CS294-152: Lower Bounds	August 27, 2018
Time-Space Lower Bounds and the Relativization Barrier	
Instructor: Ryan Williams	Scribe: Siqi Liu

1 Introduction

In this lecture, we talk about time-space tradeoffs for the Satisfiability problem (SAT). Though it remains unclear whether SAT has a logarithmic-space algorithm, it is known that for sufficiently small constant c, SAT does not have $O(n^c)$ -time $O(\log n)$ -space algorithms. We will see a proof of this result using the quantifier-trading technique. We will also introduce the Relativization Barrier, and give an oracle relative to which our SAT lower bound is false.

2 Preliminaries

In this section we define a few complexity classes that will be used in the theorem statements and proofs in Section 3 and 4.

Recall a decision problem is a function $f : \{0, 1\}^* \to \{0, 1\}$.

Definition 1 LOGSPACE is the class of decision problems that can be decided by some Turing machine \mathcal{M} that uses at most $O(\log n)$ extra worktape (beyond its input, which is read-only).

Definition 2 coNTIME[t(n)] is the class of decision problems for which there exists a O(n)-time TM \mathcal{M} such that for every $x \in \{0,1\}^*$,

$$x \in L \equiv \forall z \in \{0, 1\}^{O(t(|x|))}, \mathcal{M}(x, z) = 1.$$

We define NTIME[t(n)] analogously, but with an \exists instead of a \forall .

Definition 3 $NP = \bigcup_{k \ge 0} NTIME[n^k]$

Definition 4 TS[t(n), s(n)] is the class of decision problems that can be decided by some O(t(n))time Turing machine \mathcal{M} that uses O(s(n)) extra work space (beyond the read-only input).

Definition 5 $\sum_2 TIME[t(n)]$ denotes the class of decision problems for which there exists a O(n)-time Turing machine \mathcal{M} such that for every $x \in \{0, 1\}^*$,

$$x \in L \iff \exists y \in \{0,1\}^{O(t(|x|))} \forall z \in \{0,1\}^{O(t(|x|))}, \mathcal{M}(x,y,z) \text{ accepts.}$$

3 Time-space Lower Bounds for SAT

It is not hard to see that $\text{LOGSPACE} \subseteq P$: For any $L \in \text{LOGSPACE}$, there exists a TM \mathcal{M} that uses $O(\log n)$ locations on the work tape on inputs of length n. Thus there are at most $2^{O(\log n)}$

possible "configurations" that \mathcal{M} can be in, on inputs of length n. Therefore, on an input of length n, \mathcal{M} either terminates within poly(n) steps on any input, or is in an infinite loop (in which case it will not accept).

However, a couple of related questions are wide open: LOGSPACE = P? Or even LOGSPACE = NP? Answers for these questions are not known yet, but it is widely believed that LOGSPACE \neq $P \neq$ NP. Towards figuring out whether LOGSPACE \neq NP, we start by trying to answer the following time-space tradeoff question for SAT: Given $O(\log n)$ space to solve SAT, does it require more than $O(n^k)$ time?

If the answer is affirmative for all $k \ge 0$, we can infer that LOGSPACE \ne NP. On the other hand if LOGSPACE = NP, we would get the following 3 statements:

- (1) NP = LOGSPACE
- (2) NTIME[n] \subseteq LOGSPACE
- (3) SAT \in LOGSPACE

Claim 6 $(1) \equiv (2) \equiv (3)$

Proof: Here we sketch a few interesting parts of the proof.

 $(1) \equiv (2)$: \Rightarrow , NP = $\cup_{k \ge 0}$ NTIME $[n^k]$; \Leftarrow , by a padding argument if NTIME $[n] \subseteq TS[t(n), \log n]$, then NTIME $[n^k] \subseteq TS[t(n^k), \log n^k] = TS[t(n^k), \log n] \subseteq LOGSPACE$.

 $(1) \equiv (3)$: \Rightarrow , SAT \in NP; \Leftarrow SAT is NP-complete under logspace reductions.

3.1 Quantifier-Trading Proofs

Though SAT $\notin TS[n^k, \log n]$ is not known to be true for all $k \ge 0$, we know that it is true for $k = 2\cos\frac{\pi}{7} - o(1)$. This result is an immediate corollary of the following theorem.

Theorem 7 (W'07) For all $\epsilon > 0$, $NTIME[n] \not\subseteq TS[n^{2\cos \frac{\pi}{7}-\epsilon}, \log n]$.

We will not present the proof of this theorem, but we will prove a weaker result using the quantifiertrading technique. We will prove that:

Theorem 8 (Fortnow'97, FLvMV'00) For all $c < \sqrt{2}$, $NTIME[n] \not\subseteq TS[n^c, \log n]$.

Proof: The proof proceeds by contradiction and consists of the following four steps:

(1) Assume that

$$NTIME[n] \subseteq TS[n^c, \log n], \text{ for some } c > 1$$
(1)

(2) From the (unconditional) theorem 9, we get

$$\operatorname{TS}[n^c, \log n] \subseteq \sum_2 \operatorname{TIME}[n^{c/2} \log n].$$

(3) From 1, we deduce theorem 10 and infer that

$$\sum_{2} \text{TIME}[n^{c/2} \log n] \subseteq \text{NTIME}[n^{c^2/2} \text{poly} \log n].$$

1. (1), (2), and (3) together implies that

$$\mathrm{NTIME}[n] \subseteq \mathrm{NTIME}[n^{c^2/2} \mathrm{poly} \log n].$$

For all $c < \sqrt{2}$, the conclusion contradicts the nondeterministic time hierarchy theorem. So we get a contradiction for $c < \sqrt{2}$.

Theorem 9 Speed Up Theorem: For $t(n) \ge n$ and $s(n) \ge \log n$,

$$TS[t(n), s(n)] \subseteq \sum_{2} TIME[t(n)^{1/2}s(n)].$$

Proof: Think of a computation for some $L \in TS[t(n), s(n)]$ as a table of width O(s(n)) and length t(n), where the string in row *i* represents the configuration of the TM \mathcal{M} at time step *i*. Now we define a more general problem: given configurations C and D of a TM \mathcal{M} , does \mathcal{M} reach D from C in t(n) steps?

If the answer is yes, then there **exist** $\ell = \lceil t(n)^{1/2} \rceil$ configurations $C_0 = C, C_1, \ldots, C_{\ell-1} = D$ such that **for all** $i = 1, \ldots, \ell$, \mathcal{M} reaches C_{i+1} from C_i within $t(n)^{1/2}$ steps. Then we construct a TM \mathcal{M}' that takes input $C, D, C_0, \ldots, C_{\ell-1}$ and some $z \in \{0, \ldots, \ell-1\}$, which simulates \mathcal{M} to check if \mathcal{M} reaches C_{z+1} from C_z within $t(n)^{1/2}$ steps. If z = 0, \mathcal{M}' also checks if $C_0 = C$, and if $z = \ell - 1$, \mathcal{M}' checks if $C_{\ell-1} = D$. It is clear that \mathcal{M}' runs in $O(s(n))t(n)^{1/2}$ time on input of length $O(s(n))t(n)^{1/2}$.

By definition of the class $\sum_2 \text{TIME}[.]$, the existence of \mathcal{M}' implies that $L \in \sum_2 \text{TIME}[t(n)^{1/2}s(n)]$. The theorem follows.

Theorem 10 Slow Down Theorem: Assumption (1) implies that $\sum_{2} TIME[n^{k}] \subseteq NTIME[n^{kc}]$.

Proof: Let $f \in \sum_2 \text{TIME}[n^k]$. We are going to show that under assumption (1), $f \in \text{NTIME}[n^{kc}]$. Since $f \in \sum_2 \text{TIME}[n^k]$, if f(x) = 1, then there exists $y \in \{0,1\}^{O(n^k)}$ and O(n)-time TM \mathcal{M} such that $\mathcal{M}(x, y, z) = 1$, $\forall z \in \{0,1\}^{O(n^k)}$.

Define a new decisional problem g, such that for all $x \in \{0,1\}^n$ and $y \in \{0,1\}^{O(n^k)}$ g(x,y) = 1 iff $\mathcal{M}(x,y,z) = 1, \forall z \in \{0,1\}^{O(n^k)}$. By definition g is in coNTIME[n]. Assuming (1), we deduce that $g \in \mathrm{TS}[n^c, \log n]$.

So there exists a TM \mathcal{M}' that decides g in $O(n^c)$ time. Using \mathcal{M}' we can construct a nondeterministic TM \mathcal{M}'' that computes f in $O(n^{kc})$ time in the following way: \mathcal{M}'' guesses a y on input x, then runs \mathcal{M}' on (x, y) and outputs the outcome of $\mathcal{M}'(x, y)$. Therefore $f \in \text{NTIME}[n^{kc}]$. The theorem follows.

Better bounds for $c \ge \sqrt{2}$ can be obtained using the quantifier-trading technique illustrated in the proof above. All known lower bounds proofs for time-space tradeoffs of NTIME[n] can be unified under some common proof system \mathcal{P} . However, there is a limit of the proof system as captured in the following theorem.

Theorem 11 (BW'13) For all $\epsilon > 0$, there is no proof in the proof system \mathcal{P} of the statement "NTIME[n] is not in $TS[n^{2\cos\frac{\pi}{7}+\epsilon}, \log n]$ ".

4 Oracles and Relativization: a Blessing and a Barrier

Often a theorem in complexity theory still holds when all the Turing machines or algorithms involved in the theorem have access to a common oracle A. An example is the universal simulation theorem (UST) and the "oracle" UST.

Theorem 12 Universal simulation theorem: There exists an algorithm U such that for all algorithms \mathcal{M} , and inputs x and t, $U(\mathcal{M}, x, t)$ accepts iff $\mathcal{M}(x)$ accepts within t steps.

Theorem 13 "Oracle" UST: For all oracles A, there exists an algorithm U^A such that for all algorithms \mathcal{M}^A with oracle A, and inputs x and t, $U^A(\mathcal{M}, x, t)$ accepts iff $\mathcal{M}^A(x)$ accepts within t steps.

When this generalization holds, we say that the theorem "relativizes" and it holds "relative to every oracle". Here we list a couple more examples.

- 1. "Relativized" time hierarchy theorem: For all oracles A, there is $f \in \text{TIME}^A[t^c(n)] \setminus \text{TIME}^A[t^n]$ for c = 1 + o(1).
- 2. "Relativized" non-deterministic time hierarchy theorem: For all oracles A, there is $f \in \text{NTIME}^A[t^c(n)] \setminus \text{NTIME}^A[t^n]$ for c = 1 + o(1).
- 3. For all oracles $A, P^A \subseteq NP^A$.

However there is a barrier to this generalization. The barrier comes about when you find two complexity classes C and D such that there exists oracles $A \neq B$, $C^A = D^A$ and $C^B \neq D^B$. This barrier implies that to conclude how C compares to D, we require proof techniques that do not yield relativized theorems. Such a barrier occurs in comparing P and NP.

Theorem 14 There exists an oracle A such that $P^A = NP^A$.

This theorem shows that if $P \neq NP$, we need non-relativizing techniques to prove it.

A similar barrier exists for the problem we studied in the previous section. One can show that the statement $\text{NTIME}[n] \not\subseteq \text{TS}[n^c, \log n]$ for all c > 0 is **false** relative to some oracle. We conclude that the techniques we used to prove the lower bound in the previous section "do not relativize" in some sense. (Note: this conclusion is evidently not widely accepted, after conversations with Russell Impagliazzo!)

Theorem 15 There exists an oracle A, such that $NTIME^{A}[n] \subseteq TS^{A}[n^{1.1}, \log n]$.

Here, we use the (standard) oracle access mechanism for space-bounded computation: the oracle tape is write-only, append-only (its read/write head only moves to the right), and it does not count towards the space bound.

Proof: Let $\mathcal{M}_1^?, \mathcal{M}_2^?, \mathcal{M}_3^?, \ldots$ be an enumeration of all non-deterministic O(n)-time machines with an oracle, where each $\mathcal{M}_i^?$ runs in at most $i \cdot n$ steps on inputs of length n. We construct an oracle A in the following way:

For k = 1, 2..., perform the following procedure, which we call "stage k". For all $i = 1, ..., \log(k)$ and all binary strings x of length k, run \mathcal{M}_i^A on x over all computation paths, where we set A to answer "no" on all queries by the $\mathcal{M}_i^A(x)$ that were not asked in stages 1, ..., k - 1.

Let $S_k = \{(i, x) | \mathcal{M}_i^A \text{ accepts } x\}$. Then for all $(i, x) \in S_k$, add the string $0^{k^{1.1}+k\log(k)}1(i, x)$ to the oracle A. For sufficiently large k, none of these strings have been queried by any \mathcal{M}_i on any x: each $\mathcal{M}_i(x)$ runs in at most $ik \leq k\log(k)$ steps (so it cannot ask queries longer than that), but each $0^{k^{1.1}+k\log(k)}1(i, x)$ has length greater than $k^{1.1}+k\log(k)$. Thus our oracle A is well-defined on each string.

Given the oracle A above, it is easy to simulate any \mathcal{M}_i^A with an oracle for A in time $n^{1,1}$ and space $O(\log n)$: On input x, use an $O(\log n)$ -bit counter to write the string $0^{|x|^{1,1}+|x|\log(|x|)}1(i,x)$ on the write-only oracle tape. Then call A on the string and output the answer. The theorem follows. \Box

References

- [1] Sanjeev Arora, and Boaz Barak. Computational Complexity: A Modern Approach . Cambridge University Press, New York, 2009.
- [2] Samuel R. Buss, and Ryan Williams. Limits on alternation-trading proofs for time-space lower bounds. Conference on Computational Complexity, 2013.
- [3] Lance Fortnow. Nondeterministic polynomial time versus nondeterministic logarithmic space. In proceeding of IEEE Conference on Computational Complexity, 1997.
- [4] Lance Fortnow, Richard Lipton, Dieter Van Melkebeek, and Anastasios Viglas. Time-space lower bounds for satisfiability. J. ACM, 52:835-865, 2005. Prelim version CCC 2000.
- [5] Ryan Williams. Algorithms and resource requirements for fundamental problems. 2007.