
Lower Bounds (CS294-152, Fall’18)

Functions With and Without Small Circuits
Notes for 9/24/18

Lecturer: Ryan Williams, Scribe: Seri Khoury

1 Introduction

In the previous lecture we saw that EXPΣ2P 6⊆ SIZE(2n/(cn)) for a fixed c ≥ 11. Today we will
consider lower bounds against SIZE(nc) for a fixed c ≥ 1, and lower bounds against PSIZE =⋃
c SIZE(nc). Our goal is to find the “weakest” functions which do not have small circuits, to

put these hard functions in the smallest complexity classes possible. Why the smallest class
possible? Although the question is arguably very mathematically interesting in itself, here are
two concrete complexity-theoretic reasons:

1. As we mentioned in the previous lecture: As shown by [3], If E = TIME[2O(n)] 6⊆ i.o-
SIZE(2α·n) for some α > 0, then P = BPP.

2. If a class C is not in PSIZE, then P 6= C (Imagine how cool would it be to prove this
for C = NP, or C = PSPACE). This is because P ⊆ PSIZE, as we are going to see in
Section 3.1 in Corollary 3.1.

Here is one open question that, at least for me, emphasizes how little we know about the
“actual” power of the model of circuit families:

Open Question 1. ENP ⊆ SIZE(n2)?

At first sight, why would someone believe that such a powerful class as EXPNP has small
circuits? Shouldn’t it be possible to prove a lower bound, maybe by some hardcore combi-
natorics argument? The answer is: maybe, but the infinite and non-uniform2 computational
model of circuit families has some power that is easy to neglect at first sight, when we look at
such open questions. For example, in the next section, we are going to see that there are unde-
cidable problems in SIZE(O(1)), and the proof is going to rely heavily on the non-uniformity
of circuits. This might shed some light on why it is so difficult to prove circuit lower bounds.

1Recall that SIZE(s(n)) is the class of functions f : {0, 1}∗ → {0, 1} such that for all but finitely many n, fn
(f on inputs of size n) has a circuit of size at most s(n). The class i.o.-SIZE(s(n)) has the same definition but
“all but finitely many” is replaced with “infinitely many”.

2By infinite and non-uniform we mean that in a family of circuits C = {Cn | n ∈ N} that computes a function
f , we get one circuit Cn for each input length n.

1

2 Undecidable Functions With Small Circuits

In this section we prove that there are undecidable functions that can be computed by small
circuits.

Theorem 2.1. There are undecidable functions in SIZE(O(1)).

Proof. Let f : {0, 1}∗ → {0, 1} be an undecidable function, and let bin : N → {0, 1}∗ be
an efficient 1 : 1 encoding of all natural numbers in binary. Define f ′ : {0, 1}∗ → {0, 1} as
follows:

f ′(x) =

{
1 if f(bin(|x|)) = 1

0 otherwise

Hence, for each x ∈ f , f ′ contains all the possible strings of length int(x), where int(x)
is the integer value of the binary string x. First, observe that f ′ is also undecidable, as if we
could decide f ′, then we could decide f on input x by computing f ′ on 1int(x), i.e., there is a
simple exponential time reduction from f to f ′. Furthermore, observe that for any n, either f ′n
is all ones, or f ′n is all zeros. Therefore, for any n, f ′n can be implemented with one gate: either
x ∨ ¬x, or x ∧ ¬x.

The key point here, as we discussed at the end of the introduction, is that the infinite and
non-uniform computational model of circuit families has a very different behavior in general
from the algorithmic model, where programs are assumed to be finite strings. This is one of
the reasons for why it is so difficult to prove circuit lower bounds.

3 Some Upper Bounds

In this section we show that efficient algorithms, deterministic or randomized, do have small
circuits.

3.1 Deterministic P-Time Algorithms Have Small Circuits

We can relate algorithmic time to circuit size in the following way:

Theorem 3.1. There is a constant c ≥ 1 such that for any function f , it holds that f ∈
DTIME(t(n))⇒ f ∈ SIZE(tc(n)).

2

Proof. First, we point out that for any deterministic model, a time-t(n) algorithm in that model
can be converted into a one-tape Turing Machine M running in tb(n) time, for some constant b
(see also Claim 1.6 in Chapter 1 in [1]). We will show how to simulate M on inputs of length
n with a circuit Cn of size O(t2b(n)).

Consider the computation tableau T of M on input x of length n. This is a tb(n) × tb(n)
matrix. Each row encodes a configuration of M, and each column corresponds to a particular
entry of the tape, and how it changes over time. That it, the cell T(i,j) contains the value of the
j’th entry of the tape at time i of the computations, and a bit indicating whether the head of
the tape happens to be there. If this bit is on, then T(i,j) contains also the state of M at time
i. In total, each cell contains k = O(1) bits of information. The key observation here is that
for all cells T(i,j) below the top row, T(i,j) is a function of at most 3 cells on the row above it:
T(i−1,j−1), T(i−1,j), and T(i−1,j+1). Indeed, at each cell we just need to implement a function
f : {0, 1}3k → {0, 1}k, which takes in T(i−1,j−1), T(i−1,j), T(i−1,j+1) and outputs the value for
T(i,j).

As we saw in the previous lecture, each function on n inputs can be implemented by a circuit
of size O(2n/n). Therefore, we can replace each cell Ti,j below the top row by a circuit of size
O(23k): one circuit of size O(23k/k) for each of the k bits of Ti,j . To conclude the proof, on
the bottom row we want to know whether M is in an accept state. We can take an OR over all
cells in the last row to check if any are in an accept state. For inputs of length n, the total size
of the circuit is O(23k · t2b(n)) = O(t2b(n)).

Corollary 3.1. P ⊆ PSIZE. Furthermore, if a class C is not in PSIZE, then P 6= C.

Indeed, Theorem 3.1 is intuitive and not very hard to prove. But can we show that there is a
fixed k for which we can convert any P-time algorithm to a circuit of sizeO(nk)? Interestingly,
this is still open.

Open Question 2. Is there a fixed k for which P ⊆ SIZE(nk)?

3.2 Randomized Algorithms Have Small Circuits

After proving that efficient deterministic algorithms have small circuits, let’s prove a similar
theorem for randomized algorithms. First, recall the definition of the class BPP:

Definition 1. f ∈ BPP ⇐⇒ there is a polynomial p(n) and a deterministic p(n)-time
algorithm A(∗, ∗), such that for all x, Pr(r∈{0,1}p(|x|))[A(x, r) = f(x)] > 2/3

Theorem 3.2. BPP ⊆ PSIZE

3

Proof. Let f ∈ BPP, and let A be the corresponding algorithms from Definition 1. Observe
that we can amplify the success probability to be greater than 1 − 1/2n, by the following
simple trick that is widely used. On input x of length n, instead of running A, pick at random
r1, ..., r100n ∈ {0, 1}p(n), and compute Majority(A(x, r1), ...,A(x, r100n)). Let Yi be a random
variable indicating whether A(x, ri) = f(x), and let Y =

∑
i Yi. By Chernoff’s bounds

(see also [10]), Pr[Majority(A(x, r1), ...,A(x, r100)) 6= f(x)] = Pr[Y ≤ 50n] = Pr[Y ≤
3
4
E[Y]] < e−E[Y]/32 < 1/2n.

Therefore, for a given x, the success probability is 1 − 1/2n. By the Union-Bound, the
probability that there is some x ∈ {0, 1}n for which the algorithm fails is strictly less than 1.
Hence, there are r∗1, ...r

∗
100n for which the algorithm does not fail on any x. This is also called

sometimes the probabilistic method to prove the existence of an object with certain properties
(in our example, the object is the set of strings r∗1, ..., r

∗
100n that makes the algorithms outputs

the correct answer for any input).

Given r∗1, ..., r
∗
100n, the algorithm A(∗, {r∗1, ..., r∗100n}) is deterministic. Hence, to conclude

the proof, we can convert the deterministic polynomial time algorithm A(∗, {r∗1, ..., r∗100n}) to
a PSIZE circuit by Theorem 3.1.

As explained in the book of Arora and Barak (see chapter 19 and 20 in [1]), under widely
believed complexity-theoretic conjectures, P = BPP. Hence, we suspect that BPP = P, and
that by the Time Hierarchy Theorem (see also Chapter 3.1 in [1]), BPP is a proper subset of,
say, DTIME(nlogn). Yet, currently we are not even able to show that BPP is a proper subset of
NEXP.

Open Question 3. BPP = NEXP?

4 Algorithms With Advice

Circuit families constitute one non-uniform model of computation. There is a more general
way to characterize how “non-uniform” programs can help to solve problems. Consider the
following situation: suppose that you are given a polynomial time to solve a problem, but for
inputs of length n, you are allowed to write a program of f(n) lines of code. The program must
still run in, say, poly-time, but the code size is allowed to grow with the input. What problems
can you then solve? It is a natural question! And it is inherently related to Boolean circuit
complexity. This leads us to the following definition of algorithms with advice.

Definition 2. Given an algorithm A and a boolean function f , we say that A decides f with
s(n) advice if for all n > 0, there is a string an ∈ {0, 1}s(n), such that for all x ∈ {0, 1}n,
f(x) = A(x, an).

4

Observe that it is very important to have the “for all x” quantifier after the “for all n”
quantifier. Otherwise the definition would not make any sense, as any problem can be solved
with one bit of advice in that case (in one step of computation..). In other words, it is very
important that the advice is given prior to seeing the input.

Definition 3. P/s(n) is the class of decision problems that can be solved by a polynomial time
algorithm with s(n) bits of advice. P/poly =

⋃
c P/n

c.

Next we see that the non-uniform model of circuits families is closely related to the non-
uniform model of computation with advice.

Theorem 4.1. P/poly = PSIZE

Proof. ⇒ To show that P/poly ⊆ PSIZE, we can simply take the deterministic algorithm that
takes an additional input of poly(n) bits of advice, convert it to a circuit by Theorem 3.1, and
hard code the poly(n) bits of advice into the input of this circuit.

⇐ To show that PSIZE ⊆ P/poly, we can simply encode a poly-size circuit as a binary
string and use it as an advice. Given an input x, a poly-time algorithm evaluates the circuit C|x|
that is given by the advice and computes C|x|(x).

5 Σ2P and Circuit Lower Bounds

Sections 5 and 6 are dedicated to lower bounds. In this section we show a circuit lower bound
for Σ2P. We start with a weaker circuit lower bound against PΣ2P. In the previous lecture we
saw that EXPΣ2P 6⊆ SIZE(2n/(cn)) for a fixed c ≥ 1. Intuitively, one would imagine that we
can “scale down” the argument for EXPΣ2P 6⊆ SIZE(2n/(cn)) to show a fixed poly-size lower
bound for functions in PΣ2P. Unsurprisingly, this is exactly the first lower bound we are going
to see.

Theorem 5.1. For all k, there is an fk ∈ PΣ2P such that fk /∈ SIZE(nk).

Proof. Let m be a natural number. In the previous lecture, we showed how to find a function
g : {0, 1}m → {0, 1} with maximum circuit complexity (e.g., 2m/(2m)) in time 2O(m) with an
oracle to the function COMPLEX3 which is in Σ2P.

For a given k, here is a PΣ2P function fk:

3We use COMPLEX here as a black box. See the previous lecture for the formal definition of COMPLEX.

5

Given an input x of length n,

- Set m := (k + 1) · log(n).
- If x is not of the form 0n−my, reject.
- Otherwise, in 2O(m) = nO(k) time, use an oracle for COMPLEX to construct a
function g on m inputs with maximum circuit complexity.
- Output g(y).

Let Cn be any circuit for fk on n-bit inputs. From Cn, we can easily get a circuit C ′m for
g on m-bit inputs: C ′m(y) := Cn(0n−my), i.e., hard-code n − m inputs to be 0. Therefore,
SIZE(Cn) ≥ SIZE(C ′m) ≥ nk+1/(2(k + 1) log n) > nk for large enough n. Hence, fk is not in
SIZE(nk).

Our goal next is to improve the result in Theorem 5.1 and to prove a lower bound against
Σ2P. The following theorem was shown by Kannan [4].

Theorem 5.2. For all k, there is an fk ∈ Σ2P such that fk /∈ SIZE(nk).

Before proving Theorem 5.2, let us go back to the P versus NP discussion, which appears
to be related. As the strict majority of computer scientists believe, P 6= NP. If indeed it
happens to be the case, then one direction to prove this would be to show that NP 6⊆ P/poly. If
indeed NP 6⊆ P/poly, then obviously this would also prove Theorem 5.2. But what happens if
NP ⊆ P/poly? Besides blocking one direction for proving that P 6= NP, it would give us some
very interesting consequences. One example is the following theorem by Karp and Lipton [5].

Theorem 5.3. NP ⊆ P/poly⇒ Σ3P = Σ2P.

In fact, Karp and Lipton showed a stronger result: NP ⊆ P/poly ⇒ PH = Σ2P, where
PH =

⋃
c ΣcP. We will shortly prove Theorem 5.3. But first, let us show how it immediately

implies Theorem 5.2.

Proof of Theorem 5.2.
- If NP 6⊆ P/poly, then SAT does not have an nk circuit for any k, and we are done.
- If NP ⊆ P/poly, by Theorem 5.3, it holds that Σ3P = Σ2P. Since PΣ2P ⊆ Σ3P (see also
Theorem 5.12 in Chapter 5 in [1]), then by Theorem 5.1 we are done. 2

It remains of course to prove Theorem 5.3. Intuitively, we need to show that if NP ⊆
P/poly, then we can somehow “give up” on the last existence quantifier in Σ3P.

Proof of Theorem 5.3. Let f ∈ Σ3P. By definition, there is a polynomial q and a polynomial-
time TM M such that:
x ∈ f ⇐⇒ ∃y0 ∈ {0, 1}q(|x|) ∀y1 ∈ {0, 1}q(|x|) ∃y2 ∈ {0, 1}q(|x|) M(x, y0, y1, y2) = 1.

6

Define B to be a function that takes in inputs of the form (x, y0, y1), and outputs 1 if and
only if ∃y2 ∈ {0, 1}q(|x|) M(x, y0, y1, y2) = 1.

Observe that B ∈ NP. Furthermore, if NP ⊆ P/poly, then by a standard reduction from
search to decision, there are polynomial size circuits {Cn} which given an input of the form
(x, y0, y1) ∈ B, output a witness y2 for for which M(x, y0, y1, y2) = 1.

Now we use this family of circuits to get rid of one existence quantifier. The idea is to guess
the circuit C|x|, before the ∀y1 quantifier. We will not need the ∃y2 quantifier any more, because
we can use the circuit C|x| to print a string y2 for M(x, y0, y1, y2). Therefore, in case P/poly,
for f ∈ Σ3P, it holds that:
x ∈ f ⇐⇒ ∃y0 ∈ {0, 1}q(|x) and there is a poly-size circuit C|x| such that ∀y1 ∈ {0, 1}q(|x|)
M(x, y0, y1, C|x|(x, y0, y1)) = 1.

Therefore, f ∈ Σ2P. 2

Corollary 5.1. (of Theorem 5.3) Σ2 EXP is not in P/poly.

Proof. If Σ2 EXP is in P/poly, then NP is in P/poly. By Theorem 5.3, it holds that Σ3P =
Σ2P. Furthermore, by a simple padding argument, it follows that Σ3 EXP = Σ2 EXP. But
EXPΣ2P is in Σ3 EXP, and as we saw in the previous lecture, EXPΣ2P has functions of maximum
circuit complexity, i.e., 2n/cn, for a fixed c. This is a contradiction.

Observe that we can improve the P/poly in the above corollary to SIZE(s(n)) for any s(n)
that is sub-exponential.

In general, improved Karp-Lipton theorems (Theorem 5.3) imply improved circuit lower
bounds:

Corollary 5.2. (of Theorem 5.3) If (NP ⊆ P/poly ⇒ PH = C), then for all k, C is not in
SIZE(nk).

Let us finish this section with the following interesting open question. As we showed in
this section, for all k, PΣ2P, or even Σ2P is not in SIZE(nk). Can we say something about
PΣ1P = PNP?

Open Question 4. PNP ⊆ SIZE(O(n))?

While this is still open, people believe that the answer is NO. Most of complexity-theoretic
computer scientists even believe that the following much stronger statement is true.

Conjecture 5.1. P 6⊆ SIZE(O(n))

7

6 Merlin-Arthur Protocols and Circuit Lower Bounds

In this section we prove a circuit lower bound against MA/1. This is the Merlin-Artur com-
plexity class with one bit of advice (see also Chapter 8 in [1], for a further explanation about
the class MA).

6.1 Motivation and Warm-Up

Before we jump into proving the lower bound, we prepare the ground with some motivation and
easy claims that are going to be useful in the proof. Let us start with the following definition.

Definition 4. (The Merlin-Arthur Class). A function f is in MA if there is a polynomial time
algorithm V, and a polynomial q, such that:

1. If f(x) = 1, then there is y ∈ {0, 1}q(|x|) such that Prz∈{0,1}q(|x|) [V(x, y, z) = 1] = 1.

2. If f(x) = 0, then for any polynomial size y, Prz∈{0,1}q(|x|) [V(x, y, z) = 1] < 1/10.

Intuitively, the class MA defined above is the probabilistic version of NP. Think about V as
a verification algorithm; if f(x) = 1 and V is faced with a “good proof”, then it always accepts.
If f(x) = 0 and it is faced with a “bad proof”, then it has some small chance of error (note: if
f(x) = 1 but we give V a “bad proof”, there is no guarantee on the success probability).

Observation 1. MA ⊆ Σ2P.

The above observation follows immediately by the definitions of MA and Σ2P. Hence,
proving circuit lower bounds for MA would be stronger than proving circuit lower bounds for
Σ2P, which was our goal in the previous section. While this already gives a huge motivation
to study the class MA and to try to prove lower bounds for it, there is a more fundamental
complexity-theoretic reason. Under a widely believed assumptions, MA = NP4. Therefore,
circuit lower bounds for MA could be used to make substantial progress towards proving cir-
cuit lower bounds for NP, which in turn could make a huge progress towards answering the
most important question in Computer Science, P versus NP5. In 2007, Rahul Santhanam [7]
achieved something very close to a lower bound for the class MA. He showed an nk circuit
lower bound for languages accepted by Merlin-Arthur machines running in polynomial time
and using only a single bit of advice.

Theorem 6.1. [7] For each k, MA/1 6⊆ SIZE(nk).

4Recall that it is widely believed that P = BPP. Since MA is the probabilistic version of NP, for the same
widely believed derandomization assumptions, it is also believed that MA = NP.

5Recall that P ⊆ PSIZE.

8

Recall that in the Karp-Lipton proof of the lower bound for Σ2P that we saw in the previous
section, it was very useful to compare NP to P/poly. The argument was separated into two
cases. The first is in which NP 6⊆ P/poly, which was the easier case, and the second is in
which NP ⊆ P/poly, which implied that Σ3P = Σ2P. Here, we can’t use the same argument,
because we don’t know whether NP ⊆ P/poly implies that Σ3P = MA. We are going to do
a similar Karp-Lipton style argument, but instead of comparing NP to P/poly, we compare
PSPACE to P/poly. However, here, the easier case is the one in which PSPACE ⊆ P/poly.
This is because, as we are going to prove in Lemma 6.1, if PSPACE ⊆ P/poly, then PSPACE =
MA. Since Σ2P ⊆ PSPACE, this concludes the proof of Theorem 6.1 for the case in which
PSPACE ⊆ P/poly. What happens if PSPACE 6⊆ P/poly? This requires more work, and the
next section is dedicated to this. To prove Lemma 6.1, we need the following Theorem that
follows from work on interactive proofs [9, 6, 8, 2].

Theorem 6.2. There is a PSPACE-complete language L and a probabilistic polynomial-time
oracle Turing Machine M, such that for any input x, it holds that:

1. M only asks the oracle queries of length |x|.

2. If M is given L as oracle, and x ∈ L, then M accepts with probability 1.

3. if x /∈ L, then irrespective of the oracle given to M, it rejects with probability at least
9/10.

Here we are going to use Theorem 6.2 as a black-box without proving it. Now we are ready
to prove the following lemma.

Lemma 6.1. PSPACE ⊆ P/poly⇒ PSPACE = MA.

Proof. First, observe that it is easy to see that MA ⊆ PSPACE. Now we show that if PSPACE ⊆
P/poly, then PSPACE ⊆ MA. Assume that PSPACE ⊆ P/poly, and let L be the PSPACE
complete language from Theorem 6.2. We show that L ∈ MA, by showing a Merlin-Arthur
protocol for L. On input x:

1. Merlin guesses a circuit C|x|, intended to be a circuit for L, and sends it to Arthur.

2. Arthur runs M from Theorem 6.2, whenever M wants to ask the oracle L a query, he can
simulate C|x| instead.

This is a Merlin-Arthur protocol for L. This is because when Merlin sends a circuit to Arthur,
he commits to a specific oracle. The rest follows by Theorem 6.2. If L(x) = 1, then there is a
C such that Pr[V(x,C|x|) accepts] = 1. If L(x) = 0, then for all C∗, Pr[V(x,C∗x) accepts] <
1/10.

9

In fact, if we remove the first condition in Theorem 6.2, then it holds for any PSPACE com-
plete language. This “weaker” version of Theorem 6.2 is already sufficient to prove Lemma 6.1,
as instead of guessing one circuit, the prover can guess polynomially many circuits correspond-
ing to polynomially many queries that the verifier can make (since the verifier runs in polyno-
mial time), which is in total a polynomial amount of information that the prover sends to the
verifier. However, the first condition on the length of the queries is going to be crucial in the
sequel, as we deal with the case in which PSPACE 6⊆ P/poly.

6.2 Proof of Theorem 6.1: what happens if PSPACE 6⊆ P/poly?

Let us now complete the proof of Theorem 6.1. It is remained to deal with the case in which
PSPACE 6⊆ P/poly. Recall, we need to show that for any k there is a function fk ∈ MA/1 such
that fk /∈ SIZE(nk). In the case we are dealing with here, we have that PSPACE 6⊆ P/poly.
Therefore, L from Theorem 6.2 is also not in P/poly. That is, for any k, L /∈ SIZE(nk). Our
approach is going to be as follows. For any k, we are going to design from L another language
L′k such that L′k ∈ MA/1, but L′k /∈ SIZE(nk).

How do we design such a language? The standard approach would be to take inputs for L
and to “pad” them “enough” such that evaluating a circuit for L becomes a polynomial-time
task with respect to the length of the padded input. Then, L′k is defined to be the language that
contains these padded inputs, and a Merlin-Arthur protocol for L′k would be as follows. Merlin
guesses circuit for L and sends it to Arthur. Arthur uses the circuit to decide inputs for L′k. Our
hope in this approach is to prove that the above argument is sufficient to show that L′k ∈ MA,
but L′k /∈ SIZE(nk).

However, there are two issues with this approach. First, let us clarify why the first condition
in Theorem 6.2 is so important. If the circuit complexity of L on inputs of length n is s(n) and
the prover is allowed to ask the oracle queries of polynomial length, then the above approach
only guarantees that on inputs of length n, the prover runs in poly(s(poly(n))) time. But we
don’t have any guarantee on the behavior of s, namely, we don’t know whether s(poly(n)) =
poly(s(n)). This is exactly where the first condition in Theorem 6.2 comes into play, as it gives
a constraint on the length of the oracle queries, which deals with this issue.

The second issue is that Arthur doesn’t know s. Therefore, he doesn’t know whether the
input is padded “enough” such that the circuit evaluation indeed takes only poly-time. Our
extra bit of advice will take care of this, telling Arthur when he has enough padding. Now we
are ready to formulate the above intuitions and deduce the following lemma, which concludes
Theorem 6.1.

Lemma 6.2. If PSPACE 6⊆ P/poly, then for any k > 0, it holds that MA/1 6⊆ SIZE(nk).

10

Proof. Let L be the language in Theorem 6.2. Since PSPACE 6⊆ P/poly, for any k > 0,
L /∈ SIZE(nk). Define L′k as follows:

L′k = {x1y | x ∈ L, y ≥ |x| > 0 is a power of 2, and the minimum circuit size of L|x| is between

(y + |x|)k+1 and (2y + |x|)k+1}

We show that L′k ∈ MA/1 but L′k /∈ SIZE(mk), where m here is the input’s length for L′k:

1. L′k ∈ MA/1: here is a Merlin-Arthur protocol with a single bit of advice for L′k. Let x′ be
an input of length m. The single bit of advice is set to 1 if m is of the form y + n, where
y ≥ n > 0 is a power of 2, and the minimum circuit size for Ln is between (y + n)k+1

and (2y + n)k+1. Otherwise, it is set to 0. Observe that if m is of the above form then y
and n are determined solely by m, the input’s length6.

If the bit of advice is 0, or x′ is not of the from x1y (i.e., it doesn’t end with number of
ones that is at least half of the input’s length), then Arthur rejects immediately. Otherwise
Merlin guesses an s between (y + n)k+1 and (2y + n)k+1, and a circuit Cn of size s,
intended to be a circuit for Ln, and sends it to Arthur. Arthur runs M from Theorem 6.2,
on x, whenever M wants to ask the oracle L a query, Arthur can simulate Cn instead
(observe that the simulation takes a polynomial time with respect to the length of the
input x′). The correctness of the protocol follows form Theorem 6.2.

2. L′k /∈ SIZE(mk): suppose for the sake of contradiction that L′k ∈ SIZE(mk), and denote
by {C ′m}∞m=1 the family of circuits for L′k. Recall that we denote by s(n) the minimum
circuit size for Ln. Since L /∈ P/poly, there is an infinite sequence of numbers I , such
that for any n ∈ I , it holds that s(n) is super-polynomial. Hence, for any n ∈ I , there is
an m of the form m = y + n such that y is a power of 2, y ≥ n > 0, and the minimum
circuit size for Ln is between (y + n)k+1 and (2y + n)k+1. Therefore, for any n ∈ I
and the corresponding m and y, it is easy to see that we can use C ′m as a circuit for Ln,
as for any x of length n, we can simply hardcore y ones into C ′m. This implies that the
minimum circuit size for Ln is at most |C ′m| ≤ (y + n)k, which contradict the fact that
s(n) ≥ (y + n)k+1.

References
[1] Sanjeev Arora and Boaz Barak. Computational Complexity - A Modern Approach. Cam-

bridge University Press, 2009.
6This is because by having m in this form, it holds that y is just the highest order bit in the binary representation

of m. The rest of the bits in the binary representation give n.

11

[2] Lance Fortnow and Rahul Santhanam. Hierarchy theorems for probabilistic polynomial
time. In 45th Symposium on Foundations of Computer Science (FOCS 2004), 17-19
October 2004, Rome, Italy, Proceedings, pages 316–324, 2004.

[3] Russell Impagliazzo and Avi Wigderson. P = BPP if E requires exponential circuits:
Derandomizing the XOR lemma. In Proceedings of the Twenty-Ninth Annual ACM Sym-
posium on the Theory of Computing, El Paso, Texas, USA, May 4-6, 1997, pages 220–229,
1997.

[4] Ravi Kannan. A circuit-size lower bound. In 22nd Annual Symposium on Foundations
of Computer Science, Nashville, Tennessee, USA, 28-30 October 1981, pages 304–309,
1981.

[5] Richard M. Karp and Richard J. Lipton. Some connections between nonuniform and
uniform complexity classes. In Proceedings of the 12th Annual ACM Symposium on
Theory of Computing, April 28-30, 1980, Los Angeles, California, USA, pages 302–309,
1980.

[6] Carsten Lund, Lance Fortnow, Howard J. Karloff, and Noam Nisan. Algebraic methods
for interactive proof systems. J. ACM, 39(4):859–868, 1992.

[7] Rahul Santhanam. Circuit lower bounds for merlin-arthur classes. In Proceedings of
the 39th Annual ACM Symposium on Theory of Computing, San Diego, California, USA,
June 11-13, 2007, pages 275–283, 2007.

[8] Adi Shamir. IP = PSPACE. J. ACM, 39(4):869–877, 1992.
[9] Luca Trevisan and Salil P. Vadhan. Pseudorandomness and average-case complexity via

uniform reductions. In Proceedings of the 17th Annual IEEE Conference on Computa-
tional Complexity, Montréal, Québec, Canada, May 21-24, 2002, pages 129–138, 2002.

[10] Wikipedia contributors. Chernoff bound — Wikipedia, the free encyclopedia, 2018. [On-
line; accessed 17-October-2018].

12

	Introduction
	Undecidable Functions With Small Circuits
	Some Upper Bounds
	Deterministic ¶-Time Algorithms Have Small Circuits
	Randomized Algorithms Have Small Circuits

	Algorithms With Advice
	2 ¶ and Circuit Lower Bounds
	Merlin-Arthur Protocols and Circuit Lower Bounds
	Motivation and Warm-Up
	Proof of Theorem 6.1: what happens if PSPACE¶/ poly ?

