
Lower Bounds (CS294-152, Fall’18)

A Nice Polynomial Representation for ACC0

Notes for 10/29/18

Scribe: Haaris Khan

Announcements: Project Proposals are due TODAY!

Due to timing constraints, if you have yet to scribe for the course, please fill out the
”When2Meet” and specify what times you are available for an extra lecture. An announce-
ment will be made regarding when those lecture dates/times have been set.

Our remaining schedule looks as follows:

1. Nov 5: Lecture

2. Nov 7-9 or 28 - 29: Lecture

3. Nov 12: No lecture (Veteran’s Day)

4. Nov 19: Two Guest Lectures (Amir Y and Kasper Green L.)

5. Nov 26: Project Presentations

Email Ryan for any questions regarding the project.

1 Preliminaries

The best general lower bound that’s known for ACC0 is much weaker than what is known for
AC0[p]:

Theorem 1.1. There are functions in NTIME(npolylog(n)) which are not in poly-size ACC0.

The lower bound above is useful, however, in exploiting a polynomial representation for
ACC0 (albeit not as ”nice” as the probabilistic polynomial representation seen previously for
AC0[p]).

Here, we will explore the exact representation, and in the future we will see how to use this
for deriving lower bounds.

1

2 Polynomial Representation of ACC0: Construction

Definition 1. Function f : {0, 1}n → {0, 1} is symmetric if ∃ g : {0, 1, ..., n} → {0, 1} such
that ∀x, f(x) = g(

∑
i xi)

We further define SYM as the class of such symmetric boolean functions

Theorem 2.1 (Beigel-Tarui 91 (building on Yao)). Every symmetric function f has a corre-
sponding symmetric function f’ s.t. f of s AC0[m] circuits of size s and depth d can be rep-
resented using f’, with spolylog(s) AND gates, where the polylog factor is dependent on d and
m

Moreover, the transformation can be computed deterministically in spolylog(s) time, provided
a starting ”f of ACC” circuit as input.

We will give a rough idea of Biegel-Tarui for AC0[p] circuits, where p = 6. Do note,
however, that this sketch can be generalized to any p, where we write out the MOD terms as
MODs over general prime factors of p.

2.1 Sketch of Biegel-Tarui

Consider the class of AC0[6] size-s depth-d circuits. First, note that these circuits can be repre-
sented as a SYM of spolylog(s) AND gates. (Note that this circuit class already poses dificulties
in proving lower bounds, even when the depth is limited to 3).

Now, extend this class by considering a probabilistic construction (that can be derandom-
ized)

1. Write OR as MOD2 and AND of MOD2 (DeMorgan’s Laws)

2. Think of the AC0[6] circuit C as being layered (similar to how we viewed AC0). Layers of
(MOD3 of MOD2 of AND), repeated ≤ d times, by sticking in dummy gates that don’t
do anything. Essentially, we have composition up until depth d. Size is still ≤ sc for
some c ≤ O(d)

3. Construct 10n circuits C1, ..., C10n as follows:

3.1. Replace each AND gate (over {0, 1}) with a probabilistic F3 polynomial of degree
2c ∗ log(s). The error here is bounded by 1

s2c
, so our whole probabilistic circuit has

error ≤ sc

s2c
= 1

sc

We can write each such AND gate (with fan-in S) as a probabilistic polynomial as
a MOD3 of S2c log(S) ANDs, where each AND has a fan-in ≤ 2c ∗ log(S)

2

3.2. Write each MOD3 of AND of fan-in ≤ 2c ∗ log(S) as a MOD3 of S2c MOD2s of
fanin M = 2c ∗ log(S)
More particularly, the AND gate on v variables can be written as a sum (mod 3) of
≤ 2vMOD2s.
(We can do this because every function on v variables can be written in the Fourier
basis, as a real-valued sum of ≤ 2vMOD2s on v variables. Moreover, each fourier
coefficient for these MOD2s has the form j

2v
, j ∈ [−2v, ..., 2v]. In F3, we’re permit-

ted to divide by 2, so our answer is preserved over F3).

3.3. Now each Ci is ≤ 2d layers of (MOD3 of MOD2).

4. Sample 10n of these polynomials for the MAJORITY (C1, ..., C10n). Call the result D.
Through a Chernoff bound, we have

Pr(MAJ(C1, ..., C10n)(x)) 6= C(x)) <<
1

2n

Furthering this with a Union Bound argument,

Pr
C1,...C10n

(∃xs.t.D(X) 6= C(X)) << 1

Which implies there exists some gates C1, ..., C10n such that the majority function com-
puted on those gates are equivalent to the original function, i.e. D is correct on all 2n

inputs with good probability.

5. Transform our MAJORITY ◦ (MOD3 ◦MOD2)
O(d) into a SYMMETRIC function of

ANDs.

More generally, we will show that we can take any SYM of MOD3 of MOD2 and convert
it into a SYM of MOD2 of ”small” fan-in, and vice versa.

Concretely, suppose we have a SYM of tMOD3 of subcircuitsCi,1, ..., Ci,u, which output
{0, 1}, and where each Ci,j is a MOD2 of some inputs (note: there are t ∗ u subcircuits
in total).

Let the symmetric function be f , which has t inputs. Then our total circuit is equivalent
to:

f(MOD3(
u∑
j=1

C1,j), ...,MOD3(
u∑
j=1

Ct,j))

We want to convert this function into something more of the form:

g(AND, ..., AND)

3

Where each AND is over some subset of the inputs.

Next, we take a slight aside and introduce the magical mathematical objects that are
Modulus-Amplifying Polynomials.

Definition 2 (Modulus-Amplifying Polynomials). Polynomial PL(x) is L-mod-amplifying
if ∀m,x ∈ Z,m >= 2,

x = 0 mod m =⇒ PL(x) = 0 mod mL

x = 1 mod m =⇒ PL(x) = 1 mod mL

PL ”amplifies the modulus” from m to mL

Key Property: For prime p, ∀a ∈ Z, ap−1 = 0 if a = 0, and 1 otherwise, so we have:
MODp(a) = (1− ap−1) mod p = PL(1− ap−1) mod pL (!).

(Recall MODp(x) = 1 iff x is divisible by p).

Theorem 2.2 (B-T). For every L, there exists an L-mod-amplifying polynomial PL of
degree ≤ 2L that can efficienly be constructed.

For our purposes, we set L := 1 + log3(t).

Consider:

(∗) =
t∑
i=1

PL(1− (
u∑
j=1

Ci,j)
2)

By the mod-amplifying property, this is equivalent to

(∗) =
t∑
i=1

PL(
u∑
j=1

Ci,j)
2) mod 3L(because t < 3L)

=
t∑
i=1

MOD3(
u∑
j=1

Ci,j) mod 3L(by (!))

Key Observation: Since t < 3L, the sum (∗) = t′ mod 3L, where t′ is the number of
MOD3 gates going into f which are true.

This means we can determine the output of the original circuit

f(MOD3(
u∑
j=1

C1,j), ...,MOD3(
u∑
j=1

)Ct,j)

4

from (∗).
In other words, ∃g : Z→ {0, 1} such that

f(MOD3(
u∑
j=1

C1,j), ...,MOD3(
u∑
j=1

)Ct,j) = g(
t∑
i=1

PL(1− (
u∑
j=1

Ci,j)
2)

If we write out the monomials of the polynomial P as a sum of ANDs of fan-in ≤ 2L,
we yield a SYM of ANDs of fan-in 2L ≤ O(log(t)) of the subcircuits Ci,1, ..., Ci,u.

3 Algorithms for Analyzing ACC0

What can we do with this SYM and AND representation of circuits? It turns out we do know
something that has a provable lower bound:

Proposition 1. The SYM of AND can be used to algorithmically analyze a given ACC0 circuit,
surprisingly fast.

Furthermore, that circuit-analysis algorithm can be used to prove a lower bound.

3.1 Circuit-SAT

Circuit SAT: Given circuit C of n inputs, size s, does there ∃ x such that C(x) = 1?

The naive algorithm, exhaustive search, solves this in 2npoly(s) time. Can this be solved
faster? For ACC0 circuits, the answer is yes!

Let AC0
d [m] be AC circuits of depth d with AND, OR, NOT, MODm gates.

Theorem 3.1 (W’11). For all d and m, ∃δ > 0 such that the SAT problem for AC0 circuits can
be solved in 2n−n

δ
time.

We prove this theorem via a classic divide-and-conquer result.

Recall a multilinear polynomial has form:

p(x1, ..., xn) =
∑
s⊆[n]

cs
∏
i∈s

xi

5

Lemma 3.1. Given a multilinear polynomial p in n variables with m monomials (specified as
a list of the coefficients cS), there is a poly(n) ∗ (2n +m) time algorithm for evaluating p on
all points in {0, 1}n.

Imagine m is huge, close to 2n. A naive algorithm for evaluating this 2n-size representation
on all 2n points would take at least 2n ∗2n = 4n time! We are getting a quadratic speedup here.

Proof (Lemma). We describe the algorithm.

If n = 1, simply output [p(0), p(1)]
Otherwise, since p is multilinear, write:

p(x1, ..., xn) = p0(x1, ..., xn) + xn ∗ p1(x1, ..., xn−1)

(Note that constructing p0, p1 just requires sorting the coefficients)

Recursively obtain the 2n−1-length table T0 for p0, and the 2n−1-length table T1 for p1.

Then the 2n length table for p0 is just [T0(T0+T1)], which can be constructed inO(2n) time
from T0 and T1.

The running time is

R(n) ≤ 2 ∗R(n− 1) + poly(n) ∗min(2n,m)

Which implies R(n) ≤ poly(n) ∗ (2n +m).

Proof (W’11). Let ε > 0 be sufficiently small, to be set later. Given an AC0
d [m] circuit C of

size 2n
ε

Let k := nε. Define the (n− k)-input circuit C ′(y) as C ′(y) := ∨a ∈{0,1}kC(a, x)

Note:

• C is SAT ⇐⇒ C’ is SAT

• C’ has depth ≤ d+ 1

Convert C’ into a SYM of ANDs with size 2n
ε (via Beigel-Tarui). This SYM of ANDs has

size quasi-polynomial in 2n
ε , which is 2nc·ε for some c >= 1.

Now construct a multilinear polynomial p(x1, ..., xn−l) where each monomial corresponds
to an AND gate of the SYM of ANDs (so p is taking the sum of the ANDs).

6

Since D is a SYM of ANDs, there exists some function g : {0, ..., n} → {0, 1} such that
D(x) = g(p(x)) ∀x.

By the lemma, we can evaluate p on all 2n−k = 2n−n
ε inputs in poly(n) · (2n

1
2 + 2n−n

ε
) time.

So we set ε = 1
2c

and the running time becomes poly(n) · (2n
1
2 + 2n−n

ε
).

Finally, compute g on all 2n−k inputs, which tells us whether D is SAT or not.

7

	Preliminaries
	Polynomial Representation of ACC0: Construction
	Sketch of Biegel-Tarui

	Algorithms for Analyzing ACC0
	Circuit-SAT

