
Lower Bounds (CS294-152, UC Berkeley, Fall’18)

The Hardest Functions and How to Find Them
Notes for 9/17/18

Ryan Williams

Announcements:

Turn in your report TODAY for last week’s workshop! So far I have only four reports...

If you’d like office hours, please send me email. We can arrange a time and place in Soda.

1 Preliminaries

One might imagine, from our earlier lamentations about our inability to prove circuit lower
bounds, that it is hopeless to find functions that require very (exponentially) large circuits.
But this is not true. We can find such functions, but they appear to require lots of resources
(time/space) to discover. The question of whether there are exponential-time computable func-
tions that require large circuits is deeply connected to other major questions in complexity
theory, in particular to the theory of derandomization.

1.1 Circuits over a Basis

First, let’s look at the definition of a circuit. Let B be a basis set of functions that our circuits
compute with.

Definition Boolean circuit C with n inputs and size s over a basis B (a.k.a. a B-circuit):

– a DAG of s + n nodes or gates, numbered 1, . . . , s + n, with n sources and one sink
(the sth node).

– for i = 1, . . . , n, the ith gate is labeled by xi, the ith input bit. (These nodes are often
called input gates.)

– for j = n + 1, . . . , n + s, the jth gate is labeled with a function fj from B, where
fan-in(fj) = indegree(j).

1

The computation of a circuit C on an input x is denoted by C(x). (I won’t define this, it
should be easy to define for yourself!)

Define Fn := {f : {0, 1}n → {0, 1}}, i.e. the set of all Boolean functions with n inputs.

C computes f ∈ Fn if for all x, f(x) = C(x).

Circuit complexity of f over B:

CB(f) := minimum size of a B-circuit computing f .

1.1.1 What B’s are interesting?

For circuits with bounded fan-in, there are two bases which are widely used. (For circuits with
unbounded fan-in, there are many more.)

1. B2 = the set of all 222 = 16 Boolean functions on two bits.

2. U2 = informally speaking, uses only AND, OR, and NOT gates, where NOT gates are
“free” (not counted towards size).

More formally, for a variable x, define x1 = x and x0 = ¬x. Define

U2 = {f(x, y) = (xb1 ∧ yb2)b3 | b1, b2, b3 ∈ {0, 1}}.

Note U2 has 8 different functions. If we hardwire constants into the circuit, we can get 14
functions with all of the possible projections onto 1 and 0 variables.

(Note, U2 stands for “unate functions”: functions which, for each variable, are either mono-
tone increasing in that variable or non-monotone decreasing in that variable.)

Aside. If we have constants 0− 1 hardwired into the circuit, we can get more. By plugging
0− 1 constants into functions from U2, we also obtain

f(x, y) = x, f(x, y) = ¬x, f(x, y) = y, f(x, y) = ¬y, f(x, y) = 0, f(x, y) = 1.

That’s six more functions, so we’re now up to 14. The only two functions we’re missing
from B2 is

XOR(x, y) = (x ∧ ¬y) ∨ (¬x ∧ y) = x⊕ y

and its complement, EQUALS(x, y) = ¬XOR(x, y).
End Aside.

It is easy to see their circuit complexities are related to within constant factors:

2

Proposition 1. For all f , CB2(f) ≤ CU2(f) ≤ 3CB2(f).

Proof. To get a U2-circuit from a B2-circuit, we only have to replace the XOR and NOT(XOR)
gates with U2 functions.

EQUALS(x, y) = (x ∧ y) ∨ (¬x ∧ ¬y),

Hence we can simulate EQUALS with 3 gates from U2. Similarly we can get XOR:

XOR(x, y) = (¬x ∧ y) ∨ (x ∧ ¬y),

In fact, U2 circuit complexity is essentially the same as B2 circuit complexity minus XOR
and negation of XOR:

Proposition 2. For all f , CU2(f) = CB2−{XOR,¬XOR}(f)± 2.

(the ±2 is for the constants 0-1, which may or may not be hard-wired)

Proof. U2 ⊆ B2 − {XOR,EQUALS}, so

CU2(f) ≥ CB2−{XOR,EQUALS}(f).

Every function from B2−{XOR,EQUALS} can be simulated with a function from U2 (using
built-in constants), so

CU2(f) ≤ CB2−{XOR,EQUALS}(f) :

given a minimum size circuit over B2 − {XOR,EQUALS} with 0-1 constants, we can get a
circuit of the same size over U2.

So one should only care about the distinction between U2 or B2 if you care about constant
leading factors, since the two circuit complexities within (small) constant factors of each other.
This is actually important for the state-of-the-art, since the best known U2 circuit lower bound
is about 5n for an explicit function, whereas for B2 it is about 3.01n.

3

1.1.2 More General Result

A basis B is complete if for all n and f ∈ Fn, there exists a B-circuit C computing f .

Ex: B = {AND} is not a basis; B = {NOR} is a basis. (Exercise)

B2 and U2 are complete: any function f can be expressed in disjunctive normal form (DNF),

huge OR of O(2n) ANDs, where each AND outputs 1 on exactly one input of f .

So writing f as a “tree” of up to 2n ORs, where each leaf has n ANDs of variables and their
negations, we can get a circuit for f over U2 with size O(n2n).

Theorem 1.1. Let B be a complete basis with constant fan-in for each function in the basis.
Then for all n and f ∈ Fn, CB(f) = Θ(CU2(f)) = Θ(CB2(f)).

1.2 Circuit Complexity

Let’s start with a basic question: how large can circuit complexity get?

Question: How large can CB2(f) get, for f ∈ Fn?

This should be some function of n, the number of inputs to f . We restrict attention to B2

because we know it doesn’t change much by a constant factor.

1.3 A Lower Bound

Theorem 1.2 (Shannon, 1949; Lupanov 1963). There is a universal c ≥ 1 such that for all
sufficiently large n, there is an fhard ∈ Fn such that CB2(fhard) ≥ 2n/(cn).

While this lower bound is for B2, it can easily be adapted to any other complete basis (to
within constant factors).

Proof. Counting argument. What’s the number of Boolean circuits of size S?

Claim: The total number of functions computed by B-circuits of size S is at most

2O(S log(n+S)).

We can prove the claim by an encoding argument. A B2-circuit can be specified by giving:

4

• a DAG on n + S nodes where the first n nodes have indegree 0, and the other S nodes
have indegree 2, and
• assigning some g ∈ B to each node of the DAG.

Each circuit of size S can be uniquely encoded with T = cS log(n+S) bits of information,
for some constant c ≥ 1:

• For each gate i = n + 1, . . . , n + S, we choose 2 gates that come before it as the inputs
to that gate. It takes O(log(n + S)) bits to encode each choice.
• Assigning a g ∈ B to each gate of the DAG takes O(S) bits, because there are 16 = O(1)

functions in B.

It follows that the total number of circuits of size S is at most 2T .

Finally, each such circuit computes one Boolean function, so the total number of functions
with size-S circuits is at most 2T as well. This proves the above claim.

Now the number of Boolean functions on n inputs is 22n . When

22n > 2T = 2cS log(n+S),

the number of all Boolean functions exceeds the number of Boolean functions with size-S
circuits; in that case, some function won’t have size-S circuits. For all S � 2n/(cn), we have

cS log(n + S)� (2n/n) · log(n + 2n/(cn)) < 2n

for large n. Thus there are functions without 2n/(cn) size circuits.

OK, some functions have exponential-in-n circuit complexity. Is this a rare occurrence?
How many functions have high circuit complexity?

1.4 Random Functions Meet the Lower Bound

Theorem 1.3. There is a constant K > 1 such that for large n,

Pr
f∈Fn

[
CB2(f) ≥ 2n

Kn

]
≥ 1− 1/2n.

Proof. Set S := 2n/(2cn). Looking back at the previous proof, we have

(number of functions with size-S circuits) ≤ 2cS log(n+S) ≤ 22n/2

for large n. Therefore

Pr
f∈Fn

[
CB2(f) <

2n

Kn

]
≤ 22n/2/22n .

5

1.5 Generic Upper Bounds

This lower bound is rather tight: for every n-bit Boolean function, no matter how hard it looks,
we can always find a circuit of size roughly O(2n/n). Let’s start with an O(2n) bound:

Theorem 1.4 (Folklore). Every f ∈ Fn has a formula of size at most O(2n).

(Recall a formula is a special case of a circuit, where the outdegree of each non-input gate
is at most one.)

Proof. When n = 1, we can just use one gate. For n > 1, define the (n− 1)-variable functions

f0 := f(0, x2, . . . , xn), f1 := f(1, x2, . . . , xn).

Then we can write f as:

f(x1, ..., xn) = (x1 ∧ f1(x2, ..., xn)) ∨ ((¬x1) ∧ f0(x2, ..., xn)).

Draw: Three gates, then two recursive calls to f0 and f1 on n− 1 variables.

Recursively constructing a formula for f0 and f1, we can get a formula for f using 3 gates
(OR and two ANDs). Then, the size of a formula for n variables satisfies the recurrence
relations

S(n) ≤ 2S(n− 1) + 3, S(1) = 1.

Solving this recurrence, we obtain S(n) ≤ 4 · 2n.

(Consider a complete binary tree of 2n leaves. It has 2n − 1 interior nodes. Put a “cost” of
3 on each interior node, and cost of 1 on each leaf. Have 3(2n − 1) + 2n = 4 · 2n − 3.)

Having become sufficiently warmed up, we now show:

Theorem 1.5 (Lupanov / Shannon, 1949). For all f ∈ Fn, C(fn) ≤ O(2n/n).

That is, every Boolean function on n bits has a circuit of size at most O(2n/n).

Intuition: Recall a circuit of size S where S ≥ n can be represented in Θ(S logS) bits. So
an O(2n/n)-size circuit still takes Ω(2n) bits to write down, so information-theoretically it is
possible that we might represent a 2n-bit string (i.e. f : {0, 1}n → {0, 1}) with it.

The idea is that a 2n-bit string can be “compressed” down to a O(2n/n) size circuit, where
the “wire connections” between gates are somehow encoding the 2n-bit string.

The following “demultiplexer” lemma will be helpful:

6

Lemma 1.1. Let a1, . . . , a2r be an ordering of the r-bit strings. There is a size-O(2r) circuit
Dr with r inputs and 2r output gates G1, . . . , G2r , such that for all i, Gi(x) = 1 iff x = ai.

Proof. Divide variable {x1, . . . , xr} into two halves, with at most r/2 variables in each half.
Compute all O(2r/2) conjunctions on the first half of variables: i.e. expressions of the form

xb1
1 ∧ · · · ∧ x

br/2
r/2 ,

where bi ∈ {0, 1}, and x0 = ¬x, x1 = x. This takes O(r2r/2) gates (r AND gates for each
conjunction). Compute all O(2r/2) conjunctions on the second half of variables, analogously.
This takes O(r2r/2) gates in total. We now have all possible conjunctions on the first half of
variables, and on the second half.

For all 2r conjunctions on r variables, each conjunction is the AND of a conjunction from
the first half and one from the second half. Take these 2r ANDs, and make each AND an output
gate Gi. The overall size is 2r + O(r2r/2) ≤ O(2r).

Proof of Theorem 1.5. Let k � n be a parameter, and f ∈ Fn. Again the idea is to split the
set of inputs into two parts. But now the first half has n− k inputs and the second has k, where
k will be very small (like Θ(log n)).

First, compute all k-bit Boolean functions simultaneously in O(2k22k) gates: For every
Boolean function g ∈ Fk, write down an O(2k)-size formula. Since |Fk| = 22k , this takes no
more than O(2k22k) gates.

Let C1 be a size-O(2k22k) circuit implementing all functions on k inputs, with k inputs and
22k outputs.

Now we’ll make another circuit C2 which will help with the other n−k inputs of f ’s inputs.
For each of the 2n/2k assignments A to the first n − k inputs, there is a function gA on k bits
that is induced. The idea is to use circuitry to efficiently “look up” this function gA, and save
some gates.

Set C2 := Dr from the previous lemma, with r = n − k. This C2 has n − k inputs and
t = 2n−k outputs G1, . . . , Gt, where each output gate Gi is associated with a unique n − k
variable assignment Ai.

Now we connect the two circuits together. Fix an f ∈ Fn to be simulated.

For every ai ∈ {0, 1}n−k, define the k-input Boolean function

fai(y) := f(ai, y).

Note that C1 has already computed fai , because it computed all g ∈ Fk.

7

So for every Gi in C2 (corresponding to ai), take the AND of Gi (from C2) and fai (from
C1). This introduces only 2n−k more gates. Note that at most one of these gates can output 1.
Take the OR of these gates. The overall circuit feeds its first n− k inputs to C2, and the last k
of its inputs to C1.

(Note: these ANDs with one input from C1 and one from C2 are the only part that depends
on f ; they are “encoding” f .)

Now we want to set k to minimize the overall circuit size.

• C2 has size O(2n−k),
• C1 has size O(2k · 22k),
• our AND-ing and OR-ing takes O(2n−k) more gates.

Total size is O(2n−k + 2k · 22k). Set k := log(n/2). Then the size is

O(2n−log(n/2) + n/2 · 22log(n/2)

) ≤ O(2n/n).

2

Clearly the above can be optimized a bit more; it could even be applied recursively to k.

1.6 Improvements

The above circuit complexity upper and lower bounds can be sharpened very tightly.

Definition 1. Let H(n) := maxf∈Fn CB2(f).

Here, the H stands for “hard”. H(n) is the maximum circuit complexity achievable by a
function f ∈ Fn. We have shown:

Ω(2n/n) ≤ H(n) ≤ O(2n/n).

It turns out you can make the leading constants (1− o(1)) and (1 + o(1)), in the lower and
upper bounds, respectively.

Theorem 1.6 (Frandsen, Miltersen 2005).

2n

n
(1 + (log n)/n)−O(1/n)) ≤ H(n) ≤ 2n

n
(1 + 3(log n)/n + O(1/n)).

8

2 Constructing Hardest-Possible Functions

We have seen that a randomly chosen f ∈ Fn needs at least Ω(2n/n) size circuits whp, and
every f ∈ Fn has circuits of size at most O(2n/n). That is, “hard” functions are plentiful –
most functions are hard! Two questions come to mind:

• Can we construct specific functions requiring large circuits?

• How efficiently can an algorithm produce a hard function?

Note: It is easy to produce a hard function using randomness... pick one at random... but
then there is the question of how do we certify the function we picked is actually one of the
hard ones? How can we tell for sure that our output is indeed hard? The algorithmic task
of deciding if a truth table has high circuit complexity is a very interesting one (we will discuss
it later).

We have to be careful how we formalize these questions about the complexity of hard func-
tions. Remember that any f ∈ Fn is a finite function. But in the usual complexity-theoretic
setting, we study languages or decision problems, which (in the interesting case) are defined
over infinite sets of strings.

(I will often use the words “problem” and “language” to describe the same thing: a function
from all binary strings to {0, 1}. If we get in a situation where this terminology makes stuff
unclear, please let me know.)

When we talk about standard complexity classes, like TIME[2n] (exponential time), we are
talking about the class of languages / decision problems recognized by a single, uniform, O(2n)
time algorithm.

To bring the two models together, we can talk about infinite families of Boolean functions:
for every input length n, there is a Boolean function fn on n-bits that we wish to simulate.

Every infinite language L on binary strings can be construed as an infinite family of finite
problems {Ln}, where Ln is a Boolean function over inputs of length n.

2.1 Constructing Hard Functions With Algorithms

Let’s define what it means for a decision problem to have small circuits:

Let f : {0, 1}? → {0, 1}. Define fn : {0, 1}n → {0, 1} to be the function that agrees with
f on all n-bit inputs. Let s : N→ N.

Definition 2. We say that f has s(n)-size circuits if for all n, C(fn) ≤ s(n).

9

Let SIZE(s(n)) be the class of f with s(n)-size circuits.

From our earlier results, we have:

Corollary 2.1. For every f , f ∈ SIZE(O(2n/n)).
There exists a c ≥ 1 and f ′ such that f /∈ SIZE(2n/(cn)).

How can we “construct” a function that needs Ω(2n/n) size circuits, in the usual time/space
complexity sense? Let us start with a “weak” algorithmic upper bound on constructing hard
functions.

Theorem 2.1. There is an f ∈ TIME[2O(2n)] such that for all n, C(fn) = H(n).

Another way of saying this in complexity notation: f /∈ i.o.-SIZE(H(n)).

Proof. Idea is simple: Brute-force it! Here is an algorithm for computing a hardest-possible
function.

Given an input x of length n:
Let C?(x1, . . . , xn) := x1 ∧ ¬x1; let s? := size(C?).
For all f ∈ Fn, [iterate over all 2n-bit strings]

Try all circuits C of size 1, size 2, etc., until find first Cf such that Cf ≡ f .
[Evaluate each C on all 2n inputs, check agreement with f]
If size(Cf) > s?, update s? := size(Cf) and C? := Cf .

Output C?(x).

After all loops have completed, we have a circuit C? with size(C?) = H(n), and the
function implemented by C? has no smaller circuit.

Note: Everything before the last line does not depend on x at all, only on n = |x|. So for
every input of length n, we obtain the same C?.

Hence the above algorithm computes exactly C? on inputs of length n.

In fact, the above algorithm needs only O(2n) space: we need

• 2n bits to store the current function f ,
• O(2n) bits to store current C? (because it’s at most O(2n/n) size),
• O(2n) bits to store the current C,
• O(n) to store s.

So we in fact obtain:

Theorem 2.2 (Meyer ’73, Sholomov ’75). There is an f ∈ SPACE[2n] such that C(fn) =
H(n) for every n.

10

3 Time lower bounds from circuit upper bounds

From the above, we can obtain an intriguing “circuit upper bounds implies time lower bounds”
connection. Recall PSPACE =

⋃
k SPACE[nk].

Theorem 3.1 (Folklore). If E = TIME[2O(n)] ⊂ SIZE(H(n)− 1), then P 6= PSPACE.

Proof. Contrapositive. If P = PSPACE then TIME[2O(n)] = SPACE[2O(n)]. (Padding argu-
ment.) But the above says that there is an f ∈ SPACE[O(2n)] without (H(n)−1)-size circuits.
So f ∈ TIME[2O(n)] as well.

So if we could just “shave off one gate” from the circuit complexity of every exp-time
problem, we would separate P from PSPACE! We will strengthen the above theorem soon.

3.1 Sidebar: Padding Arguments in Complexity

Proof of P = PSPACE⇒ SPACE[2O(n)] ⊆ TIME[2O(n)]:

Assume P = PSPACE. Let f ∈ SPACE[2kn], f : {0, 1}? → {0, 1}. We’ll give a 2O(n)-time
algorithm for f . Define

fpad(y) :=

{
1 if y = x012k|x| and f(x) = 1

0 otherwise

So f outputs 0, unless y has a huge number of ones on the end; in that case, f is computed
on a tiny substring of y.

Claim: fpad ∈ SPACE[n]. Here’s an O(n)-space algorithm:

Given input y, if it does not have the form y = x012k|x| , then reject.
Run an O(2k|x|) space algorithm for L on x and output the answer.

The key point is that we only run the O(2k|x|) space algorithm when we already have |y| ≥
2k|x|. So this algorithm runs in space LINEAR in |y|.

Now, by assumption, fpad ∈ P. Let A be a polytime algorithm for fpad. The following
algorithm computes f :

Given x, compute 2k|x|, construct y = x012k|x| , run A(y) and output the answer.

The running time is polynomial in |y|, i.e. polynomial in 2k|x|. This is 2O(n) time.

Note there are lots of other such lemmas: P = NP =⇒ EXP = NEXP, etc.

11

3.1.1 Why are these implications true? Why don’t they point in the opposite direction?

My intuition: As the resource bounds get more relaxed, it becomes only more likely that the
time class equals the space class. For example, it looks even more likely that TIME[22O(n)

] =

SPACE[22O(n)
].

Why is this? My intuition is that, in the “limit” where there is only a “finite” time limit
as a function of the input and a “finite” space limit as a function of the input, we end up with
the same class of problems: the deciable languages, the functions computable by algorithms in
some finite time (or some finite space).

So as we relax the resource bounds and let them veer off into astronomical numbers, the
difference between time and space matters less and less. We get closer to computability theory,
and further away from complexity as we know it. (This is only intuition, though!)

Indeed, let T (k, n) denote the function from N to N which is a tower of k n’s. So T (1, n) =
n, T (2, n) = nn, and so on. Since SPACE[s] ⊆ TIME[2O(s)], we have SPACE[T (k, n)] ⊆
TIME[T (k + 1, n)], and thus

⋃
k

SPACE[T (k, n)] =
⋃
k

TIME[T (k, n)].

3.2 Reducing the Complexity of Finding Hard Function

We can reduce the complexity of the “hardest possible function” even further:

Theorem 3.2. There is an L ∈ TIME[2O(n)]Σ2P = ENPNP
such that C(Ln) = H(n) for every

n.

This complexity class EΣ2P is “2O(n) Time with a Σ2P oracle”. Let’s explain what that
means. Recall Σ2P = NPNP (it came up in the lecture on SAT time-space tradeoffs):

The class of all f : {0, 1}? → {0, 1} s.t. there’s a polytime relation R and k > 0 such
that

f(x) = 1 ⇐⇒ (∃ y : |y| ≤ |x|k)(∀ z : |z| ≤ |x|k)[R(x, y, z) is true].

A canonical example problem in Σ2P:

12

Problem MIN-CIRCUIT:
Input: A Boolean circuit C (over B2)
Decide: Is there a circuit smaller than C computing the same function as C?

Suppose our circuit C has n inputs and size s, encoded in O(s log(n + s)) bits. How do we
solve this problem in Σ2P?

Here is a Σ2P “algorithm” for MIN-CIRCUIT:

Existentially guess a circuit C ′ s.t. size(C ′) < s.
Universally check for all n-bit inputs z that C ′(z) = C(z).

This takes O(poly(s)) time on a “Σ2P machine.”

To tie into the above definition of Σ2P, the polytime computable relation R(C,C ′, z) would
be:

(if (size(C ′) ≥ s or C(z) 6= C ′(z)) then false, else true).

EΣ2P = problems decidable by 2kn-time algorithms which can make 2kn-long queries to
a Σ2P problem, and get yes/no answers in 1 step.

This class EΣ2P looks way more powerful than “just” exponential time: can find exponen-
tially long solutions to problems.

So how do we prove the above theorem? Need to construct a function computable in EΣ2P

with maximum circuit complexity.

First, given the input length n, we need to compute what H(n) is.

For two functions f, g ∈ Fn, we say that g ≤ f if, as strings, g is at most f in lexicographical
order. (More formally, tt(g) ≤lex tt(f), where ≤lex is lex order on strings.)

Problem COMPLEX:
Input: (f, k) where f is a 2n-bit string, k ∈ {1, . . . , 2n}
Decide: Is there a function g ≤ f that has circuit complexity at least k?

COMPLEX is in Σ2P , here’s a Σ2 algorithm:

13

Existentially guess a function g ≤ f (2n bits),
Universally for all circuits C taking n inputs of size less than k, (O(k log k) bits)
check [g ≤ f and there is an x such that C(x) 6= g(x)].

For those of you who have heard of MCSP, this problem is in fact in NPMCSP . (For those
of you who haven’t, don’t worry about it!)

Now, here is an ECOMPLEX algorithm for computing the “lex first” function of maximum
circuit complexity. We use the oracle in two ways.

Given an input x of length n,

• Determine H(n).
Ask: is (12n , k) ∈ COMPLEX?
on k = 1, 2, . . ., until we get a “no” answer.

Then H(n) = k − 1. This takes O(2n) queries to COMPLEX.

• Construct f with circuit complexity H(n).
Initialize f = 12n , and ` = 1.
While ` ≤ 2n,
- Set `th bit of f to 0.
- If (f,H(n)) /∈ COMPLEX then set `th bit back to 1.
- Increment `.

[Now: f is the lex first function with C(f) = H(n).]
Output f(x).

Note we just need O(2n) queries to COMPLEX oracle to determine f . So f ∈ TIME[O(2n)]COMPLEX.

3.3 More time lower bounds from circuit upper bounds

We can use the above upper bound to get a stronger lower bound consequence from circuit
upper bounds:

Theorem 3.3 (Folklore). If every f ∈ E has circuits of size ≤ H(n)− 1, then P 6= NP.

Proof. We prove the contrapositive. Suppose P = NP. Then Σ2P = P. (This is in Arora-Barak
if you haven’t seen it.) This implies COMPLEX is in P. Therefore, in the previous theorem, all
calls to COMPLEX can be simulated in time 2O(n). So there is a function of circuit complexity
H(n) that’s computable in E.

In other words: COMPLEX ∈ P⇒ EXP /∈ SIZE(H(n)− 1).

14

3.4 Open Problems

How difficult is it to compute functions that are hard for circuit complexity, in terms of time/space
complexity?

OPEN: Is there a function in Σ2EXP = NEXPNP such that f /∈ SIZE(H(n)−1)?

There don’t seem to be any crazy consequences of proving a yes-answer here, but it is a
longstanding open problem that people have thought about. But a no-answer would imply
P 6= NP:

Proposition 3. If all functions in NEXPNP have (H(n)− 1)-size circuits then P 6= NP.

The proof is analogous to the previous theorem.

Note that if there is a function in NTIME[2O(n)] that requires H(n)-size circuits, then we
would already be able to prove some new derandomization results. In particular it would imply
(approximately) that MA = NP .

MA = Merlin-Arthur Games, i.e. “NP with Randomness in the verifier”

The following are special cases of theorems in the literature:

NP/f(n): NP machines with f(n) non-uniform bits. Problems accepted by a list of nonde-
terministic polynomial time algorithms {An} which have program size at most O(f(n)).

Theorem 3.4 (Impagliazzo-Kabanets-Wigderson ’01). If there is a function in NTIME[2O(n)]
that requires H(n)-size circuits, then MA ⊂ NP/nε for all ε > 0.

Theorem 3.5 (Impagliazzo-Wigderson ’97). If there is a function in TIME[2O(n)] that requires
H(n)-size circuits, then BPP = P.

4 Intermediate Circuit Complexities of Functions

So we have shown that the “hardest” that a function can get is H(n) = Θ(2n/n). Are there
functions with intermediate circuit complexities?

Recall that in the usual time/space complexity, we have hierarchy theorems stating that as
we are allotted more time to solve problems, there are strictly more problems that we can solve.
For example:

Theorem 4.1 (Time Hierarchy). For all “nice” t(n) ≥ n, TIME[t] (TIME[t2].

15

Here, “nice” means “time-constructible”: there is an algorithm A, that given 1n as input,
outputs the number t(n) and runs in less than t(n) steps.

Can we compute strictly more functions, given bigger circuits to solve them?

Theorem 4.2 (Circuit Size Hierarchy). There is a universal constant c such that for all func-
tions s : N→ N satisfying n ≤ s(n) ≤ o(2n/n) for all n, SIZE[s] (SIZE[c · s].

Proof. NOT by universal simulation! It does not work like the time hierarchy theorem.

For a given n, we will design a function with s < C(f) ≤ c · s. Pick n′ < n such that
s(n) ≤ 2n′

/n′ ≤ 3s(n). (Convince yourself that such an n′ exists.)

By the tight circuit lower bound, there’s a function fn′ on n′ bits such that C(fn′) ≥
3/42n′

/(n′) > s(n). The upper bound gives us C(fn′) ≤ d2n′
/n′ ≤ 3 ∗ cs(n). To get an

n-bit function, we can just add n − n′ “dummy variables” to the function that don’t affect the
output of the function.

16

	Preliminaries
	Circuits over a Basis
	What B's are interesting?
	More General Result

	Circuit Complexity
	A Lower Bound
	Random Functions Meet the Lower Bound
	Generic Upper Bounds
	Improvements

	Constructing Hardest-Possible Functions
	Constructing Hard Functions With Algorithms

	Time lower bounds from circuit upper bounds
	Sidebar: Padding Arguments in Complexity
	Why are these implications true? Why don't they point in the opposite direction?

	Reducing the Complexity of Finding Hard Function
	More time lower bounds from circuit upper bounds
	Open Problems

	Intermediate Circuit Complexities of Functions

