
Lower Bounds (CS294-152, UC Berkeley, Fall’18)

Linear-Size Lower Bounds for Functions in P
Notes for 10/1/18

Ryan Williams

1 Linear-Size Circuit Lower Bounds by Gate Elimination

A couple of lectures ago, we considered functions with maximum circuit complexity, i.e.
C(f) ≥ Ω(2n/n). Last lecture, we looked at known results about functions f with C(f) >
poly(n), for fixed polynomials and for arbitrary polynomials.

In this lecture, we’ll discuss what is known about proving circuit size lower bounds of the
form C(f) ≥ c · n, where c ≥ 1 and the f are in P (or easier). The known lower bounds are
proved by the so-called gate elimination method.

Recall that we’d like to know if NP 6⊂ P/poly. A baby step towards this would be to show
that

NP 6⊂
⋃
c≥1

SIZE[cn].

That is, show that for every c ≥ 1, there is a function in NP that does not have cn size circuits.
(Recall that the gate basis does not matter, as long as the gates have bounded fan-in.)

We don’t know how to prove this yet, but in the last lecture we saw that

Σ2P 6⊂ SIZE(nc) and MA/1 6⊂ SIZE[nc],

for any desired c ≥ 1. Σ2P and MA are a little bigger than NP, we don’t know by how much.
MA is believed to be equal to NP, and it is not hard to show that NP/1 6⊂ SIZE[nc] implies
NP 6⊂ SIZE[nc]. So it is seems reasonable to believe that NP 6⊂ SIZE[nc] could be proved.

We have worked hard to make the proofs here as simple as possible. We’ll build up our
treatment of gate elimination slowly, getting more and more complex as we go on.

1.1 Non-Degenerate Functions

We begin with a very simple lower bound. Recall Bn := {f : {0, 1}n → {0, 1}}. For an
f ∈ Bn on input variables x1, . . . , xn, and a constant c ∈ {0, 1}, the restriction of f to xi = c
is:

f |xi=c(x1, . . . , xi−1, xi+1, . . . , xn) := f(x1, . . . , xi−1, c, xi+1, . . . , xn).

1

That is, f |xi=c is a function on n− 1 variables which behaves as f when xi = c. This is a very
convenient notation for assigning values to variables.

Definition 1. A function f ∈ Bn is non-degenerate if for all i ∈ [n], f |xi=0 6= f |xi=1.

In other words, f is non-degenerate if the value of f depends on all of its input variables:
for every index i, there is some assignment (a1, . . . , an) such that the value of f on (a1, . . . , an)
changes when you flip the value of ai.

Proposition 1. For all non-degenerate f ∈ Bn, CB2(f) ≥ n− 1.

Proof. Let f be non-degenerate, and let C be a min-size circuit for f . Since each non-input
gate has fan-in 2,

(number of edges of C) = 2CB2(f).

Observe:

1. For all i = 1, . . . , n, outdegC(xi) ≥ 1. That is, all input gates in C have outdegree at
least one. (Otherwise, f is degenerate: that variable xi plays no role in the value of f .)

2. For every non-input, non-output gate g, outdegC(g) ≥ 1 (otherwise, g could be removed,
as its output is unused).

Therefore
(number of edges of C) =

∑
g∈C

outdeg(g) ≥ n + CB2(f)− 1,

as this is the total number of gates in the circuit, minus one for the output gate. Hence

2CB2(f) ≥ n + CB2(f)− 1 =⇒ CB2(f) ≥ n− 1.

This simple proposition is already enough to get tight lower bounds in some interesting
cases. Recall the PARITY function on n bits is

Pn(x1, . . . , xn) =
∑
i

xi (mod 2).

A key property of the parity function is is its “extreme” non-degeneracy:

Fact 1.1 (PARITY is Flippy). For all i ∈ [n] and a ∈ {0, 1}n−1, PARITY|xi=0(a) 6= PARITY|xi=1(a).

That is, PARITY is highly non-degenerate: its value flips on every variable assignment,
given a single bit flip of an input. (Note that the only functions satisfying this “flippy” property
are PARITY and its negation.)

2

Theorem 1.1 (Folklore). CB2(Pn) = n− 1.

Proof. For the upper bound, note that by associativity of addition, we can easily compute
PARITY on n bits by making a tree of n − 1 copies of PARITY on 2 bits. The lower bound
follows from Fact 1.1 and Proposition 1.

What about computing PARITY in the basis U2? How efficiently can PARITY be computed
when we do not have PARITY on 2 bits? Well, PARITY on two inputs can be done with three
U2 gates:

(x + y) = (x ∧ ¬y) ∨ (¬x ∧ y).

If we replace each 2-input parity gate in our (n−1)-gate tree-like circuit for Pn with 3 U2 gates,
the circuit size becomes 3(n− 1).

Can we do better? This is basically the most naive construction one could do. It is in fact
optimal.

Theorem 1.2 (Schnorr ‘74). CU2(Pn) = 3(n− 1).

For notational brevity, in the following let C(f) denote CU2(f). The approach used to prove
this result is called gate elimination. It is an inductive method; in the case of Pn, we argue as
follows:

1. Prove: C(P2) ≥ 3.
2. Inductively assume: C(Pn−1) ≥ 3(n− 2).
3. Show: For every minimum size circuit D for Pn, we can “eliminate” at least three (non-

input) gates of D, and get a circuit for Pn−1.
4. Hence size(C) ≥ 3 + C(Pn−1) ≥ 3(n− 2) = 3(n− 1).

How will we remove gates from D? We will assign one input variable to a constant value,
and argue that the restricted circuit on n−1 inputs can be simplified to have three fewer internal
gates. Formally, let D be a U2-circuit, with the constants 0 and 1 as sources along with the n
inputs. We run the following procedure on D:

Procedure Simplify(D)
While applicable, apply the following rules:

- For all h = NOT (b) where b ∈ {0, 1}, replace all wires out of h with wires out of ¬b.
- For all h = AND(1, g) in D, replace all wires out of h with wires out of g.
- For all h = AND(0, g) in D, replace all wires out of h with wires out of 0.
- For all h = OR(1, g) in D, replace all wires out of h with wires out of 1.
- For all h = OR(0, g) in D, replace all wires out of h with wires out of g.

Output the circuit D′ obtained.

3

Every simplification rule eliminates a gate, replacing it with either a wire from other gates,
or with a constant (which can be further simplified).

Incidentally, simplification rules like the above are commonly used in SAT solvers that run
on circuits. We have written Simplify in terms of AND, OR, and NOT gates separately; it
easily extends to every function in U2 (which can have NOTs at either of the two inputs, or at
the outputs).

Proposition 2. For all D, the circuit E = Simplify(D) computes the same function as D.
Furthermore, E is either a constant or every inner gate in E has no constant inputs.

The Simplify procedure also makes sense for B2, but the significant difference is that when
we set only one of the inputs of an XOR to 0 or 1, the XOR never outputs a constant. In fact,
this is the primary difference between working with circuits over U2 and B2. (We will return
to this point later.) But for all U2 functions, we have this important “restriction” property:

Proposition 3 (Restriction Proposition for U2). For all f(x, y) ∈ U2, there are b1, b2, c1, c2 ∈
{0, 1} such that f(b1, y) ≡ c1 and f(x, b2) ≡ c2.

That is, every f ∈ U2 can be forced to be a constant function, by setting only one of the
inputs.

The proof is very easy; first note the proposition is trivial for constant functions, and func-
tions depending on only one variable. It is also obvious for f equal to AND. The remaining
functions can all be written as AND gates with negations on some of their inputs and possibly
their outputs.

Proof of Theorem 1.2. We already proved C(PARITYn) ≤ 3(n− 1).

We first prove C(PARITY2) ≥ 3. Since PARITY2 /∈ U2, we have C(PARITY2) ≥ 2.
Suppose C(PARITY2) = 2. Consider a 2-gate circuit with output gate g. Since g has two
inputs and there’s only one other gate h, g must take some variable x as input. (If g had both
inputs coming from h, the circuit could be simplified to 1 gate.) By the Restriction Proposition,
there is a b such that xi := b forces g to output a constant, independent of the other input
variable. This contradicts the fact that PARITY is flippy. We have proved C(PARITY2) = 3.

Now let n > 2. Let D be a min-size circuit for Pn. Observe that for all variables xi, D′ =
D|xi=0 computes Pn−1 and D′′ = D|xi=1 computes ¬Pn−1. (Note for all f , C(f) = C(¬f),
since NOT gates are free over U2.) Let us inductively assume C(PARITYn−1) ≥ 3(n − 2).
Now we want to prove:

For all min-size C for PARITYn, there is an input xi and v ∈ {0, 1} such that D′ =
Simplify(D|xi=v) satisfies size(D′) ≤ size(D)− 3.

4

If we can prove this, we are done. Why? Every D′ obtained from Simplify can be used
to compute PARITY and ¬PARITY on n − 1 bits by negating the output). By induction,
size(D′) ≥ 3(n− 2). Hence size(D) ≥ 3 + 3(n− 2) ≥ 3(n− 1).

We now show how to find such an xi and v. The idea is to take an input xi with wires to (at
least) two distinct gates g and g′ (later in topological order). Setting xi to a constant that forces
g′ to be a constant eliminates g, g′, and at least one other later gate that g′ points to.

Consider the “first” inner gate g of C: the gate numbered n + 1 in topological order. This g
takes two input variables xi and xj (because C is min-size, g cannot take only one input).

We claim that outdeg(xi) ≥ 2. If outdeg(xi) = 1, then by the Restriction Proposition, there
is an assignment to the other variable xj := v that makes g output a constant. But then D|xj=v

does not depend on xi at all, contradicting the fact that PARITY is flippy. Therefore, xi must
have an edge to some other gate.

Consider the “last” gate g′ that xi connects to: the closest to the output gate in topological
order. (It must be different from the “first” gate g, otherwise C is not min-size.) By the
Restriction Proposition, we can assign xi := v that makes g′ a constant function. Therefore g′

cannot be the output, because PARITY is flippy. Thus g′ has an outgoing wire to another later
gate g′′ (which also cannot be g). Therefore, D′ = Simplify(D|xi=v) has at least three gates
are eliminated: g, g′, and g′′. 2

Review. We have a set of functions {fn}. We want to prove for all n, C(fn) ≥ cn − d for
some constants c, d. We do this as follows:

1. Prove C(f2) ≥ 2c− d. (By case analysis, or computer?)
2. Prove for all n, C(fn+1) ≥ c + C(fn).

Given a min-size circuit D for fn+1, assign an input xi = b so that Simplify(D|xi=b)
produces a circuit for fn with (at least) c fewer gates than D.

1.2 Improved Lower Bounds for U2

The best known circuit size lower bound over U2 is the following.

Theorem 1.3 (Iwama-Lachish-Morizumi-Raz’05). There is an f ∈ P such that for all n,
CU2(fn) ≥ 5n− o(n).

Let’s give a brief overview of what they do. The authors identify a particular Boolean
function property which implies a size lower bound.

Definition 2. A function f ∈ Bn is `-mixed if for all subsets S of variables of size at most `,
all 2` assignments to those variables produces 2` distinct functions on n− ` variables.

5

For example, a non-degenerate function is 1-mixed: for any variable, if you set it true you
get a function f0, and if you set it false you get another function f1. The intuition is that the
more “mixed” a function is, the more “complex” it gets. Their key lemma roughly shows that
for every circuit computing a (n − o(n))-mixed function, there is a set of S of either 1 or 2
variables such that, when restricting f to particular values on those variables, we can eliminate
5|S| gates. After restricting v variables of an `-mixed function to values, the result is still
(`− v)-mixed.

The proof is a nasty case analysis (and you have to control how the o(n) parameter may
change over time). What I want to emphasize here is the consequence:

Corollary 1.1. Every (n− o(n))-mixed f ∈ Bn has CU2(f) ≥ 5n− o(n).

It would seem that “being (n − o(n))-mixed” is a strong property for a function. Quite
interestingly, there are efficiently computable highly-mixed functions:

Theorem 1.4 (Savicky and Zak ’96). There is an f : {0, 1}? → {0, 1} such that for almost all
n, fn is (n− 3n1/2)-mixed, and f ∈ P.

It is also known that there are highly mixed functions computable in polynomial time, with
circuits of size 5n− o(n). That is, the lower bound of 5n is actually optimal for highly mixed
functions!

Theorem 1.5 (Amano-Tarui). For all n, there is an fn ∈ Bn such that fn is (n− n2/3)-mixed
and CU2(fn) ≤ 5n + o(n).

This shows that any further progress on circuit size lower bounds for U2 will have to use
a stronger property than “being highly mixed”! (Note that the property of “being flippy” only
got us a 3n lower bound.)

2 Size Lower Bounds for B2

For the basis of all 2-bit functions, the situation is even more embarrassing! The best lower
bounds for functions in P are 3n− o(n) and 3.01n− o(n).

The main problem with B2-circuits is that the Restriction Proposition does not hold for
XOR gates. When we feed a constant into one input of an XOR gate, the XOR will never
output a constant, it will always get replaced with wires from other gates.

But no one said we had to simplify circuits by setting variables to constants! Suppose we
generalize the kinds of variable restrictions that we allow. Rather than merely setting x := 1 or

6

x := 0 for a variable x, we could set x to be an affine form, a degree-one polynomial over F2

in some other variables, e.g., x := y + z + 1. This is equivalent to simplifying C to a circuit
C ′ that agrees with C on the set {(x, y, z, . . .) | x = y + z + 1 mod 2}. (Note that x = 1 and
x = 0 are also equations, so this is a generalization.)

To give a concrete example, suppose we had the gates XOR(XOR(x, y), z) inside a circuit,
and we set x = y + z + 1 mod 2. We could then simplify these gates to

XOR(XOR(XOR(y, z, 1), y), z) ≡ 1.

We would force the top XOR to output a constant! This is the basic idea behind a new approach
to gate elimination.

2.1 Demenkov and Kulikov’s 3n− o(n) size lower bound over B2

Perhaps the most important decision in a lower bound proof of this kind is: what function are
we going to try lower bounding? In the case of PARITY, we heavily exploited that fact that
we can assign up to n− 1 variables to be constants, and yet PARITY will still not be constant.
Once we generalize our kind of variable assignments, and allow variable assignments to be
mod-2 sums of constants and other variables, intuitively we will need a function that will not
be constant under many such assignments. These are called affine dispersers,

Demenkov and Kulikov gave a simple proof of a 3n − o(n) size lower bound for affine
dispersers. We recall some basic linear algebra needed to define these functions.

A Little Linear Algebra Mod 2. Think of {0, 1}n as Fn
2 , and think of Fn

2 as a vector space
over F2, where u + v is component-wise addition of vectors. (In the following, + denotes sum
modulo 2.)

Definition 3. A subset S ⊆ {0, 1}n is an affine subspace of dimension d if S = v0+span(v1, ..., vd),
for some v0 ∈ Fn

2 and some linearly independent v1, . . . , vd ∈ Fn
2 .

Note that linear independence over F2 is equivalent to: for all j = 1, . . . , d, and all T ⊆
[d]− j, vj 6=

∑
i∈T vi. So we have

S =

{
v ∈ Fn

2 | ∃T ⊆ [d] s.t. v = v0 +
∑
j∈T

vj

}
,

where |S| = 2d.

7

Affine subspaces are the sets of solutions to feasible systems of linear equations over F2:
Given a system Ax = b, the set of solutions (provided there is one) has the form U + x? where

U = ker(A) = {x | Ax = 0}

and x? is an arbitrary solution of Ax = b. The dimension of the affine subspace U + x? is
n− rank(A), and hence the number of solutions to Ax = b will be 2n−rank(A).

(Example: when Ax = b has exactly one solution, rank(A) = n, the dimension of the
solution space is 0, and U = {~0}.)

Definition 4. f : {0, 1}n → {0, 1} is an affine disperser for dimension d if for every affine
subspace S of dimension at least d, there are v, v′ ∈ S such that f(v) 6= f(v′).

That is, f is non-constant on all affine subspaces with at least 2d vectors. For small d, it
is instructive to think of this property as generalizing PARITY, which is non-constant on all
variable assignments on up to n− 1 variables (Any partial assignment on n− k variables can
be seen as a system of n− k linear equations, which has O(2k) solutions.) In the following, let
fd (with n inputs) denote an arbitrary affine disperser for dimension d.

Our lower bound will actually be against a more powerful circuit model than just B2-
circuits.

Definition 5. An XOR-layered B2-circuit with n inputs is a B2 circuit on t inputs composed
with an arbitrary affine transformation A : Fn

2 → Ft
2 for some t.

Such a circuit can be written as a B2-circuit of size s, on top of t XOR gates, each of which
may have arbitrary fan-in, and point directly at the n inputs along with the constants 0 and 1.

Theorem 2.1 (Main). For all XOR-layered B2-circuits C with t gates in the XOR layer and s
gates elsewhere, and for all k ≥ d, if there is an affine subspace S ⊆ Fn

2 with dim(S) ≥ k
such that C(x) = fd(x) on all x ∈ S, then s + t ≥ 4(k − d).

As C agrees with fd on a “larger” affine subspace, the lower bound gets “larger”. Before
we prove the Main Theorem, we note some of its corollaries.

Corollary 2.1 (Lower Bound). Let C be an XOR-layered B2 circuit with t gates in the XOR
layer and s other gates. If C computes fd then s + t ≥ 4(n− d).

Proof. Set k = n in the Main Theorem. If C computes fd, then we can set the affine subspace
S = Fn

2 . Therefore s + t ≥ 4(n− d).

Corollary 2.2. CB2(fd) ≥ 3n− 4d.

8

Proof. Every B2-circuit C of size s′ can be expressed as an XOR-layered circuit C ′ with n
XOR gates. (For all i = 1, . . . , n, we can simply add the trivial XOR gate xi + 0 to the circuit.)
By the Lower Bound Theorem,

4n− 4d ≤ s′ + n,

implying that s′ ≥ 3n− 4d.

In the proof of the Main Theorem, we use an “XOR version” of the Restriction Proposition
for U2:

Proposition 4 (XOR Restriction Proposition). Let g be a gate in the XOR layer of C, i.e.

g = b +
∑
i∈T

xi, b ∈ {0, 1}, T ⊆ [n].

For all j ∈ T and c ∈ {0, 1}, consider the circuit C ′ which replaces xj with the gate c +∑
i∈T−j xj . Then on all inputs to C ′, the gate g is equivalent to a constant function, and C ′

agrees with C on the set of inputs {x |
∑

i∈T xj = c}.

Proof. After the replacement of xj , we can write

g =

b +
∑

i∈T−{j}

xi

+

(
c +

∑
i∈T−j

xj

)
= b + c,

because the sum is modulo 2. So g ≡ b + c. Clearly C ′ agrees with C on the above set.

This proposition means that we can eliminate gates from the XOR layer of g by “assigning
affine forms to variables”. This replacement does two things.

(a) Restricts the space of inputs that our circuit works over: if our circuit worked over a set
S then it now works over a set {x ∈ S |

∑
i∈T xj = c}.

(b) Simplifies the circuit we are working with.

(Recall we had an analogous set of two things in the lower bounds for U2.) We are ready to
prove the Main Theorem:

Proof of Main Theorem. Induction on k. When k = d the theorem is trivial.

Let k ≥ d + 1. Let C be min-size and let S have dimension at least k, where C = fd on S.

Goal: Find an XOR restriction xj :=
∑

i∈T xi + c so that in the remaining subcircuit,
s + t reduces by at least 4.

9

We claim that achieving the Goal will prove the theorem. Assuming the Goal, after setting
the XOR restriction, the circuit C simplifies to a circuit C ′ with

s′ + t′ ≤ s + t− 4

gates, such that C ′(x) = C(x) for all x ∈ S ′ =
{
x ∈ S | xj =

∑
i∈T xi + c

}
. Observe that S ′

has dimension at least k − 1, since S had dimension at least k.

So there’s some S ′ of dimension at least k−1 such that C ′ agrees with f on S ′. By induction,

s′ + t′ ≥ 4((k − 1)− d).

Therefore
s + t ≥ s′ + t′ + 4 ≥ 4((k − 1)− d) + 4 = 4(k − d).

Now we set our sights on achieving the Goal. We start with some simple claims.

Generalized R.P.: For any gate Li from the XOR layer pointing to a U2 gate g, there is an
XOR restriction that makes both Li and g output constants. The resulting circuit agrees with
C on {x | Li(x) = c}.

Proof: By the XOR Restriction Proposition, we can set Li to output any desired constant c.
By the Restriction Proposition, we can choose c that makes g output a constant. QED

Claim: There’s at least one U2-gate g in C depending on both of its inputs, which is not the
output gate.

Proof: Assume not. Then C has only XOR and ¬XOR gates and one-variable projections.
Thus we can write

C(x) =
∑
i∈T

xi + c.

But for some S of dimension k, C(x) = f(x) for all x ∈ S. Thus f is constant on S ′ = {x ∈
S |
∑

i∈T xi = c}, where dim(S ′) ≥ k− 1 ≥ d. This contradicts the assumption that C agrees
with an affine disperser for dimension d on the set S.

If g is the output of C, then by Generalized R.P. we can XOR-restrict L1 and g to constants.
But then C is constant on S ′ = {x ∈ S | L1 = c} of dimension k − 1 ≥ d, contradicting that
C agrees with an affine disperser for dimension d on the set S. QED

Applying the Claim, take the topologically first U2-gate g depending on both inputs, and let
g′ be a gate that g points to (g is not the output). The two inputs L1 and L2 going into g must
be from the XOR layer. We consider a few cases, similar (but not identical) to the proof for
PARITY over U2.

(Case 1) outdeg(L2) = 1. By Generalized R.P., we can XOR-restrict a variable to make
L1 and g constant. Then we can eliminate g and g′, and L1 and L2 (because L2 had
outdegree 1).
So in this case, s + t decreases by 4 by setting L1 to a constant.

10

(Case 2) outdeg(L2) ≥ 2. Let h 6= g be another gate that L2 has a wire to. Suppose we
XOR-restrict a variable to make L2 and g both constant.

(2a) Suppose h = g′. The two inputs to h are L2 and g, both of which are now constants, so
h is constant. This h cannot be the output (similar to our proof of the claim: the whole
circuit would be constant after one XOR restriction). Thus h points to a later gate g′′.
Thus we can set L2 to a constant which eliminates L2, g, h, g′′, so s + t decreases by 4.

(2b) Suppose h 6= g′. In this case, we eliminate L2, g, h, and g′, and s + t decreases by 4.

Thus in all cases, s + t decreases by 4 after one linear restriction. 2

Note the above lower bound is basically tight (as a function of (n − d)), up to additive
constants:

Claim 1 (Exercise?). IPn(x1, . . . , xn/2, y1, . . . , yn/2) =
∑

i xiyi mod 2 is an affine disperser
for dimension n/2 + 1.

We have CB2(IPn) ≤ (n/2− 1) + n/2 = n− 1: we can compute IPn with n/2− 1 XOR
gates and n/2 AND gates.

So there is an XOR-layered circuit for IPn with s + t ≤ n− 1 + n = 2n− 1.

But by the above claim for IPn, we have 4(n− d) ≥ 4(n/2− 1) = 2n− 4.

Therefore s + t + 3 ≤ 4(n− d), while the Main Theorem showed s + t ≥ 4(n− d).

However, we could potentially do better when d is o(n).

2.2 Constructions of Affine Dispersers

How to get affine dispersers of low dimension?

Claim 2 (Exercise?). Whp, a random f : {0, 1}n → {0, 1} is an affine disperser for dimension
O(log n).

Thus for such f , we have CB2(f) ≥ 3n − O(log n), but of course we have stronger lower
bounds for random functions!

There is an explicit construction of affine dispersers for low dimension:

Theorem 2.2 (Ben-Sasson and Kopparty’09, Shaltiel’11, Li’15). There is a family {fn} of
affine dispersers for dimension poly(log n) that can be computed in polynomial time.

It is rather technical to describe these, so we’ll skip them.

Open: Suppose fn is an affine disperser of dimension o(n).

We know CB2(fn) ≤ poly(n) and CB2(fn) ≥ 3n− o(n). Which is closer to the truth?

Since 2011, I have been saying in my course:

11

The proof above is very simple. I am sure that affine dispersers require larger
circuit size.

Recently, the “3n-size barrier” for B2-circuits was finally broken:

Theorem 2.3 (Find-Golovnev-Hirsh-Kulikov’16). For every affine disperser fn of dimension
o(n), we have CB2(fn) ≥ 3.01n− o(n).

This theorem uses a lot of extra machinery on top of gate elimination. They use XOR
restrictions, but they also allow the “XOR layers” in circuits to actually be cyclic graphs. They
sometimes make restrictions which are read-one quadratic polynomials in other variables. And
they choose a “size measure” much crazier than s + t to measure their progress in the gate
elimination steps.

It seems likely to me that there’s a somewhat short proof of (at least) a 3.5n − o(n) lower
bound for affine dispersers for poly(log n) dimension.

2.3 A Barrier

It seems clear that we need a new technique beyond gate elimination to prove super-linear
lower bounds. Here we note a strong “barrier” result that was recently proved.

Say that an arbitrary variable restriction has the form

xi := r(x1, . . . , xi−1, xi+1, . . . , xn),

where r can be any Boolean function on (n − 1) variables. Note that in this lecture, we have
considered r which are constants and r which are “XOR restrictions”: degree-1 F2 polynomials
over the variables.

Theorem 2.4 (Golovnev-Hirsch-Knop-Kulikov’18). For every function f on n inputs, there is
a function f ′ on 3n inputs such that

CB2(f) ≤ CB2(f
′) ≤ CB2(f) + 13.5n,

yet every arbitrary restriction to every input variable of f ′ eliminates at most 5 gates from a
minimum circuit for f ′.

Corollary 2.3. There exist circuits such that it is impossible to remove more than 5 gates by an
arbitrary variable restriction.

The authors also generalize their results to restrictions on O(1) variables.

This shows that, if we are to push gate elimination much further, we cannot expect to get
even “5 gates of progress” in every variable restriction, or even in O(1) variable restrictions:
we would have to do something that only eliminates 5 gates on average over a long period of
variable substitutions.

12

	Linear-Size Circuit Lower Bounds by Gate Elimination
	Non-Degenerate Functions
	Improved Lower Bounds for U2

	Size Lower Bounds for B2
	Demenkov and Kulikov's 3n-o(n) size lower bound over B2
	Constructions of Affine Dispersers
	A Barrier

