn.

Since the exact (e = 0) frequent items problem is hard 
in general, we use “frequent items” or “the frequent items 
problem” to refer to the e-approximate frequent items prob-
lem. A closely related problem is to estimate the frequency 
of items on demand.

Definition 3. Given a stream S of n items defining frequen-
cies fi as above, the frequency estimation problem is to pro-
cess a stream so that, given any i, an f̂i is returned satisfying 
fi ≤ f̂i ≤ fi + en.

A solution to the frequency estimation problem allows the 
frequent items problem to be solved (slowly): one can estimate 
the frequency of every possible item i, and report those i’s 
whose frequency is estimated above (f − e)n. Exhaustively enu-
merating all items can be very time consuming (or infeasible, 
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e.g., when the items can be arbitrary strings). However, all 
the algorithms we study here solve both the approximate fre-
quent items problem and the frequency estimation problem 
at the same time. Most solutions are deterministic, but we 
also discuss randomized solutions, which allow a small user-
specified probability of making a mistake.

3. FREQUENT ITEMS ALGORITHMS
We discuss two main classes of algorithms for finding the 
frequent items. Counter-based algorithms track a subset of 
items from the input, and monitor counts associated with 
these items. We also discuss sketch algorithms, which are 
(randomized) linear projections of the input viewed as a vec-
tor, and solve the frequency estimation problem. They there-
fore do not explicitly store items from the input. Furthermore, 
sketch algorithms can support deletion of items (correspond-
ing to updates with a negative weight, discussed in more 
detail below), in contrast with counter-based schemes, at the 
cost of increased space usage and update time.

These are by no means the only solutions possible for this 
problem. Other solutions are based on various notions of ran-
domly sampling items from the input, and of summarizing 
the distribution of items in order to find quantiles, from which 
the frequent items can be discovered. These solution types 
have attracted less interest for the frequent items problem, and 
are less effective based on our full experimental evaluations.10

3.1. Counter-based algorithms
Counter-based algorithms decide for each new arrival 
whether to store this item or not, and if so, what counts to 
associate with it. A common feature of these algorithms is 
that when given a new item, they test whether it is one of k 
being stored by the algorithm, and if so, increment its count. 
The cost of supporting this “dictionary” operation depends 
on the model of computation assumed. A simple solution is 
to use a hash table storing the current set of items, but this 
means that an otherwise deterministic solution becomes 
randomized in its time cost, since it takes expected O(1) 
operations to perform this step. Other models assume that 
there is hardware support for these operations (such as 
Content Addressable Memory), or else that deterministic 
“dynamic dictionary algorithms” are used. We sidestep this 
issue in this presentation by just counting the number of 
“dictionary” operations in the algorithms.
Majority Algorithm:  The problem of frequent items dates 
back at least to a problem proposed by Moore in 1980. It was 
published as a “problem” in the Journal of Algorithms in the 
June 1981 issue, as

[J.Alg 2, P208–209] Suppose we have a list of n num-
bers, representing the “votes” of n processors on the 
result of some computation. We wish to decide if there 
is a majority vote and what the vote is.

Moore, with Boyer, also invented the Majority algorithm 
in 1980, described in a technical report from early 1981.6 To 
them, this was mostly of interest from the perspective of 
automatically proving the correctness of the solution (the 
details of this were published in 1991, along with a partial 

history7). In the December 1982, Journal of Algorithms, a 
solution provided by Fischer and Salzburg was published.15 
Their proposed algorithm, although presented differently, 
was essentially identical to Majority, and was accompa-
nied by an analysis of the number of comparisons needed to 
solve the problem. Majority can be stated as follows: store 
the first item and a counter, initialized to 1. For each sub-
sequent item, if it is the same as the currently stored item, 
increment the counter. If it differs, and the counter is zero, 
then store the new item and set the counter to 1; else, decre-
ment the counter. After processing all items, the algorithm 
guarantees that if there is a majority vote, then it must be the 
item stored by the algorithm. The correctness of this algo-
rithm is based on a pairing argument: if every nonmajority 
item is paired with a majority item, then there should still 
remain an excess of majority items. Although not posed as a 
streaming problem, the algorithm has a streaming flavor: it 
takes only one pass through the input (which can be ordered 
arbitrarily) to find a majority item. To verify that the stored 
item really is a majority, a second pass is needed to simply 
count the true number of occurrences of the stored item. 
Without this second pass, the algorithm has a partial guar-
antee: if there is an exact majority item, it is found at the end 
of the first pass, but the algorithm is unable to determine 
whether this is the case. Note that as the hardness results for 
Definition 1 show, no algorithm can correctly distinguish 
the cases when an item is just above or just below the thresh-
old in a single pass without using a large amount of space.
The “Frequent” Algorithm:  Twenty years later, the prob-
lem of streaming algorithms was an active research area, 
and a generalization of the Majority algorithm was shown 
to solve the problem of finding all items in a sequence  
whose frequency exceeds a 1/k fraction of the total count.14, 18  
Instead of keeping a single counter and item from the input, 
the Frequent algorithm stores k − 1 (item, counter) pairs. 
The natural generalization of the Majority algorithm is to 
compare each new item against the stored items T, and 
increment the corresponding counter if it is among them. 
Else, if there is some counter with a zero count, it is allocated 
to the new item, and the counter set to 1. If all k − 1 counters 
are allocated to distinct items, then all are decremented by 1. 
A grouping argument is used to argue that any item which 
occurs more than n/k times must be stored by the algorithm 
when it terminates. Figure 2 illustrates some of the opera-
tions on this data structure. Pseudocode to illustrate this 
algorithm is given in Algorithm 1, making use of set notation 
to represent the dictionary operations on the set of stored 
items T: items are added and removed from this set using set 
union and set subtraction, respectively, and we allow rang-
ing over the members of this set (any implementation will 
have to choose how to support these operations). We also 
assume that each item j stored in T has an associated coun-
ter cj. For items not stored in T, then cj is implicitly defined as 
0 and does not need to be explicitly stored.

In fact, this generalization was first proposed by Misra and 
Gries as “Algorithm 3”22 in 1982: the papers published in 2002 
(which cite Fischer15 but not Misra22) were actually rediscover-
ies of their algorithm. In deference to its initial discovery, this 
algorithm has been referred to as the “Misra–Gries” algorithm 
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in more recent work on streaming algorithms. In the same 
paper, an “Algorithm 2” correctly solves the problem but has 
only speculated worst-case space bounds. Some works have 
asserted that the Frequent algorithm does not solve the fre-
quency estimation problem accurately, but this is erroneous. 
As observed by Bose et al.,5 executing this algorithm with k = 
1/e ensures that the count associated with each item on termi-
nation is at most en below the true value.

The time cost of the algorithm is dominated by the O(1) 
dictionary operations per update, and the cost of decre-
menting counts. Misra and Gries use a balanced search tree, 
and argue that the decrement cost is amortized O(1); Karp et 
al. propose a hash table to implement the dictionary18; and 
Demaine et al. show how the cost of decrementing can be 
made worst-case O(1) by representing the counts using off-
sets and maintaining multiple linked lists.14

LossyCounting:  The LossyCounting algorithm was pro-
posed by Manku and Motwani in 2002,19 in addition to a 
randomized sampling-based algorithm and techniques for 
extending from frequent items to frequent itemsets. The 

algorithm stores tuples which comprise an item, a lower 
bound on its count, and a “delta” (∆) value which records the 
difference between the upper bound and the lower bound. 
When processing the ith item in the stream, if information 
is currently stored about the item then its lower bound is 
increased by one; else, a new tuple for the item is created with 
the lower bound set to one, and ∆ set to i/k. Periodically, 
all tuples whose upper bound is less than i/k are deleted. 
These are correct upper and lower bounds on the count of 
each item, so at the end of the stream, all items whose count 
exceeds n/k must be stored. As with Frequent, setting  
k = 1/e ensures that the error in any approximate count is at 
most en. A careful argument demonstrates that the worst-
case space used by this algorithm is  , and for cer-
tain time-invariant input distributions it is  .

Storing the delta values ensures that highly frequent items 
which first appear early on in the stream have very accurate 
approximated counts. But this adds to the storage cost. A vari-
ant of this algorithm is presented by Manku in a presentation 
of the paper,20 which dispenses with explicitly storing the delta 
values, and instead has all items sharing an implicit value of 
∆(i) = i/k. The modified algorithm stores (item, count) pairs. 
For each item in the stream, if it is stored, then the count is 
incremented; otherwise, it is initialized with a count of 1. 
Every time ∆(i) increases, all counts are decremented by 1, 
and all items with zero count are removed from the data struc-
ture. The same proof suffices to show that the space bound 
is  . This version of the algorithm is quite similar 
to Algorithm 2 presented in Misra22; but in Manku,20 a space 
bound is proven. The time cost is O(1) dictionary operations, 
plus the periodic compress operations which require a linear 
scan of the stored items. This can be performed once every  

 updates, in which time the number of items  
stored has at most doubled, meaning that the amortized cost 
of compressing is O(1). We give pseudocode for this version of 
the algorithm in Algorithm 2, where again T represents the set 
of currently monitored items, updated by set operations, and 
cj are corresponding counts.
SpaceSaving:  All the deterministic algorithms presented so 
far have a similar flavor: a set of items and counters are kept, 
and various simple rules are applied when a new item arrives 
(as illustrated in Figure 2). The SpaceSaving algorithm intro-
duced in 2005 by Metwally et al. also fits this template.21 Here, k 
(item, count) pairs are stored, initialized by the first k distinct 
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Figure 2. Counter-based data structure: the blue (top) item is already 
stored, so its count is incremented when it is seen. The green 
(middle) item takes up an unused counter, then a second occurrence 
increments it.

Algorithm 1:  FREQUENT(k)

foreach i do

if i ∈T then

else if  T < k−1 then

else forall j ∈T do

if cj = 0 then T ← T \{ j};

n ← 0;
T ← Ø;

T ← T ∪ {i};

n ← n + 1;

ci ← ci + 1;

cj ← cj − 1;

ci ← 1;

Algorithm 3:  SPACESAVING(k)

foreach i do

if i ∈T then ci ← ci + 1;
else if  T < k then

n ← 0;
T ← Ø;

T ← T ∪ {i};

T ← T ∪ {i} \ { j};

n ← n + 1;

ci ← cj + 1;
j ← arg minj∈T cj

;

ci ← 1;

Algorithm 2:  LOSSYCOUNTING(k)

foreach i do

if i ∈T then ci ← ci + 1;

 if ci < ∆ then T ← T \ { j};
forall j ∈T do

if n/K ≠ ∆ then 
∆ ← n/k;

n ← 0; ∆ ← 0; T ← Ø;

T ← T ∪ {i};

n ← n + 1;

ci ← 1+ ∆;

else

else 
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items and their exact counts. As usual, when the next item in 
the sequence corresponds to a monitored item, its count is 
incremented; but when the next item does not match a mon-
itored item, the (item, count) pair with the smallest count 
has its item value replaced with the new item, and the count 
incremented. So the space required is O(k) (respectively ),  
and a short proof demonstrates that the counts of all stored 
items solve the frequency estimation problem with error 
n/k (respectively en). It also shares a useful property with 
LossyCounting, that items which are stored by the algo-
rithm early in the stream and are not removed have very accu-
rate estimated counts. The algorithm appears in Algorithm 3. 
The time cost is bounded by the dictionary operation of find-
ing if an item is stored, and of finding and maintaining the 
item with minimum count. Simple heap implementations 
can track the smallest count item in O(log 1/e) time per 
update. When all updates are unitary (+1), a faster approach 
is to borrow ideas from the Demaine et al. implementation of 
Frequent, and keep the items in groups with equal counts. 
By tracking a pointer to the group with smallest count, the 
find minimum operation takes constant time, while incre-
menting counts take O(1) pointer operations (the “Stream-
Summary” data structure desribed by Metwally et al.21).

3.2. Sketch algorithms
Here, we use the term “sketch” to denote a data structure 
which can be thought of as a linear projection of the input. 
That is, if we imagine the stream as implicitly defining a vec-
tor whose ith entry is fi, the sketch is the product of this 
vector with a matrix. For the algorithm to use small space, 
this matrix will be implicitly defined by a small number of 
bits. The sketch algorithms described here use hash func-
tions to define a (very sparse) linear projection. Both views 
(hashing or linear projection) can be helpful in explaining 
the methods, and it is usually possible to alternate between 
the two without confusion. Because of their linearity, it fol-
lows immediately that updates with negative values can 
easily be accommodated by such sketching methods. This 
allows us to model the removal of items (to denote the con-
clusion of a packet flow; or the return of a previously bought 
item, say) as an update with negative weight.

The two sketch algorithms outlined below solve the fre-
quency estimation problem. They need additional data infor-
mation to solve the frequent items problem, so we also describe 
algorithms which augment the stored sketch to find frequent 
items quickly. The algorithms are randomized, which means 
that in addition to the accuracy parameter e, they also take a 
failure probability d so that (over the random choices made 
in choosing the hash functions) the probability of failure is at 
most d. Typically, d can be chosen to be very small (e.g., 10−6) 
while keeping the space used by the sketch low.
CountSketch:  The first sketch in the sense that we use the 
term was the AMS or Tug-of-war sketch due to Alon et al.1 
This was used to estimate the second frequency moment,  
F2 = Σi fi

2. It was subsequently observed that the same data 
structure could be used to estimate the inner product of two 
frequency distributions, i.e., Σi  fi  fi′ for two distributions given 
(in a stream) by fi and  fi′. But this means that if fi is defined by 
a stream, at query time we can find the product with  fi′ = 1and  

fi′ = 0 for all j ≠ i. Then, the true answer to the inner prod-
uct should be exactly fi. The error guaranteed by the sketch 
turns out to be  with probability of at least 1 − d  
for a sketch of size . The ostensibly dissimilar 
technique of “Random Subset Sums”16 (on close inspection) 
turns out to be isomorphic to this instance of the algorithm.

Maintaining the AMS data structure is slow, since it requires 
updating the whole sketch for every new item in the stream. 
The CountSketch algorithm of Charikar et al.9 dramatically 
improves the speed by showing that the same underlying 
technique works if each update only affects a small subset of 
the sketch, instead of the entire summary. The sketch con-
sists of a two-dimensional array C with d rows of w counters 
each. There are two hash functions for each row, hj which 
maps input items onto [w], and gj which maps input items 
onto {−1, +1}. Each input item i causes gj(i) to be added on to 
entry C[ j, hj (i)] in row j, for 1 ≤ j ≤ d. For any row j, the value gj(i )
C[ j, hj (i)] is an unbiased estimator for fi. The estimate f̂i is the 
median of these estimates over the d rows. Setting   
and 

 
ensures that fi has error at most  with  

probability of at least 1 − d. This guarantee requires that the 
hash functions are chosen randomly from a family of “four-
wise independent” hash functions.24 The total space used is 

, and the time per update is  worst case. 
Figure 3 shows a schematic of the data structure under the 
update procedure: the new item i gets mapped to a different 
location in each row, where gj(i) is added on to the current 
counter value in that location. Pseudocode for the core of the 
update algorithm is shown in Algorithm 4.
CountMin Sketch:  The CountMin sketch algorithm of 
Cormode and Muthukrishnan12 can be described in simi-
lar terms to CountSketch. An array of d × w counters is 
maintained, along with d hash functions hj. Each update is 
mapped onto d entries in the array, each of which is incre-
mented. Now f̂i = min1≤ j≤d C[ j, hj(i)]. The Markov inequality 
is used to show that the estimate for each j overestimates by 
less than n/w, and repeating d times reduces the probabil-
ity of error exponentially. So setting 

 
and   

ensures that f̂i has error at most en with probability of at 
least 1 − d. Consequently, the space is  and the 
time per update is . The data structure and update 
procedure is consequently much like that illustrated for the 
CountSketch in Figure 3, with gj(i) always equal to 1. The 
update algorithm is shown in Algorithm 5.
Finding Frequent Items Using a Hierarchy:  Since sketches 
solve the case when item frequencies can decrease, more 

+ctg1(i)

+ctgd(i)

hd(i)
it

h1(i)

Figure 3. Sketch data structure: each new item is mapped to a set of 
counters, which are incremented.
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complex algorithms are needed to find the frequent items. 
Here, we assume a “strict” case, where negative updates 
are possible but no negative frequencies are allowed. In 
this strict case, an approach based on divide-and-conquer 
will work: additional sketches are used to determine which 
ranges of items are frequent.12 If a range is frequent, then it 
can be split into b nonoverlapping subranges and the fre-
quency of each subrange estimated from an appropriate 
sketch, until a single item is returned. The choice of b trades 
off update time against query time: if all items i ∈ {1 . . . U}, 
then [logb U ] sketches suffice, but each potential range is 
split into b > 1 subranges when answering queries. Thus, 
updates take 

 
hashing operations, and O(1) 

counter updates for each hash. Typically, moderate constant 
values of b are used (between 2 and 256, say); choosing b to 
be a power of two allows fast bit-shifts to be used in query 
and update operations instead of slower divide and mod 
operations. This results in CountMin sketch Hierarchical 
and CountSketch Hierarchical algorithms.
Finding Frequent Items Using Group Testing:  An alter-
nate approach is based on “combinatorial group testing” 
(CGT), which randomly divides the input into buckets so 
that we expect at most one frequent item in each group. 
Within each bucket, the items are divided into subgroups 
so that the “weight” of each group indicates the identity of 
the frequent item. For example, separating the counts of the 
items with odd identifiers and even identifiers will indicate 
whether the heavy item is odd or even; repeating this for all 
bit positions reveals the full identity of the item. This can 
be seen as an extension of the CountMin sketch, since the 
structure resembles the buckets of the sketch, with addi-
tional information on subgroups of each bucket (based on 
the binary representation of items falling in the bucket); fur-
ther, the analysis and properties are quite close to those of 
a Hierarchical CountMin sketch. This increases the space 
to  when the binary representation takes log 
U bits. Each update requires  hashes as before, and 
updating O(log U) counters per hash.

4. EXPERIMENTAL COMPARISON

4.1. Setup
We compared these algorithms under a common imple-
mentation framework to test as accurately as possible their 
relative performance. All algorithms were implemented 
using C++, and used common subroutines for similar tasks 
(e.g., hash tables) to increase comparability. We ran experi-
ments on a 4 Dual Core Intel(R) Xeon(R) 2.66 GHz with 16GB 
of RAM running Windows 2003 Server. The code was com-
piled using Microsoft’s Visual C++ 2005 compiler and g++ 
3.4.4 on cygwin. We did not observe significant differences 
between the two compilers. We report here results obtained 
using Visual C++ 2005. The code is available from http://
www.research.att.com/~marioh/frequent–items/.

For every algorithm we tested a number of implementa-
tions, using different data structures to implement the basic 
set operations. For some algorithms the most robust imple-
mentation choice was clear; for others we present results of 
competing solutions. For counter-based algorithms we exam-
ine: Frequent using the Demaine et al. implementation tech-
nique of linked lists (F), LossyCounting keeping separate 
delta values for each item (LCD), LossyCounting without del-
tas (LC), SpaceSaving using a heap (SSH), and SpaceSaving 
using linked lists (SSL). We also examine sketch-based meth-
ods: hierarchical CountSketch (CS), hierarchical CountMin 
sketch (CMH), and the CGT variant of CountMin.

We ran experiments using 10 million packets of HTTP traf-
fic, representing 24 hours of traffic from a backbone router in a 
major network. Experiments on other real and synthetic data-
sets are shown in an extended version of this article.10 We varied 
the frequency threshold f, from 0.0001 to 0.01. In our experi-
ments, we set the error guarantee e = f, since our results showed 
that this was sufficient to give high accuracy in practice.

We compare the efficiency of the algorithms with respect to

•	 Update throughput, measured in number of updates 
per millisecond.

•	 Space consumed, measured in bytes.
•	 Recall, measured in the total number of true heavy hit-

ters reported over the number of true heavy hitters 
given by an exact algorithm.

•	 Precision, measured in total number of true heavy hit-
ters reported over the total number of answers reported. 
Precision quantifies the number of false positives 
reported.

•	 Average relative error of the reported frequencies: We 
measure separately the average relative error of the fre-
quencies of the true heavy hitters, and the average rela-
tive error of the frequencies of the false positive answers. 
Let the true frequency of an item be f and the measured 
frequency f~. The absolute relative error is defined  
by . We average the absolute relative errors 
over all measured frequencies.

For all of the above, we perform 20 runs per experiment (by 
dividing the input data into 20 chunks and querying the algo-
rithms once at the end of each run). We report averages on all 
graphs, along with the 5th and 95th percentiles as error bars.

Algorithm 4: COUNTSKETCH(w, d)

for j ← 1 to d do

for j ← 1 to d do

foreach i do

Initialize gj, hj;

n ← n + 1;

C[1, 1]. . . C[d, w] ← 0;

C[ j, hj(i)] ← C[ j, hj(i), j] + gj (i);

Algorithm 5: COUNTMin(w, d)

C[1, 1]. . . C[d, w] ← 0;
for j ← 1 to d do

Initialize gj ;

foreach i do
n ← n + 1;
for j ← 1 to d do

C[ j, hj(i)] ← C[ j, hj(i)] + 1;
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4.2. Counter-based algorithms
Space and Time Costs: Figure 4(a) shows the update through-
put of the algorithms as a function of increasing frequency 
threshold (f). The SpaceSaving and Frequent algorithms 
are fastest, while the two variations of LossyCounting are 
appreciably slower. On this data set, SSL and SSH are equally 
very fast, but on some other data sets SSL was significantly 
faster than SSL, showing how data structure choices can affect 
performance. The range of frequency thresholds (f) consid-
ered did not affect update throughput (notice the log scale on 
the horizontal axis). The space used by these algorithms at the 
finest accuracy level was less than 1MB. SSL used 700KB for f = 
0.0001, while the other algorithms all required approximately 
400KB. Since the space cost varies with 1/f, for f = 0.01, the 
cost was 100 times less, i.e., a matter of kilobytes. This range 
of sizes is small enough to fit within a mod ern second level 
cache, so there is no obvious effect due to crossing memory 
boundaries on the architectures tested on. A naive solution 
that maintains one counter per input item would consume 
many megabytes (and this grows linearly with the input size). 
This is at least 12 times larger than SSH for f = 0.0001 (which is 
the most robust algorithm in terms of space), and over a thou-
sand times larger than all algorithms for f = 0.01. Clearly, the 
space benefit of these algorithms, even for small frequency 
thresholds, is substantial in practice.
Precision, Recall, and Error:  All algorithms tested guar-
antee perfect recall (they will recover every item that is fre-
quent). Figure 4(b) plots the precision. We also show the 5th 
and 95th percentiles in the graphs as error bars. Precision 
is the total number of true answers returned over the total 
number of answers. Precision is an indication of the number 
of false positives returned. Higher precision means smaller 
number of false positive answers. There is a clear distinc-
tion between different algorithms in this case. When using  
e = f, F results in a very large number of false positive answers, 
while LC and LCD result in approximately 50% false positives 
for small f parameters, but their precision improves as skew-
ness increases. Decreasing e relative to f would improve this 
at the cost of increasing the space used. However, SSL and 
SSH yield 100% accuracy in all cases (i.e., no false positives), 
with about the same or better space usage. Note that these 
implement the same algorithm and so have the same output, 
only differing in the underlying implementation of certain 

data structures. Finally, notice that by keeping additional per-
item information, LCD can sometimes distinguish between 
truly frequent and potentially frequent items better than LC.

Figure 4(c) plots the average relative error in the frequency 
estimation of the truly frequent items. The graph also plots 
the 5th and 95th percentiles as error bars. The relative error 
of F decreases with f, while the error of LossyCounting 
increases with f. Note that F always returns an underesti-
mate of the true count of any item; LC and LCD always return 
overestimates based on a ∆ value, and so yield inflated esti-
mates of the frequencies of infrequent items.
Conclusions: Overall, the SpaceSaving algorithm appears con-
clusively better than other counter-based algorithms, across 
a wide range of data types and parameters. Of the two imple-
mentations compared, SSH exhibits very good performance in 
practice. It yields very good estimates, typically achieving 100% 
recall and precision, consumes very small space, and is fairly 
fast to update (faster than LC and LCD). Alternatively, SSL is 
the fastest algorithm with all the good characteristics of SSH, 
but consumes twice as much space on average. If space is not a 
critical issue, SSL is the implementation of choice.

4.3. Sketch algorithms
The advantage of sketches is that they support deletions, and 
hence are the only alternative in fully dynamic environments. 
This comes at the cost of increased space consumption and 
slower update performance. We used a hierarchy with branch-
ing factor b = 16 for all algorithms, after running experiments 
with several values and choosing the best trade-off between 
speed, size, and precision. The sketch depth is set to d = 4 
throughout, and the width to w = 2/f, based on the analysis of 
the CountMin sketch. This keeps the space usage of CS and 
CMH relatively similar, and CGT is larger by constant factors.
Space and Time Cost:  Figure 5(a) shows the update 
throughput of the algorithms. Update throughput is mostly 
unaffected by variations in f, though CMH does seem to 
become slower for larger values of f. CS has the slowest 
update rate among all algorithms, due to the larger num-
ber of hashing operations needed. Still, the fastest sketch 
algorithm is from 5 up to 10 times slower than the fastest 
counter-based algorithm. Figure 5(b) plots the space con-
sumed. The size of the sketches is fairly large compared to 
counter-based algorithms: of the order of several megabytes 
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for small values of f. CMH is the most space efficient sketch 
and still consumes space three times as large as the least 
space efficient counter-based algorithm.
Precision, Recall, and Error:  The sketch algorithms all 
have near perfect recall, as is the case with the counter-based 
algorithms. Figure 5(c) shows that they also have good preci-
sion, with CS reporting the largest number of false positives. 
Nevertheless, on some other datasets we tested (not shown 
here), the results were reversed. We also tested the average 
relative error in the frequency estimation of the truly fre-
quent items. For sufficiently skewed distributions all algo-
rithms can estimate item frequencies very accurately, and the 
results from all sketches were similar since all hierarchical 
sketch algorithms essentially correspond to a single instance 
of a CountSketch or CountMin sketch of equal size.
Conclusions:  There is no clear winner among the sketch 
algorithms. CMH has small size and high update through-
put, but is only accurate for highly skewed distributions. 
CGT consumes a lot of space but it is the fastest sketch and 
is very accurate in all cases, with high precision and good fre-
quency estimation accuracy. CS has low space consumption 
and is very accurate in most cases, but has slow update rate 
and exhibits some random behavior.

5. CONCLUDING REMARKS
We have attempted to present algorithms for finding frequent 
items in streams, and give an experimental comparison 
of their behavior to serve as a baseline for comparison. For 
insert-only streams, the clear conclusion of our experiments 
is that the SpaceSaving algorithm, a relative newcomer, 
has surprisingly clear benefits over others. We observed that 
implementation choices, such as whether to use a heap or 
lists of items grouped by frequencies, trade-off speed, and 
space. For sketches to find frequent items over streams 
including negative updates, there is not such a clear answer, 
with different algorithms excelling at different aspects of the 
problem. We do not consider this the end of the story, and 
continue to experiment with other implementation choices. 
Our source code and experimental test scripts are available 
from http://www.research.att.com/∼marioh/frequent–items/ 
so that others can use these as baseline implementations.

We conclude by outlining some of the many variations of 
the problem

•	 In the weighted input case, each update comes with an 
associated weight (such as a number of bytes, or num-
ber of units sold). Here, sketching algorithms directly 
handle weighted updates because of their linearity. The 
SpaceSaving algorithm also extends to the weighted 
case, but this is not known to be the case for the other 
counter-based algorithms discussed.

•	 In the distributed data case, different parts of the input 
are seen by different parties (different routers in a net-
work, or different stores making sales). The problem is 
then to find items which are frequent over the union of 
all the inputs. Again due to their linearity properties, 
sketches can easily solve such problems. It is less clear 
whether one can merge together multiple counter-
based summaries to obtain a summary with the same 
accuracy and worst-case space bounds.

•	 Often, the item frequencies are known to follow some 
statistical distribution, such as the Zipfian distribution. 
With this assumption, it is sometimes possible to prove 
a smaller space requirement on the algorithm, as a func-
tion of the amount of “skewness” in the distribution.9, 21

•	 In some applications, it is important to find how many 
distinct observations there have been, leading to a distinct 
heavy hitters problem. Now the input stream S is of the 
form (i,  j), and fi is defined as |{j|(i,  j) ∈ S}|. Multiple 
occurrences of (i,  j) only count once towards fi. Techniques 
for “distinct frequent items” rely on combining frequent 
items algorithms with “count distinct” algorithms.25

•	 While processing a long stream, it may be desirable to 
weight more recent items more heavily than older ones. 
Various models of time decay have been proposed to 
achieve this. In a sliding window, only the most recent 
items are considered to define the frequent items.2 
More generally time decay can be formalized via a func-
tion which assigns a weight to each item in the stream 
as a function of its (current) age, and the frequency of 
an item is the sum of its decayed weights.

Each of these problems has also led to considerable effort 
from the research community to propose and analyze algo-
rithms. This research is ongoing, cementing the position of 
the frequent items problem as one of the most enduring and 
intriguing in the realm of algorithms for data streams.�

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

4500

 0.0001  0.001  0.01

U
pd

at
es

/m
s

f (log scale)

CS CMH CGT

(a) HTTP: Speed vs. f.

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 3.5e+07

 4e+07

 0.0001  0.001  0.01

B
yt

es

f (log scale)

CS CMH CGT

(b) HTTP: Size vs. f.

 70

 75

 80

 85

 90

 95

 100

 0.0001  0.001  0.01

P
re

ci
si

on
 (

%
)

f (log scale)

CS CMH CGT

(c) HTTP: Precision vs. f.

Figure 5. Performance of sketch algorithms on real network data (a) speed, (b) size, and (c) precision.



october 2009  |   vol.  52  |   no.  10   |   communications of the acm     105

 

References

	 1.	A lon, N., Matias, Y., Szegedy, M. The 
space complexity of approximating 
the frequency moments. In ACM 
Symposium on Theory of Computing, 
(1996), 20–29. Journal version in J. 
Comp. Syst. Sci. 58 (1999), 137–147.

	 2.	A rasu, A., Manku, G.S. Approximate 
counts and quantiles over sliding 
windows. In ACM Principles of 
Database Systems (2004).

	 3.	 Bhattacharrya, S., Madeira, A., 
Muthukrishnan, S., Ye, T. How to 
scalably skip past streams. In 
Scalable Stream Processing Systems 
(SSPS) Workshop with ICDE 2007 
(2007).

	 4.	 Bhuvanagiri, L., Ganguly, S., Kesh, D.,  
Saha, C. Simpler algorithm for 
estimating frequency moments 
of data streams. In ACM-SIAM 
Symposium on Discrete Algorithms 
(2006).

	 5.	 Bose, P., Kranakis, E., Morin, P., Tang, Y.  
Bounds for frequency estimation of 
packet streams. In SIROCCO  
(2003).

	 6.	 Boyer, R.S., Moore, J.S. A fast 
majority vote algorithm. Technical 
Report ICSCA-CMP-32, Institute 
for Computer Science, University of 
Texas (Feb. 1981).

	 7.	 Boyer, R.S., Moore, J.S. MJRTY—a 
fast majority vote algorithm. In 
Automated Reasoning: Essays in 
Honor of Woody Bledsoe, Automated 

Reasoning Series. Kluwer Academic 
Publishers, 1991, 105–117.

	 8.	C hakrabarti, A., Cormode, G., 
McGregor, A. A near-optimal 
algorithm for computing the 
entropy of a stream. In ACM-SIAM 
Symposium on Discrete Algorithms 
(2007).

	 9.	C harikar, M., Chen, K., Farach-
Colton, M. Finding frequent items 
in data streams. In Proceedings 
of the International Colloquium 
on Automata, Languages and 
Programming (ICALP) (2002).

	10.	C ormode, G., Hadjieleftheriou, M.  
Finding frequent items in data 
streams. In International 
Conference on Very Large Data Bases 
(2008).

	11.	C ormode, G., Korn, F., Muthukrishnan, S.,  
Johnson, T., Spatscheck, O. 
Srivastava, D. Holistic UDAFs at 
streaming speeds. In ACM SIGMOD 
International Conference on 
Management of Data (2004), 35–46.

	12.	C ormode, G., Muthukrishnan, S. An 
improved data stream summary: The 
count-min sketch and its applications. 
J. Algorithms 55, 1 (2005), 58–75.

	13.	 Datar, M., Gionis, A., Indyk, P., 
Motwani, R. Maintaining stream 
statistics over sliding windows. In 
ACM-SIAM Symposium on Discrete 
Algorithms (2002).

	14.	 Demaine, E., López-Ortiz, A., Munro, J.I.  

Graham Cormode and Marios Hadjieleftheriou  
({graham,marioh}@research.att.com), 
AT&T Labs—Research, Florham Park, NJ.

© 2009 ACM 0001-0782/09/1000 $10.00

Frequency estimation of internet 
packet streams with limited space. In 
European Symposium on Algorithms 
(ESA) (2002).

	15.	F ischer, M., Salzburg, S. Finding a 
majority among n votes: Solution 
to problem 81–5. J. Algorithms 3, 4 
(1982), 376–379.

	16.	G ilbert, A.C., Kotidis, Y., 
Muthukrishnan, S., Strauss, M. How 
to summarize the universe: Dynamic 
maintenance of quantiles. In 
International Conference on  
Very Large Data Bases (2002), 
454–465.

	17.	 Jayram, T.S., McGregor, A., 
Muthukrishnan, S., Vee, E. Estimating 
statistical aggregates on probabilistic 
data streams. In ACM Principles of 
Database Systems (2007).

	18.	 Karp, R., Papadimitriou, C., Shenker, S.  
A simple algorithm for finding 
frequent elements in sets and bags. 
ACM Trans. Database Syst. 28 (2003), 
51–55.

	19.	 Manku, G., Motwani, R. Approximate 
frequency counts over data streams. 
In International Conference on  
Very Large Data Bases (2002). 

	20.	 Manku, G.S. Frequency counts over 
data streams. http://www.cse.ust.hk/
vldb2002/VLDB2002–proceedings/
slides/S10P03slides.pdf (2002).

	21.	 Metwally, A., Agrawal, D., Abbadi,  
A.E. Efficient computation of frequent 
and top-k elements in data streams. 
In International Conference on 
Database Theory (2005).

	22.	 Misra, J., Gries, D. Finding repeated 
elements. Sci. Comput. Programming 
2 (1982), 143–152.

	23.	 Pike, D., Dorward, S., Griesemer, R.,  
Quinlan, S. Interpreting the data: 
Parallel analysis with sawzall. Dyn. 
Grids Worldwide Comput. 13, 4 
(2005), 277–298.

	24.	T horup, M., Zhang, Y. Tabulation-based 
4-universal hashing with applications 
to second moment estimation. In 
ACM-SIAM Symposium on Discrete 
Algorithms (2004).

	25.	V enkataraman, S., Song, D.X.,  
Gibbons, P.B., Blum, A.  
New streaming algorithms for  
fast detection of superspreaders.  
In Network and Distributed  
System Security Symposium  
NDSS (2005).

◆ ACM Professional Members can enjoy the convenience of making a single payment for their
entire tenure as an ACM Member, and also be protected from future price increases by
taking advantage of ACM's Lifetime Membership option.

◆ ACM Lifetime Membership dues may be tax deductible under certain circumstances, so
becoming a Lifetime Member can have additional advantages if you act before the end of
2009. (Please consult with your tax advisor.)

◆ Lifetime Members receive a certificate of recognition suitable for framing, and enjoy all of
the benefits of ACM Professional Membership.

Learn more and apply at:
http://www.acm.org/life

Take Advantage of 
ACM’s Lifetime Membership Plan!

CACM lifetime mem half page ad:Layout 1  8/13/09  3:57 PM  Page 1




