
Lower Bounds (CS294-152, Fall’18)

Nonuniform lower bounds on functions in P
Notes for 9/10/18

Chinmay Nirkhe

Announcements:

Simons workshop this week! Students enrolled: please send your “review” of a talk by next
Monday.

1 Preliminaries

Last time we saw time-space lower bounds for SAT, and we saw a bit about relativization and
oracles, in particular an oracle relative to which the SAT lower bound is false. Of course SAT
is an NP-complete problem... what about decision problems in P? Lower bounds for these
have mainly been studied in a non-uniform model of space-bounded computation.

2 Branching Programs

Definition 2.1 (Branching Program [BC82]). Let Σ be a finite alphabet and n > 0. A |Σ|-way
branching program of length `(n) and size s(n) is a function computed on input x ∈ Σn. It is
defined by a s(n) size directed acyclic graph with a start node r with the length of all paths
≤ `(n). Each node u is labeled with an index iu ∈ [n] and the out-degree of each node is |Σ|
with one edge labeled with each element of Σ. Each node u has an output letter ou ∈ Σ ∪ {ε}.

Computation is defined inductively. Let v1 = r. vj+1 is inductively selected as the vertex
as the edge reached from vj after following the edge with label xivj ∈ Σ. This creates a path
v1 . . . vt for t ≤ `(n) and the output is ov1 . . . ovt .

Computation on a branching program runs in additional space log(s(n)) and requires time
`(n) log(s(n)). The space is due to storing the current node and the time due to the restriction
on path length.

In addition, these models are perfect for capturing the notion of Random Access Machines
(RAMs) including word RAMs for words of O(1) size.

1

Theorem 2.1. Let f : Σ? → Σ? be computed by a RAM TM in time t(n) ≥ n and size
s(n) ≥ log n. Then fn : Σn → Σ∗ (the restriction of f to inputs of length n) has a |Σ|-way
branching program of length t(n) and size 2O(s(n)).

Proof. Let M be the RAM TM. Construct a node for each of the 2O(s) configurations of the
memory of M . For nodes (mem1, i) and (mem2, j) draw an edge (mem1, i) → (mem2, j)
with the label σ if xi = σ would transition the head to bit xj and memory mem2. The starting
configuration r is the initial state and halting states are leaves1. By the bound on the computa-
tion, this branching program has depth t.

If Σ can depend on n, then this can also capture the “word-RAM” model in which the input
is stored in words of, say, log(n) bits, and we can output words of log(n) bits.

3 Decision Problems in P

Next we explore the best known branching program lower bounds known for decision problems
in P.

Theorem 3.1 (Simplified [Ajt99, BSSV03]). There are problems on Boolean input solvable
in O(nlogn) time requiring branching program (families) of Ω(n(logn)δ) length to solve with
n.999 space – i.e. 2n

.999
size for various δ ≤ 1 But when the space is lowered to e.g. O(logn),

the length lower bound is still around n(logn)1/2.

Roughly, these problems are decision versions of vector convolutions: given vectors x, y ∈
Fn2 , for all i = 0, . . . , n− 1, compute

z =
n−1∑
j=0

xj · y(i+j (mod n)) (1)

and then output 〈x, z〉.

[Ryan’s aside] Is TIME[n] contained in TS[n1.1, O(log n)] or even is TIME[n] contained in
TS[O(n), O(log n)] ?

1We know it is a DAG – i.e. has no cycles – because this would imply the TM doesn’t halt.

2

4 Function Problems

It is easier to prove lower bounds in the setting of function problems (which output many bits
instead of one bits). In fact, the result we will prove critically relies on the fact that the function
outputs many bits.

Let’s consider a family of functions fn : Σn → Σn where Σ is a finite alphabet (that may
depend on n).

Theorem 4.1 ([BC82]). Sorting n integers from the range [n, n2] requires time-space product
Ω(n2/ log n).

By Theorem 2.1, we can instead show that any branching program for sorting n integers
from the range [n, n2] requires

time× log(space) ≥ Ω(n2/ log n). (2)

A result of Beame [Bea91] shows that an upperbound of O(n2) for time× log(space).

This result is harder than the one we will prove in this lecture. Instead we will give a Ω(n2)
lower bound for a problem that is simpler than sorting (it implies lower bounds for sorting).

Problem 4.1 (Non-Occuring Elements (NOE)). Given a list L of n elements from [n] (with
possible repetition), print the nonoccuring elements, [n]− L in any order.

Proposition 4.1. For any n ≤ T (n) ≤ n2/(log n) and S(n) ≥ log n, NOE can be solved on a
(log n)-word RAM TM in time T (n) and space S(n) where T (n)S(n) ≤ O(n2).

The idea is to partitition the set [n] into n/S blocks, each of S items. Then, we perform
n/S passes over the input list; in the i-th pass, determine which items in the i-th block are not
occuring in the list.

This will take space O(S) and time per pass of O(n) for a total time of O(n2/S).

This proves the timespace upperbound. The lowerbound is due to Beame [Bea91]. Due to
Theorem 2.1, the following result proves the optimality of the previous algorithm, even for the
(log n)-word RAM.

Theorem 4.2 (Adaptation of [Bea91]). For every n-way branching program for NOE with
T (n) length and size 2S(n), T (n) · S(n) ≥ Ω(n2).

There are two main ingredients to this proof.

3

Step 1: Uniform random inputs to NOE require a long output

Proposition 4.2. There is a δ > 0 such that for sufficiently large n,

Pr
L∈R[n]n

[L contains at least δn nonoccuring elements] ≥ δ. (3)

Proof. (Sketch) Balls-and-bins argument. When you thorw n balls into n bins, what’s the
probability that least δn of the bins are empty? Let Z be a r.v. indicating the number of empty
bins. Goal is to find a δ ≥ 0 such that Pr[Z ≥ δn] ≥ δ.

For any index i,

Pr[i /∈ L] =

(
1− 1

n

)n
→ 1

e
(4)

By linearity, E[Z] ≈ n/e for large n. Then by method of bounded differences, for all t,

Pr [|Z − E[Z]| > t] ≤ 2 exp

(
−2t2

n

)
. (5)

Choose t = δn. Then

Pr[Z ≥ n

e
− δn] ≥ 1− 2 exp

(
−2δ2n

)
. (6)

For a choice of δ ∈ (1/e, 1), this probability will be greater than δ for sufficiently large n.

Step 2: All short branching programs have low probability of printing many outputs of a
random input

Lemma 4.1. For all branching programs P of length ≤ n/2 which make m outputs for m ≤
n/2,

Pr
L∈R[n]n

[P outputs m NOEs of L] ≤ exp(−m/2). (7)

Proof. Let π be a full path in the branching program (from start to sink). Then an equivalent
statement to the lemma is∑

π

Pr
L

[P follows π on L] · Pr
L

[P outputs m NOEs of L|P follows π on L] ≤ exp

(
−m

2

)
.

(8)

It suffices then to show that for any π,

Pr
L

[P outputs m NOEs of L|P follows π on L] ≤ exp

(
−m

2

)
(9)

4

as
∑

π PrL [P follows π on L] ≤ 1.

To prove (9), notice that

LHS of (9) =
lists ∈ [n]n consistent with π and produces m outputs of P

lists ∈ [n]n consistent with path π
. (10)

This will ammount to lower bounding the denominator and upper bounding the numberator.
Let q ≤ n/2 be the number of distinct input variables queried along the path π. Then the
denominator is nn−q as there are that many possible lists that are consistent with π (b.c. there
are n− q unread and there are n possibilities for each of those unread variables.)

For the numerator, all n − q variables not queried in π must not take any values among
the m outputs because the m outputs are the non-occuring elements. Then, there are at most
(n−,)n−q possible lists consistent with π for which all m outputs of P are correct.

Then,

LHS of (9) =
(n−m)n−q

nn−q
(11)

≤
(

1− m

n

)n/2
(12)

≤ exp
(
−n

2
· m
n

)
(13)

≤ exp(−m/2). (14)

We used 1− x ≤ exp(−x) at the end.

Now we can prove Theorem 4.2.

Proof of Theorem 4.2. Assume P is a branching program for NOE with length T = T (n)
and size 2S for S = S(n). We show that if T · S ≤ αn2 for a certain α > 0, then there exists
an input on which P is incorrect.

The first step is to layer P . We force P to have T layers and each layer has O(2S) nodes
with the starting node in the first layer and every edge from a node in layer i goes to layer i+1.
This is achievable with repeating some nodes (this can blow up the size to O(T2S) but it has
the same length).

Consider a random list L ∈R [n]n as input to P . By Step 1, there exists a δ > 0 such that

Pr
L

[# of NOE for L is ≥ δn] ≥ δ. (15)

5

We now clain that if TS < δ
10
n2, then

Pr
L

[P outputs ≥ δn NOE of L]� δ. (16)

Then, there is some L such that P is wrong on L. How does one prove (16)? We reduce the
problem to one about short branching programs.

Consider the event that P outputs ≥ δn NOEs of L. We can partition P into p “parts” for
p = 2T/n, each part consisting of n/2 layers2. When P outputs ≥ δn NOEs of L, then some
part3 outputs ≥ δn/p = δn2/(2T) NOEs of L. Let this part be the “important” parts of L (the
exact part depends on the input L).

Pr
L

[P outputs ≥ δn NOEs of L] ≤ Pr
L

[
important part outputs ≥ δn2

2T
NOEs

]
. (17)

By Step 2, every length n/2 branching program P ′ with outputs m = δn2/(2T),

Pr
L

[P ′ outputs m NOEs of L] ≤ exp(−m/2) = exp

(
−δn2

4T

)
.Pr
L

[P ′ outputs m NOEs of L] ≤ exp(−m/2) = exp

(
−δn2

4T

)
.

(18)

However, we don’t know on a random input L within the important part will be taken, so
we take a lazy union bound over all 2S nodes that could start the important part. By the upper
bound assumption on TS we have S ≤ δn2/10:

Pr
L

[
important part on L outputs ≥ δn2

2T
NOEs

]
≤ 2S · exp

(
−δn2

4T

)
(19)

≤ exp

(
δn2

10
· −δn

2

4T

)
(20)

≤ exp

(
−δ

2n4

40T

)
(21)

This probability goes to 0 as n increases since T ≤ O(n2). For sufficiently large n, this is� δ.
This proves (16). 2

Notice why the function problem was necessary. A fundamental part of the argument was
about arguing that branching programs must output or can’t output too many values. Its hard
to see how to change that to decision problems in any easy way.

2Think of each part as being a collection of n/2-length “subprograms”.
3Maybe one could call this a hybrid argument flavored.

6

References

[Ajt99] Miklós Ajtai. A non-linear time lower bound for boolean branching programs. In
40th Annual Symposium on Foundations of Computer Science, FOCS ’99, 17-18
October, 1999, New York, NY, USA, pages 60–70, 1999.

[BC82] A. Borodin and S. Cook. A time-space tradeoff for sorting on a general sequential
model of computation. SIAM Journal on Computing, 11(2):287–297, 1982.

[Bea91] Paul Beame. A general sequential time-space tradeoff for finding unique elements.
SIAM J. Comput., 20(2):270–277, 1991.

[BSSV03] Paul Beame, Michael E. Saks, Xiaodong Sun, and Erik Vee. Time-space trade-
off lower bounds for randomized computation of decision problems. J. ACM,
50(2):154–195, 2003.

7

	Preliminaries
	Branching Programs
	Decision Problems in ¶
	Function Problems

