
CS294-152: Lower Bounds August 27, 2018

Time-Space Lower Bounds and the Relativization Barrier
Instructor: Ryan Williams Scribe: Siqi Liu

1 Introduction

In this lecture, we talk about time-space tradeoffs for the Satisfiability problem (SAT). Though it
remains unclear whether SAT has a logarithmic-space algorithm, it is known that for sufficiently
small constant c, SAT does not have O(nc)-time O(log n)-space algorithms. We will see a proof of
this result using the quantifier-trading technique. We will also introduce the Relativization Barrier,
and give an oracle relative to which our SAT lower bound is false.

2 Preliminaries

In this section we define a few complexity classes that will be used in the theorem statements and
proofs in Section 3 and 4.

Recall a decision problem is a function f : {0, 1}? → {0, 1}.

Definition 1 LOGSPACE is the class of decision problems that can be decided by some Turing
machineM that uses at most O(log n) extra worktape (beyond its input, which is read-only).

Definition 2 coNTIME[t(n)] is the class of decision problems for which there exists a O(n)-time
TMM such that for every x ∈ {0, 1}∗,

x ∈ L ≡ ∀z ∈ {0, 1}O(t(|x|)),M(x, z) = 1.

We define NTIME[t(n)] analogously, but with an ∃ instead of a ∀.

Definition 3 NP = ∪k≥0NTIME[nk]

Definition 4 TS[t(n), s(n)] is the class of decision problems that can be decided by some O(t(n))-
time Turing machineM that uses O(s(n)) extra work space (beyond the read-only input).

Definition 5
∑

2 TIME[t(n)] denotes the class of decision problems for which there exists a O(n)-
time Turing machineM such that for every x ∈ {0, 1}∗,

x ∈ L ⇐⇒ ∃y ∈ {0, 1}O(t(|x|)) ∀ z ∈ {0, 1}O(t(|x|)),M(x, y, z) accepts.

3 Time-space Lower Bounds for SAT

It is not hard to see that LOGSPACE ⊆ P : For any L ∈ LOGSPACE, there exists a TM M that
uses O(log n) locations on the work tape on inputs of length n. Thus there are at most 2O(logn)

1-1

possible “configurations” thatM can be in, on inputs of length n. Therefore, on an input of length
n,M either terminates within poly(n) steps on any input, or is in an infinite loop (in which case it
will not accept).

However, a couple of related questions are wide open: LOGSPACE = P? Or even LOGSPACE =
NP? Answers for these questions are not known yet, but it is widely believed that LOGSPACE 6=
P 6= NP. Towards figuring out whether LOGSPACE 6= NP, we start by trying to answer the
following time-space tradeoff question for SAT: Given O(log n) space to solve SAT, does it require
more than O(nk) time?

If the answer is affirmative for all k ≥ 0, we can infer that LOGSPACE 6= NP. On the other hand
if LOGSPACE = NP, we would get the following 3 statements:

(1) NP = LOGSPACE

(2) NTIME[n] ⊆ LOGSPACE

(3) SAT ∈ LOGSPACE

Claim 6 (1) ≡ (2) ≡ (3)

Proof: Here we sketch a few interesting parts of the proof.

(1) ≡ (2): ⇒, NP = ∪k≥0NTIME[nk]; ⇐, by a padding argument if NTIME[n] ⊆ TS[t(n), log n],
then NTIME[nk] ⊆ TS[t(nk), log nk] = TS[t(nk), log n] ⊆ LOGSPACE.

(1) ≡ (3): ⇒, SAT ∈ NP; ⇐ SAT is NP-complete under logspace reductions. �

3.1 Quantifier-Trading Proofs

Though SAT 6∈ TS[nk, log n] is not known to be true for all k ≥ 0, we know that it is true for
k = 2 cos π7 − o(1). This result is an immediate corollary of the following theorem.

Theorem 7 (W’07) For all ε > 0, NTIME[n] 6⊆ TS[n2 cos π7−ε, log n].

We will not present the proof of this theorem, but we will prove a weaker result using the quantifier-
trading technique. We will prove that:

Theorem 8 (Fortnow’97, FLvMV’00) For all c <
√
2, NTIME[n] 6⊆ TS[nc, log n].

Proof: The proof proceeds by contradiction and consists of the following four steps:

(1) Assume that
NTIME[n] ⊆ TS[nc, log n], for some c > 1 (1)

(2) From the (unconditional) theorem 9, we get

TS[nc, log n] ⊆
∑
2

TIME[nc/2 log n].

1-2

(3) From 1, we deduce theorem 10 and infer that∑
2

TIME[nc/2 log n] ⊆ NTIME[nc
2/2poly log n].

1. (1), (2), and (3) together implies that

NTIME[n] ⊆ NTIME[nc
2/2poly log n].

For all c <
√
2, the conclusion contradicts the nondeterministic time hierarchy theorem. So

we get a contradiction for c <
√
2.

�

Theorem 9 Speed Up Theorem: For t(n) ≥ n and s(n) ≥ log n,

TS[t(n), s(n)] ⊆
∑
2

TIME[t(n)1/2s(n)].

Proof: Think of a computation for some L ∈ TS[t(n), s(n)] as a table of width O(s(n)) and length
t(n), where the string in row i represents the configuration of the TM M at time step i. Now we
define a more general problem: given configurations C and D of a TMM, doesM reach D from C
in t(n) steps?

If the answer is yes, then there exist ` =
⌈
t(n)1/2

⌉
configurations C0 = C,C1, . . . , C`−1 = D such

that for all i = 1, . . . , `, M reaches Ci+1 from Ci within t(n)1/2 steps. Then we construct a TM
M′ that takes input C,D,C0, . . . , C`−1 and some z ∈ {0, . . . , ` − 1}, which simulates M to check
if M reaches Cz+1 from Cz within t(n)1/2 steps. If z = 0, M′ also checks if C0 = C, and if
z = `−1,M′ checks if C`−1 = D. It is clear thatM′ runs in O(s(n))t(n)1/2 time on input of length
O(s(n))t(n)1/2.

By definition of the class
∑

2 TIME[.], the existence ofM′ implies that L ∈
∑

2 TIME[t(n)1/2s(n)].
The theorem follows. �

Theorem 10 Slow Down Theorem: Assumption (1) implies that
∑

2 TIME[nk] ⊆ NTIME[nkc].

Proof: Let f ∈
∑

2 TIME[nk]. We are going to show that under assumption (1), f ∈ NTIME[nkc].
Since f ∈

∑
2 TIME[nk], if f(x) = 1, then there exists y ∈ {0, 1}O(nk) and O(n)-time TMM such

thatM(x, y, z) = 1, ∀z ∈ {0, 1}O(nk).

Define a new decisional problem g, such that for all x ∈ {0, 1}n and y ∈ {0, 1}O(nk) g(x, y) = 1 iff
M(x, y, z) = 1, ∀z ∈ {0, 1}O(nk). By definition g is in coNTIME[n]. Assuming (1), we deduce that
g ∈ TS[nc, log n].

So there exists a TM M′ that decides g in O(nc) time. Using M′ we can construct a non-
deterministic TM M′′ that computes f in O(nkc) time in the following way: M′′ guesses a y on
input x, then runsM′ on (x, y) and outputs the outcome ofM′(x, y). Therefore f ∈ NTIME[nkc].
The theorem follows. �

Better bounds for c ≥
√
2 can be obtained using the quantifier-trading technique illustrated in the

proof above. All known lower bounds proofs for time-space tradeoffs of NTIME[n] can be unified
under some common proof system P. However, there is a limit of the proof system as captured in
the following theorem.

1-3

Theorem 11 (BW’13) For all ε > 0, there is no proof in the proof system P of the statement
"NTIME[n] is not in TS[n2 cos π7 +ε, log n]".

4 Oracles and Relativization: a Blessing and a Barrier

Often a theorem in complexity theory still holds when all the Turing machines or algorithms involved
in the theorem have access to a common oracle A. An example is the universal simulation theorem
(UST) and the "oracle" UST.

Theorem 12 Universal simulation theorem: There exists an algorithm U such that for all algo-
rithmsM, and inputs x and t, U(M, x, t) accepts iffM(x) accepts within t steps.

Theorem 13 "Oracle" UST: For all oracles A, there exists an algorithm UA such that for all
algorithms MA with oracle A, and inputs x and t, UA(M, x, t) accepts iff MA(x) accepts within t
steps.

When this generalization holds, we say that the theorem "relativizes" and it holds "relative to every
oracle". Here we list a couple more examples.

1. "Relativized" time hierarchy theorem: For all oracles A, there is f ∈ TIMEA[tc(n)]\TIMEA[tn]
for c = 1 + o(1).

2. "Relativized" non-deterministic time hierarchy theorem: For all oracles A, there is f ∈
NTIMEA[tc(n)] \NTIMEA[tn] for c = 1 + o(1).

3. For all oracles A, PA ⊆ NPA.

However there is a barrier to this generalization. The barrier comes about when you find two
complexity classes C and D such that there exists oracles A 6= B, CA = DA and CB 6= DB . This
barrier implies that to conclude how C compares to D, we require proof techniques that do not yield
relativized theorems. Such a barrier occurs in comparing P and NP.

Theorem 14 There exists an oracle A such that PA = NPA.

This theorem shows that if P 6= NP, we need non-relativizing techniques to prove it.

A similar barrier exists for the problem we studied in the previous section. One can show that the
statement NTIME[n] 6⊆ TS[nc, log n] for all c > 0 is false relative to some oracle. We conclude
that the techniques we used to prove the lower bound in the previous section “do not relativize” in
some sense. (Note: this conclusion is evidently not widely accepted, after conversations with Russell
Impagliazzo!)

Theorem 15 There exists an oracle A, such that NTIMEA[n] ⊆ TSA[n1.1, log n].

Here, we use the (standard) oracle access mechanism for space-bounded computation: the oracle
tape is write-only, append-only (its read/write head only moves to the right), and it does not count
towards the space bound.

1-4

Proof: LetM?
1,M?

2,M?
3, . . . be an enumeration of all non-deterministic O(n)-time machines with

an oracle, where eachM?
i runs in at most i · n steps on inputs of length n. We construct an oracle

A in the following way:

For k = 1, 2 . . . , perform the following procedure, which we call "stage k". For all i = 1, . . . , log(k)
and all binary strings x of length k, run MA

i on x over all computation paths, where we set A to
answer "no" on all queries by theMA

i (x) that were not asked in stages 1, . . . , k − 1.

Let Sk = {(i, x) |MA
i accepts x}. Then for all (i, x) ∈ Sk, add the string 0k

1.1+k log(k)1(i, x) to the
oracle A. For sufficiently large k, none of these strings have been queried by any Mi on any x:
eachMi(x) runs in at most ik ≤ k log(k) steps (so it cannot ask queries longer than that), but each
0k

1.1+k log(k)1(i, x) has length greater than k1.1 + k log(k). Thus our oracle A is well-defined on each
string.

Given the oracle A above, it is easy to simulate anyMA
i with an oracle for A in time n1.1 and space

O(log n): On input x, use an O(log n)-bit counter to write the string 0|x|
1.1+|x| log(|x|)1(i, x) on the

write-only oracle tape. Then call A on the string and output the answer. The theorem follows. �

1-5

References

[1] Sanjeev Arora, and Boaz Barak. Computational Complexity: A Modern Approach . Cambridge
University Press, New York, 2009.

[2] Samuel R. Buss, and Ryan Williams. Limits on alternation-trading proofs for time-space lower
bounds. Conference on Computational Complexity, 2013.

[3] Lance Fortnow. Nondeterministic polynomial time versus nondeterministic logarithmic space.
In proceeding of IEEE Conference on Computational Complexity, 1997.

[4] Lance Fortnow, Richard Lipton, Dieter Van Melkebeek, and Anastasios Viglas. Time-space
lower bounds for satisfiability. J. ACM, 52:835-865, 2005. Prelim version CCC 2000.

[5] Ryan Williams. Algorithms and resource requirements for fundamental problems. 2007.

1-6

	Introduction
	Preliminaries
	Time-space Lower Bounds for SAT
	Quantifier-Trading Proofs

	Oracles and Relativization: a Blessing and a Barrier

