
Lower Bounds (CS294-152, UC Berkeley, Fall’18)

PARITY /∈ AC0

Notes for 10/8/18

Scribe: Jonathan Shafer

Contents
1 Introduction 1

2 Warm Up: The Case d = 2 3

3 Preliminaries 5
3.1 Random Restrictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2 Switching Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.3 AC0 Normal Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4 Proof of PARITY /∈ AC0 9

5 Proof of the Switching Lemma 10
5.1 Reduction to a combinatorial claim . . . . . . . . . . . . . . . . . . . . . . . . 11
5.2 Strategy for proving the combinatorial claim . . . . . . . . . . . . . . . . . . . 12
5.3 Max-terms and t-CNFs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5.4 Constructing the encoding restriction: ρ 7→ ρ′ . . . . . . . . . . . . . . . . . . 13
5.5 Constructing the encoding advice: ρ 7→ s . . . . . . . . . . . . . . . . . . . . 15
5.6 Decoding (ρ′, s) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

References 16

1 Introduction

In previous lectures we discussed P/poly – decision problems with a poly-sized circuit family
over AND, OR, and NOT gates. In this lecture we focus on the class AC0 (“Alternating Cir-
cuits”1), that captures the subset of these problems that have constant-depth circuit families.
Specifically, we present one of the best known results in circuit complexity: Poly-sized circuits

1See section 3.3 below for the meaning of the name.
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of constant depth cannot compute PARITY.

Definition 1.

AC0 =
{
f : {0, 1}∗ → {0, 1} : There exist a polynomial p(n), a constant d, and a circuit family

{Cn}∞n=1 for f over AND, OR and NOT gates of unlimited fan-in,

such that Cn is of size at most p(n) and depth at most d
}
.

Note: we do not count NOT gates towards the depth or the size of a circuit.

AC0 can do interesting things! Examples of some AC0 functions, where xi ∈ {0, 1}n for all
i:

• f(x1, x2) = 1(x1 ≤ x2).

• f(x1, . . . , xn) = max{x1, . . . , xn}.

• f(x1, x2) = x1 + x2. Furthermore, AC0 can even add O(log(n)) n-bit numbers, see
Vollmer (2013). But adding O(n) n-bit numbers is not in AC0 as we will see below,
because that would compute PARITY.

Note: When the output is multi-bit, we consider each output bit to be its own function, and
each of these functions is a member of AC0.

Definition 2. PARITY is the XOR function. That is, if x = (x1, . . . , xn) is an n-bit number,
then PARITY(x) =

∑n
i=1 xi (mod 2).

Our objective in this lecture is to show the following lower bound:

Theorem 1.1 (Ajtai, 1983; Furst, Saxe, & Sipser, 1984). PARITY /∈ AC0.

In fact, we will show a more explicit bound:

Theorem 1.2 (Håstad, 1986). For all d ≥ 2 there exists δ > 0 such that any circuit family
{Cn}∞n=1 of constant depth d that computes PARITY satisfies SIZE(Cn) ≥ 2δn

1/(d−1)
.

Note: This bound is almost tight, as attested by Theorem 2.1 below.
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2 Warm Up: The Case d = 2

For a start, we show the theorem holds for the case d = 2.

Lemma 2.1. The depth-2 circuit size complexity of PARITY (and its negation) is 2n−1 + 1.

Proof of lemma. Let PARITYn denote the parity function restricted to inputs of length n. No-
tice that by induction PARITYn is unbiased, meaning that precisely half of the inputs of any
fixed length n have an output value of 1. Thus, if {z1, . . . , z2n−1} = PARITY−1n (1), we may
write

PARITYn(x) =
2n−1∨
k=1

[x = zk] =
2n−1∨
k=1

n∧
i=1

[xi = zki ] =
2n−1∨
k=1

 ∧
i: zki=1

xi

 ∧
 ∧
i: zki=0

¬xi

 .
This is an OR over 2n−1 AND clauses, so it can be implemented using a depth 2 circuit with
one OR gate and 2n−1 AND gates of fan-in n, which proves the upper bound.

For the lower bound, note that for d = 2, it suffices to show a lower bound for DNF and CNF
circuits (because if there are two gates of the same type such that the output of one is an input to
the other, then they can be combined into a single gate, producing a smaller circuit).2 We now
prove the desired lower bound for DNFs in the following claim, and an analogous argument
can be made for CNFs.

Claim 2.1. Let C be a DNF of minimal size that computes PARITYn. Then every AND in C
contains all n input variables (has xi or ¬xi but not both for all i ∈ [n]), and C has ≥ 2n−1

AND gates.

Proof of claim. Assume there exists some AND gate g in C that is not affected by some input
i. We know g 6≡ 0 because C is minimal. So there exists x ∈ {0, 1}n such that g(x) = 1,
and taking x̃ to be x with the ith bit flipped, we have that g(x̃) = 1 as well. But then C(x) =
C(x̃) = 1, in contradiction to the assumption that C computes PARITYn.

To see that C has at least 2n−1 AND gates, observe that since every AND gate contains all n
variables, each AND gate can be satisfied by at most 1 input string. But in order to compute
parity, at least one AND gate must be satisfied for each of the 2n−1 strings in PARITY−1n (1).
Thus, 2n−1 AND gates are necessary and the proof is complete.

Before proceeding to prove Theorem 1.2, we also want to see that it is almost tight:

2And of course, PARITY cannot be computed by a depth 1 circuit because it does not equal AND or OR (possibly
modified with NOT gates).
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Theorem 2.1. There exists a constant δ such that for all d, PARITYn and its negation have
AC0 circuits of depth d and size at most 2δn

1/(d−1)
.3

Proof. The case d = 2 was covered in Lemma 2.1. For d > 2, we explicitly construct a circuit
for PARITYn as follows. We start with a circuit that uses XOR gates of fan-in at most n1/(d−1).
Clearly, if we consider an almost-balanced tree of XOR gates, in which all gates have precisely
n1/(d−1) children except for the lowest layer of gates in which some might have less, then this
circuit computes PARITY.

⊕

⊕

⊕· · ·⊕⊕⊕

· · ·· · ·· · ·⊕

⊕· · ·⊕⊕⊕

Figure 1: Balanced tree of XOR gates of depth 3.

The circuit has depth at most d− 1, and its size is at most

d−2∑
k=0

(XOR fan-in)k =
d−2∑
k=0

(
n1/(d−1))k =

n− 1

n1/(d−1) − 1
≤ n.

Next, we replace each XOR gate with a functionally-equivalent DNF or CNF circuit (the details
of these circuits are discussed below). On even layers of the tree, we replace each XOR gate
by a CNF that computes XOR or its negation, and on odd layers we do the same using DNF
circuits. We replace the gates one layer at a time starting from the root layer, and at each step
choose whether to use a circuit that computes XOR or its negation according to whether the
output of the gate being replaced is negated or not in the layer above. In this manner, we avoid
using NOT gates anywhere in the circuit except in the bottommost layer (between the inputs
and the first AND or OR gates).

We now discuss the construction of the replacement circuits. Recall that each XOR gate had
fan-in at most n1/(d−1), and from the proof of Lemma 2.1 there exists an explicit DNF circuit
for PARITYk of size 2k−1 + 1, entailing that we can replace a XOR gate with a DNF circuit of
size

2(n1/(d−1))−1 + 1 = 2O(n1/(d−1)).

3There remains a gap between the lower bound of Theorem 1.2 and the upper bound here, in that the lower bound
allows for a δ that may depend on d, while here δ is kept constant.
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Moreover, by replacing the first input to this circuit with its negation, we obtain a DNF circuit
of the same size that computes the negation of XOR. Consequently, negating these formulas
and applying De Morgan’s law yields CNF formulas of the same size that compute XOR and
its negation.

DNF

CNF

DNF· · ·DNFDNFDNF

· · ·· · ·· · ·CNF

DNF· · ·DNFDNFDNF

Figure 2: After replacing XOR gates with CNF and DNF circuits.

The last step in the construction is to notice that because it alternates between layers of CNF and
DNF, the circuit now has two consecutive layers of AND gates, followed by two consecutive
layers of OR gates, and so forth (except at the edges). By merging each set of consecutive
layers of gates of the same type, we obtain a final circuit of depth d (which is 1 more than the
original depth, because all layers except the root are merged with their parents).

To compute an upper bound on the size of the final circuit, we multiply the number of XOR
gates in the original by the number of gates in each DNF and CNF, yielding that the final circuit
size is at most

n · 2O(n1/(d−1)) = 2O(n1/(d−1)),

as desired.

3 Preliminaries

Here we introduce three main ingredients that will figure predominantly in the proof of the
general case (Theorem 1.2), and explain how each of them contributes to the argument.

3.1 Random Restrictions

Imagine performing the following “experiment” on the PARITY function, and separately on an
AC0 circuit. Pick an input variable xi at random, and fix all other inputs to {0, 1} values chosen
independently and uniformly.

What happens to the PARITY function? It simplifies to either
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• f(xi) = xi, with probability 1
2
, or

• f(xi) = ¬xi with probability 1
2
.

In contrast, Ajtai (1983), Furst et al. (1984) and Håstad (1986) show that, with high probability,
performing the same operation on a small AC0 circuit causes the circuit to simplify to a constant
function (the papers differ in how small the circuit needs to be in order to achieve this effect).
The conclusion is that small AC0 circuits cannot compute the PARITY function.

With this motivation in mind, we now define random restrictions.

Definition 3. Let f : {0, 1}n → {0, 1} and v ∈ [n]. A random restriction ρ of v variables of f ,
denoted f |ρ, is a random variable whose value is a function {0, 1}n−v → {0, 1} chosen as
following. Uniformly select some subset I ∈

(
[n]
v

)
, and for each i ∈ I , set the input xi to a bit

chosen uniformly and independently. f |ρ is the remaining function over the unfixed input bits.

3.2 Switching Lemma

The proof we present below for Theorem 1.2 does not actually apply a random restriction to all
variables except one. Instead, it obtains a quantitatively better result by applying a sequence of
smaller random restrictions until the circuit is of depth 2, at which point we can derive a lower
bound from Claim 2.1.

For this we need the following famous lemma, which shows that applying random restrictions
indeed makes the depth decrease with high probability.

Definition 4. A k-CNF is an AND of ORs of literals and their negations, where each OR has
fan-in at most k. k-DNF is defined analogously, with OR of ANDs.

Lemma 3.1 (Switching Lemma, Håstad, 1986). Let p ∈ (0, 1
5
). Suppose f is a k-CNF or

k-DNF over n variables. Pick a random restriction ρ of (1− p)n variables of f . Then for all t,

P [f |ρ is equivalent to a t-DNF and also to a t-CNF] > 1− (10pk)t.

That is, after applying a random restriction, we can “switch” a k-CNF to a t-DNF and vice
versa, with high probability.

Example. Take p = 1
20k

. The Lemma says: if you randomly set all but np of the variables in
a k-CNF formula, the remaining formula on n

20k
variables is equivalent to a t-DNF formula,

with probability at least 1− 2−t. So, the remaining formula has very high probability of being
equivalent to a 100-DNF for example.
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Why would this be useful? Suppose I have a depth-3 circuit that is an AND of ORs of ANDs,
and the ANDs have fan-in k. We can think of this as an AND of k-DNFs. We can apply the
switching lemma to the k-DNFs, and convert all of them to t-CNFs. This means the depth-3
circuit is equivalent to an AND of AND of ORs of fan-in t – which is just a t-CNF itself! We
have successfully reduced the depth by 1.

3.3 AC0 Normal Form

An important property of AC0 circuits is that they admit a certain normal form, in which the
circuit alternates repeatedly between layers of AND gates and layers of OR gates.

AND

OR

AND

OR· · ·OR

· · ·AND

OR· · ·OR

· · ·OR

AND

OR· · ·OR

· · ·AND

OR· · ·OR

Figure 3: Alternating layers of AND and OR.

This form is perfect for using the switching lemma: We can apply a random restriction and
then invoke the switching lemma to switch the bottom two layers from being, say, ANDs of
ORs, to being ORs of ANDs. At this point the newly formed ORs can be merged with the
untouched layer of ORs above them, making the whole circuit decrease its depth by 1. We may
apply this process repeatedly to obtain a circuit of depth 2, for which we have a lower bound.

Definition 5. We say that a circuit is in alternating circuit (AC) normal form if it satisfies the
following conditions:

• The gates and inputs can be divided into layers, such that layer 0 contains only input
bits and their negations, and for all k > 0, layer k contains only gates for which all the
inputs are elements from layer k − 1.

• Except for layer 0, even layers contain only AND gates and odd layers contain only OR
gates, or vice versa.

• The circuit is a tree. (All AND and OR gates have fan-out 1. Inputs and their negations
may have larger fan-outs.)
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The name “AC0” is justified by the following claim, which says that every AC0 function has a
circuit family in AC normal form.

Claim 3.1. Let f be a function in AC0 with a family of circuits {Cn}∞n=1 of depth d and size at
most p(n). Then there exists a family of circuits {C ′n}∞n=1 in AC normal form of depth d and
size at most 2p(n) + 4d(p(n) + n)2 that computes the same function.

Proof of claim. We perform a sequence of steps on each circuit Cn to transform it to an appro-
priate C ′n in AC form. Let s be the size of Cn.

• Move all NOT gates to the bottom. To achieve this, we first ensure there is a NOT
gate that computes ¬xi for each input bit xi, by adding at most n NOT gates. Next, we
traverse a topological ordering of the AND and OR gates of the circuit g1, g2, . . . , gs such
that gi depends only on input bits and their negations and on gates gj with j < i. For
each gi in the list, we add a new gate g′i that computes ¬gi using De Morgan’s law.

– If gi = AND(xi1 , . . . , xir , gj1 , . . . , gjt), then g′i = OR(¬xi1 , . . . ,¬xir , g′j1 , . . . , g
′
jt).

– If gi = OR(xi1 , . . . , xir , gj1 , . . . , gjt), then g′i = AND(¬xi1 , . . . ,¬xir , g′j1 , . . . , g
′
jt).

At this point we may remove all the NOT gates from the circuit except those of the form
NOT(xi), because whenever NOT(gi) is used (as an input to some gate, or as the output
of the whole circuit), we may use g′i instead. Note that we have added at most s gates of
AND and OR in this step.

• Remove consecutive gates of the same type. If there exists an OR gate that is an input to
another OR gate, we replace the two with a single OR gate over the union of their inputs.
In the same manner, we merge consecutive AND gates. We perform these operations
repeatedly until there are no more consecutive gates of the same type. Notice that the
size and depth of the circuit cannot increase during this step.

• Enforce a layered structure. We say that all inputs and their negations belong to layer 0,
and for each AND and OR gate g, the layer of g is the number of wires in the longest path
from any layer 0 element to g (not counting incoming wires to NOT gates). Because of
the previous step, all gates in each layer are of the same type, with the layers alternating
between AND and OR. Whenever there is an element a and a gate g such that a is an input
to g and the difference in layers between a and g is k > 1, we replace the wire connecting
them with a sequence of k − 1 alternating AND and OR gates of fan-in 1 (maintaining
the alternation between layers of AND gates and layers of OR). We repeat this operation
until every gate of layer ` takes only elements from layer `− 1 as input. Note that before
this step, the circuit contained at most 2s gates and 2n inputs and negated inputs, making
for at most (2s+ 2n)2 wires that might need to be replaced. Because k is always at most
d, we have added at most d(2s + 2n)2 gates in this step, for a total circuit size upper
bound of 2s+ 4d(s+ n)2.
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This completes the proof of the claim.

4 Proof of PARITY /∈ AC0

We now have all the ingredients to prove Theorem 1.2, under the assumption that the switching
lemma is true.

Proof of Theorem 1.2. Let Cn be a circuit that computes PARITYn and let C ′n be an equivalent
circuit in AC normal form of size s and depth d.

We apply a sequence of steps with the objective of transforming C ′n into a depth 2 circuit.

Step 1: Ensure the bottom gates have small fan-in. Assume w.l.o.g. that the bottom layer
consists of AND gates (the case of OR gates is symmetric). Initially, these gates can have
any fan-in. Consider each of them to be a 1-CNF, and apply the switching lemma to each of
them, with p = 1

20
, t = log(s), and k = 1: For each gate, with probability strictly greater than

1−
(
10
20

)− log s
= 1− 1

s
, the gate can be converted to a log(s)-DNF. From the union bound, there

is a positive probability that after fixing all but a 1
20

-fraction of the inputs, all the layer 2 gates
are equivalent to log(s)-DNFs simultaneousy. Therefore, there exists some specific restriction
of that size that satisfies this requirement. We apply this restriction, and then, by merging the
OR gates of the new log(s)-DNFs into the layer of ORs above them, we obtain a new circuit
C0
n in AC normal form with the same depth as C ′n. In C0

n the lowest layer consists of gates with
fan-in at most log(s), there are at most s gates above the lowest layer, and there are n

20
inputs.

Step 2: Reduce the depth to 2. W.l.o.g. assume layer 1 of Ci
n contains AND gates (the

case of OR gates is symmetric). View each gate in layer 2 as forming a log(s)-DNF together
with its children from layer 1. Apply a random restriction to a all but a p-fraction of the
inputs, for p = 1

20 log(s)
. Again, by the switching lemma, with probability strictly greater than

1 − (10 · (1/20 log(s)) · log(s))− log(s) = 1 − 1
s
, each of these log(s)-DNFs can be switched

after the restriction to a log(s)-CNF without altering its functionality. And from the union
bound, there exists a restriction in which this holds for all DNFs simultaneously. By applying
that restriction, switching to CNFs and merging layer 2 with layer 3, we obtain circuit Ci+1

n .

We repeat this operation d − 2 times, yielding Cd−2
n . Observe that for every i, Ci

n is of depth
d − i, the gates of the lowest layer have fan-in at most log(s), there are at most s gates above
the lowest layer, and there are n

20
pi inputs.

In particular, Cd−2
n is a depth 2 circuit that calculates PARITY on n

20
pd−2 inputs, with bottom

fan-in at most log(s). From the proof of Lemma 2.1 (Claim 2.1), we know that every depth 2
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circuit for parity must have a bottom fan-in that equals the number of inputs. Thus,

n

20

(
1

20 log(s)

)d−2
= (bottom fan-in) ≤ log(s),

entailing that
s ≥ 2( 1

20
n1/(d−1)). (1)

This lower bound applies to C ′n, the circuit in AC normal form. Let S = SIZE(Cn). We know
from Claim 3.1 that

s ≤ 2S + 4d(S + n)2 ≤ 10dS2

and so

SIZE(Cn) ≥
√

1

10d
2( 1

20
n1/(d−1)) = 2( 1

10
n1/(d−1)− 1

2
log(10d)).

Finally,
SIZE(Cn) ≥ 2(δn1/(d−1))

for δ that depends on d, as desired.

Remark. The constant of 20 that appears in (1) is not tight, and can be made smaller using
other switching lemmata. Ryan is not sure whether it can be replaced with (1+ε) for all ε > 0.
That is the case at least for d = 2 and d = 3 (see Paturi, Pudlák, & Zane, 1997 for the latter).
The constants that result from the conversion between the original and the AC normal circuits
can definitely be made tighter.

5 Proof of the Switching Lemma

We now complete the proof of PARITY /∈ AC0 by proving the switching lemma, on which we
relied above. We will actually prove a slightly stronger variant:

Lemma 5.1 (Switching Lemma – Alternative Formulation). Let p ∈ (0, 1
2
). Suppose f is a

k-CNF or k-DNF over n variables. Pick a random restriction ρ of (1 − p)n variables of f .
Then for all t,

P [f |ρ is equivalent to a t-DNF and also to a t-CNF] > 1−
(

8pk

1− p

)t
.

Note that the only difference is in the parameters, and that this statement implies our original
switching lemma. In particular, when p < 1

5
, the current bound of 1− (8pk/(1− p))t is greater

than the the original bound of 1− (10pk)t.
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The original proof was complicated. The alternative one presented here is due to Razborov,
and is a very clever counting argument. In general, the switching lemma and its proof remain
very important in the modern study of circuit complexity. There are still many questions being
answered about AC0, using new switching lemmata (e.g., see the work of Ben Rossman).

5.1 Reduction to a combinatorial claim

We demonstrate that in order to prove Lemma 5.1, it suffices to prove the following.

Claim 5.1 (Combinatorial Claim). Using the notation of Lemma 5.1, let v = (1 − p)n be the
number of variables to be fixed, and let Rm denote the set of all restrictions of m variables out
of n. Then

|{ρ ∈ Rv : f |ρ is not equivalent to a t-CNF}| ≤ |Rv+t| · (4k)t.

To see that Claim 5.1 entails the switching lemma (Lemma 5.1), observe that the total number
of possible restrictions is |Rv| =

(
n
v

)
2v (because there are

(
n
v

)
ways to choose which set of v

variables to fix, and for each set there are 2v ways to assign values to the variables in the set).
Now a straightforward calculation yields:

P [f |ρ is not equivalent to a t-CNF] =
|{ρ ∈ Rv : f |ρ is not equivalent to a t-CNF}|

|Rv|

≤ |Rv+t| · (4k)t

|Rv|

=

(
n
v+t

)
2v+t · (4k)t(
n
v

)
2v

=

(
n
v+t

)
2t(4k)t(
n
v

)
=

(
n

(1−p)n+t

)
(8k)t(

n
(1−p)n

)
=

((1− p)n)!(pn)!

((1− p)n+ t)! (pn− t)!
(8k)t

=
(pn− t+ 1)(pn− t+ 2) · · · (pn)

((1− p)n+ 1)((1− p)n+ 2) · · · ((1− p)n+ t)
(8k)t

<

(
pn

(1− p)n

)t
(8k)t

=

(
8pk

1− p

)t
,
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as desired.

5.2 Strategy for proving the combinatorial claim

Let B ⊆ Rv denote the set of “bad restrictions” that appears in the LHS of the inequality in the
combinatorial claim. Consider the set S = Rv+t × {0, 1}` where ` = t log(4k). We can think
of S as being a set of all ordered pairs (ρ, s), where ρ is a restriction of v+ t variables, and s is
a binary string of length `. Notice that the expression on the RHS of the combinatorial claim
is the cardinality of S. Therefore, to prove the combinatorial claim, it suffices to construct a
one-to-one function h : B → S. We think of this as constructing an encoding that encodes a
restriction ρ ∈ Rv using a pair (ρ′, s), where s is an “advice string”.

Consider the cardinalities of the two sets:

|Rv| =
(
n

v

)
2v; |Rv+t| =

(
n

v + t

)
2v+t,

where v ≥ n
2
. As illustrated in the following graph, the first set may be larger or smaller then

the second one, depending on the exact values of v and t.

Figure 4: Graph of the function f(m) =
(

20
10+m

)
210+m. Source: WolframAlpha.

Of course, if |Rv+t| ≥ |Rv| then a one-to-one function Rv → Rv+t exists and there is nothing
to prove. The rest of the proof will be concerned with the case |Rv+t| < |Rv|, where we will
use the advice string s to construct a one-to-one function h as above.

The construction will use the notion of a max-term, to be defined in the next section.

5.3 Max-terms and t-CNFs

The crucial property about ”not being a t-CNF” that we will use to construct the encoding can
be expressing in the following language:
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Definition 6. Let g : {0, 1}n → {0, 1} be some function. A max-term for g of size m is a
restriction ρ of m variables such that

• g|ρ ≡ 0.

• ρ is minimal with respect to set containment, i.e., there exist no restriction ρ′ such that
g|ρ′ ≡ 0 and the fixed variables of ρ′ are a strict subset of the fixed variables of ρ.

Claim 5.2. If f is not equivalent to a t-CNF, then there exists a max-term of f of size at least
t+ 1.

Proof of Claim 5.2. We show that if every max-term for f has size at most t then f is equivalent
to a t-CNF: Let M be the set of max-terms for f . For each ρ ∈ M , write ρ as the assignment
(xi = bρ,i)i∈Iρ for some set of indices Iρ ⊆ [n] and bits bρ,i. Consider the following formula.

F (x) =
∧
ρ∈M

∨
i∈Iρ

1 (xi 6= bρ,i) .

We argue:

• The formula is a t-CNF. It is a CNF because it is and AND of ORs of inequalities, and
each inequality can be written as an input variable or its negation. Furthermore, each OR
clause has fan-in at most t, from the assumption that all max-terms are of size at most t.

• It computes f . We show that for all a ∈ {0, 1}n, F (a) = 0 ⇐⇒ f(a) = 0.

=⇒. Assume F (a) = 0. Then there exists ρ ∈ M such that ∨i∈Iρ1 (ai 6= bρ,i) = 0.
Then a agrees with a restriction ρ that is a max-term, so f(a) = 0.

⇐=. Assume f(a) = 0. Then viewing a as a restriction where (xi = ai)i∈[n], we see
that f |a ≡ 0. Therefore, there exists some ρ ∈ M that agrees with a (either a itself is
a minimal assignment that forces the output to be 0, or else some subset of a is). Then
the clause ∨i∈Iρ1 (ai 6= bρ,i) = 0 for this ρ, making F (a) = 0.

We conclude that if f is not equivalent to a t-CNF, it must have a max-term of size at least
t+ 1.

5.4 Constructing the encoding restriction: ρ 7→ ρ′

Write f as a k-DNF
F =

∧
i∈I

Ci,
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where each Ci is an AND clause over at most k literals (input variables and their nega-
tions).

Recall that we want to identiy a mapping ρ 7→ (ρ′, s), where ρ ∈ Rv is “bad” (making f |ρ not
equivalent to a t-CNF), and ρ′ ∈ Rv+t. We use Claim 5.2 to build this mapping as following.
Because f |ρ is not equivalent to a t-CNF, the claim entails that f |ρ has a max-term π of size at
least t + 1. Notice that the variables restricted by π are disjoint from those restricted by ρ, so
the “combined” restriction ρ ∪ π in which both restrictions are applied simultaneously is well
defined. Furthermore,

• f |ρ∪π ≡ 0.

• f |ρ∪π′ 6≡ 0 for all π′ ( π (i.e., all π′ that agree with π and fix only a strict subset of the
variables fixed by π).

Assume π assigns bit xi = bi for all i. We define ρ′ using an iterative process, in such a way
that ρ′ will contain all the assignments of ρ, together with exactly t additional assignments that
came from π.

π′ ← ∅ (will hold a sub-restriction of π)
ρ′ ← ρ (the output being constructed)
While |ρ′| < v + t: (want output to be of size v + t)

Find Cj with minimal j such that Cj|ρ∪π′ 6≡ 0
I ← {i : xi or ¬xi appear in Cj , and xi is not set by π′} (variables to be added

to the restrictions)
Remove elements from I until |I| ≤ v + t− |ρ′| (ensure output size ≤ v + t)
Find bits {b′i : i ∈ I} such that Cj|ρ∪π′∪{b′i} 6≡ 0
π′ ← π′ ∪ {(xi = bi) : i ∈ I} (make Cj|ρ∪π′ ≡ 0)
ρ′ ← ρ′ ∪ {(xi = b′i) : i ∈ I} (make Cj|ρ∪ρ′ 6≡ 0)

Output ρ′

Notice that in every iteration of the loop, π′ is a strict sub-assignment of π, so f |ρ∪π′ 6≡ 0, and
so a suitable clauseCj always exists. Moreover, Cj|ρ∪π′ 6≡ 0, and yet we know thatCj|ρ∪π ≡ 0.
Consequently, π must contain some assignments to variables of Cj not yet set in π′, so at each
iteration |π′| will strictly increase.

Example. Suppose in some iteration Cj = (x1∧x2∧¬x3∧x4), and suppose that the variables
set in π but not in π′ are {x1, x3}. Then ρ∪π sets x1 = 0 or x3 = 0 or both (because it zeros the
clause), and those assignments will be added to π′, and the assignment (x1 = 1 and x3 = 0)
will be added to ρ′.
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5.5 Constructing the encoding advice: ρ 7→ s

Recall that ρ′ contains all the assignments of ρ, together with exactly t additional assignments
that came from π. If we only see the restriction ρ′, we don’t know which assignments in it
came from ρ and which came from π, so we can’t reconstruct ρ. We will use the additional
string s precisely for this: To identify which variables in the assignment came from ρ.

Naı̈vly, if we simply specify the indices of the variables that came from ρ, we would need
Ω(log n) bits per index. The following solution uses additional structure in order to identify all
the indices with an advice string of only ` = t log(4k) bits, which is much better.

For i = 1, 2, . . . , let Cji and Ii be the clause and index set, and let π′i, ρ
′
i be the assignments

added to π′ and ρ′ in the ith iteration of the loop. By definition, Cj1 is the first (minimal index)
clause that is not zeroed by ρ. Interestingly, we have constructed ρ′ in a way that ensures that
Cj1 is also the minimal clause not zeroed by ρ′. To see this, note that ρ′ = ρ ∪ ρ′1 ∪ ρ′2 . . . ,
and

• By definition, ρ does not zero Cj1 .

• By definition, ρ′1 does not zero Cj1

• No other ρ′q assigns variables in Cj1 for q 6= 1. This is true because in the first iteration,
I contains indices of all the variables that belong to Cj1 and are set by π, and in all
subsequent steps I does not contain indices of any variables already set in π′ during
previous iterations.

Hence, given ρ′, we can identify Cj1 by finding the first clause not zeroed by ρ′.

More generally, Cji is the first clause not zeroed by

ρ ∪ π′1 ∪ · · · ∪ π′i−1 ∪ ρ′i ∪ ρ′i+1 ∪ · · · (2)

Thus, given ρ′ and π′1, . . . , π
′
i−1 we can construct the restriction in (2) by overriding the assign-

ments of ρ′ with those of π′<i, and identify Cji as the first unzeroed clause.

We use this structure to get a compressed representation of the indices of the variables that
are in ρ′ but not in ρ. Each of the variables belongs to Cji for some i. Hence, instead of
representing the index using O(log(n)), we can use just O(log(k)) bits if we know the relevant
Cji , because f is a k-DNF. We will use an additional bit for each variable to represent its value
in π′i, because we need π′i in order to find Cji+1

.

Accordingly, the advice string is constructed as following: There is one “block” of bits for each
iteration of the loop. Each block i encodes assignments of π′i in iteration i as follows. For each
assignment, the index within the clause Cji of the variable is encoded using log k bits, followed
by a bit specifying the value of the variable, followed by a control bit which is 0 iff the variable
is the last one in the block.
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The total length of s is thus∑
i

|Ii|(log(k) + 2) = t(log(k) + 2) = t log(4k),

where the first equality holds because
∑

i |Ii| = t.

5.6 Decoding (ρ′, s)

Decoding the pair (ρ′, s) works as following. First, Cj1 is identified using F and ρ′, by virtue of
being the first clause not zeroed by ρ′. Then, π′1 is read from the first block of s. Subsequently,
at iteration i, Cji is identified using F , ρ′ and π′<i as being the first clause not zeroed by (2),
and then π′i is read from the ith block of s. Once all restrictions π′i have been recovered (the
end of s has been reached), we obtain ρ by simply removing from ρ′ the set of t assignments
to variables that appear in any of the π′i.

This construction completes the proof of Claim 5.1, and hence of PARITY /∈ AC0. �
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