
On the Difference Between Closest, Furthest, and Orthogonal Pairs:
Nearly-Linear vs Barely-Subquadratic Complexity∗

Ryan Williams†

Abstract
Point location problems for n points in d-dimensional Eu-
clidean space (and `p spaces more generally) have typically
had two kinds of running-time solutions:

(Nearly-Linear) less than dpoly(d) · n logO(d) n time, or

(Barely-Subquadratic) f(d) ·n2−1/Θ(d) time, for various f .

For small d and large n, “nearly-linear” running times
are generally feasible, while the “barely-subquadratic” times
are generally infeasible, requiring essentially quadratic time.
For example, in the Euclidean metric, finding a Closest Pair
among n points in Rd is nearly-linear, solvable in 2O(d) ·
n logO(1) n time, while the known algorithms for finding a
Furthest Pair (the diameter of the point set) are only barely-

subquadratic, requiring Ω(n2−1/Θ(d)) time. Why do these
proximity problems have such different time complexities?
Is there a barrier to obtaining nearly-linear algorithms for
problems which are currently only barely-subquadratic?

We give a novel exact and deterministic self-reduction
for the Orthogonal Vectors problem on n vectors in {0, 1}d

to n vectors in Zω(log d) that runs in 2o(d) time. As a con-
sequence, barely-subquadratic problems such as Euclidean
diameter, Euclidean bichromatic closest pair, and incidence
detection do not have O(n2−ε) time algorithms (in Turing
models of computation) for dimensionality d = ω(log logn)2,
unless the popular Orthogonal Vectors Conjecture and the
Strong Exponential Time Hypothesis are false. That is,
while the poly-log-log-dimensional case of Closest Pair is
solvable in n1+o(1) time, the poly-log-log-dimensional case
of Furthest Pair can encode difficult large-dimensional prob-
lems conjectured to require n2−o(1) time.

We also show that the All-Nearest Neighbors problem in
ω(logn) dimensions requires n2−o(1) time to solve, assuming
either of the above conjectures.

1 Introduction

Point proximity and location problems have been core
to computer science and computational geometry since
Minsky and Papert [MP69] and Knuth’s post office
problem [Knu73]. In this paper, we study the tasks
of finding the closest pair or furthest pair in a point set
(i.e., the diameter) in low (but not constant) dimensions
under natural norms, and incidence problems such as
Hopcroft’s problem [Mat93, Eri95, Eri96]: given n
points in Rd and n hyperplanes through the origin, does

∗Supported by NSF CAREER grant CCF-1741615 and NSF

CCF-1741638.
†EECS and CSAIL, Massachusetts Institute of Technology,

Cambridge, MA. rrw@mit.edu

any point lie on any line? (Note this is equivalent
to asking whether there are two vectors which are
orthogonal, i.e., have inner product 0.) For closest
and furthest pair problems, we also consider their
bichromatic versions where there are n red points, n
blue points, and we wish to find a closest (or furthest)
red/blue pair. 1 We consider these problems under the
`p metric for p ∈ {1, 2}, as well as `∞. As is standard,
we use `dp to denote the metric space (Rd, `p), with the

distance functions ||x− y||p = (
∑d
i=1 |xi − yi|p)1/p and

||x− y||∞ = maxi |xi − yi|.
For large n and modest d (think of d as being

at most poly(log log n)), some of these tasks look far
more difficult to solve than others, for reasons which are
still not well-understood (beyond the fact that known
techniques do not work). As early as 1976, Bentley and
Shamos [BS76] noticed an apparent difference in the
difficulties of solving furthest pair and closest pair in
`2 in higher dimensions, and raised it as an important
issue to study. Table 1 gives a rough classification of
key problems which are known to be “easy” and which
seem to be “hard” for large n and modest d.2

Note that there are many other core geometry prob-
lems with one of the two above runtime types; the above
are just some of the core bottlenecks. For example,
Hopcroft’s problem is a special case of problems such as
(batch) point location, which also suffer from the same
n2−1/Θ(d) dependency (see Erickson’s work on hardness
from Hopcroft’s problem [Eri95] for more).

Why do some problems fall on the right side of the
table, and can they be moved to the left side? Be-
sides the natural question of understanding the differ-
ence between furthest and closest pair, here is another

1We do not consider `1 and `2 bichromatic furthest pair ex-
plicitly, as it is easy to efficiently reduce between the bichromatic

version and the uncolored version. We can reduce from bichro-

matic to non-bichromatic by adding one extra dimension with
large (positive if red, negative if blue) coordinates.

2In this paper, we assume a machine model that allows basic
arithmetic on entries of vectors and comparisons of points in Zd
in poly(d, logM) time, where M is the largest magnitude of an

integer in an input. Such a concrete model is necessary for our
hardness results, which are concerned with discrete tasks such as
SAT-solving in typical Turing models of computation.

Copyright c© 2018

Copyright for this paper is retained by authors

Nearly-Linear (dpoly(d) · n logO(d) n time) Barely-Subquadratic (f(d) · n2−1/Θ(d) time)
(Bichrom.) `d∞-Furthest Pair [Yao82, GBT84] `d2-Furthest Pair [Yao82, AESW91]
`d2-Closest Pair [BS76, KM95, DHKP97] Bichrom. `d2-Closest Pair [AESW91]
`d1-Furthest Pair [Yao82, GBT84] d-dim. Hopcroft’s Problem [Cha93, Mat93]
(Bichrom.) `d1 and `d∞-Closest Pair

[GBT84, PS85, DHKP97, Cha17]

Table 1: Nearly-Linear vs Barely-Subquadratic Complexity for Point Problems

motivating example. In 1984, Gabow, Bentley, and Tar-
jan [GBT84] showed that the `∞-furthest pair problem
(and its bichromatic version) in Rd is very easy, solv-
able in Õ(d · n) time. Using this fast algorithm, along

with an isometric embedding of `d1 into `2
d

∞, they then
solve the (bichromatic or not) furthest pair problem for
`1 in Õ(2d ·n) time. So computing the `∞-diameter and
`1-diameter are both “nearly-linear” time problems in
poly(log log n) dimensions and higher.

Do similar bounds hold for `2-furthest pair?

As the above table indicates, the best known algo-
rithms for furthest pair in `2 (bichromatic or not) still
have running time bounds of the form O(n2−1/Θ(d)),
which is “barely subquadratic.” Is there a fundamental
reason why this problem is so much harder in `2 than
in `1 or in `∞?

The situation is arguably counter-intuitive, because
`1 and `∞ are technically more “universal” metrics
than `2, so one might think that problems should
be more difficult under the former than the latter.
For instance, efficient isometric embeddings of n-point
sets from `2 into `1 and into `∞ are known in the
literature on metric embeddings (see the book [DL97]
for references), whereas the converse is not true (see
for example [WW75, Chapter 2]). However, these
isometric embeddings need Ω(n) dimensions in the
most general cases. There may still be embeddings
(perhaps randomized) which map low-dimensional n-
point sets in `2 into sub-exponential-dimensional `1 (or
`∞). Indeed, in the case of low distortion (where the
distances in an embedding are allowed to shrink or grow
by small multiplicative amounts) these are well-known,
even deterministically in some regimes [LLR94, Ind07,
GLR10]. The results of this paper show that “nice”
isometric embeddings of `2 into `1 would have major
implications in fine-grained complexity.

1.1 Strong Difficulty of Proximity Problems
in the Euclidean metric We offer good reasons
why furthest pair in `2 and other barely-subquadratic
problems will be difficult to solve as fast as closest pair,
even in very low dimensions. We do this by relating `2-

furthest pair and other “barely subquadratic” problems
to the Orthogonal Vectors Conjecture [Wil05, AVW14]
and the Strong Exponential Time Hypothesis [IP01,
CIP09] in a novel way.

The OV problem is:

Given n vectors v1, . . . , vn ∈ {0, 1}d,
are there i, j such that 〈vi, vj〉 = 0?

ClearlyO(n2d) time suffices for solving OV, and slightly
subquadratic-time algorithms are known in the case of
small d [AWY15, CW16]. The Orthogonal Vectors
Conjecture (OVC) states that there is no OV al-
gorithm running in (say) n1.99 time for dimensionality
d = ω(log n).

Conjecture 1.1. ([Wil05, AVW14]) For every ε >
0, there is a c ≥ 1 such that OV cannot be solved in
n2−ε time on instances with d = c log n.

In other words, OVC states that OV requires
n2−o(1) time on instances of dimension ω(log n). OVC
is plausible because it is implied by (and looks much
more likely than) the popular Strong Exponential Time
Hypothesis [IP01, CIP09] on the time complexity of
solving k-SAT [Wil05, WY14].

Straightforward transformations show that OVC
implies that both furthest and bichromatic closest pair

in `
ω(logn)
1 and `

ω(logn)
2 require n2−o(1) time [Wil05,

AW15]. Also assuming OVC, David, Kartik, and
Laekhanukit [DSL16] show that (non-bichromatic) clos-

est pair in `
ω(logn)
p for p > 2 and `

ω(logn)
∞ also require

n2−o(1) time. It is not so surprising that some proximity
search problems in super-log dimensions are hard under
OVC, because OVC is a hardness conjecture about a
problem in super-log dimensions.

In this paper, we show that OVC implies bichro-
matic closest pair and furthest pair in `2 require essen-
tially quadratic time for even poly-loglog dimensions, in
stark contrast with bichromatic closest pair and furthest
pair in both `1 and `∞ (which both have n1+o(1)-time
solutions in this case). Our main technical tool is the
following dimensionality reduction for Orthogonal Vec-
tors over {0, 1} to Orthogonal Vectors over Z, where the
input is n vectors v1, . . . , vn ∈ Zd:

Copyright c© 2018

Copyright for this paper is retained by authors

Lemma 1.1. (Dimensionality Reduction) Let ` be
an integer in [1, d]. There is an n·dO(d/`)-time reduction
from OV for n vectors in {0, 1}d to dO(d/`) instances
of OV over Z for n vectors in Z`+1, with vectors of
O((d log d)/`)-bit entries.

Applying this lemma, we establish quadratic-time
hardness for the barely-subquadratic Hopcroft’s prob-
lem (which is essentially OV over Z), `2-Furthest Pair,
and Bichromatic `2-Closest Pair in small (poly-log-log)
dimensions. It follows that if any one of these three
problems became “nearly-linear”, then there would have
many interesting algorithmic consequences, including
new SAT-solving algorithms. For example:

Theorem 1.1. Under SETH (or OVC), Hopcroft’s
problem in ω(log log n) dimensions with vectors of
O(log n)-bit entries requires n2−o(1) time.

Theorem 1.2. Under SETH (or OVC), finding a fur-
thest pair in ω(log log n)2 dimensions with vectors of
O(log n)-bit entries under the `2 norm requires n2−o(1)

time.

Therefore, computing the diameter of an n-point
set in low-dimensional `2 is surprisingly more difficult
to solve than in the `1 metric, or in the `∞ metric. By
Gabow-Bentley-Tarjan [GBT84], there are n2−ε-time
algorithms for furthest pair under `1 up to (1− ε) log n
dimensions, and under `∞ up to n1−ε dimensions.
There seems to be an exponential curse of dimensional-
ity in computing the diameter of a point set, going from
`∞ to `1, and also going from `1 to `2. Table 1.1 sum-
marizes the consequences for barely-subquadratic prob-
lems.

Under the present landscape of fine-grained com-
plexity conjectures, it follows that none of the barely-
subquadratic problems we have identified can be made
nearly-linear:

Corollary 1.1. Under SETH (or OVC), none of
`2-Furthest Pair, Bichromatic `2-Closest Pair, or

Hopcroft’s problem are solvable in n2−ε ·log2o(
√

d)

n time,
for all ε > 0.

Since the above barely-subquadratic problems have
closely-related nearly-linear problems, these results also
show that OVC and SETH have consequences for the
theory of metric embeddings. For example, since `d∞-
Furthest Pair can be solved in Õ(d · n) time, every
n1.99-time isometric embedding from n points in `d2
into `∞ with d = ω(log log n)2 must blow up the
dimension doubly-exponentially to n1−o(1) — unless
OVC and SETH are false. This is striking when one

remembers that every n-point metric can be (efficiently)
isometrically embedded into `∞ with n − 1 dimensions
(by the classical Frechet embedding).

Unfortunately, the above conditional lower bounds
only hold for exact solutions to the problems. Our
reductions from OV to closest/furthest pair no longer
work if we only have (1 + ε)-approximations to the
closest/furthest pair (if they did, this paper would
be about how OVC is false, thanks to many fast
approximation algorithms for these problems [AI17]).

Hardness for All-Nearest Neighbors. The best
known algorithms for the `2-Closest Pair problem are
nearly-linear, running in 2O(d)n logO(1) n time. A
prominent open problem is whether the exponential de-
pendence on d is necessary: Does `2-Closest Pair require
n2−o(1) time in ω(log n) dimensions? Could we show
hardness under (for example) OVC or SETH?

The question is rather subtle. As mentioned earlier,
the related problems of Bichromatic `2-Closest Pair
and `2-Furthest Pair are easily shown to be OV-hard
in ω(log n) dimensions [Wil05, AW15]. Intuitively
speaking, in both of the latter problems, our reductions
can “control” the distances between points in such a
way that it is easy to encode OV. But for `2-Closest
Pair (with no colors), we have much less control, and it
is difficult to keep large sets of points far enough apart
to successfully encode an OV instance [DSL16].

Here we report some progress on this open problem.
In the closely-related All-Nearest Neighbors problem,
the task is to report the `2-closest pair for all points in
the given set. Nearly-linear algorithms are also known
for All-Nearest Neighbors, which have essentially the
same complexity as `2-Closest Pair [Cla83, Vai89]. We
can show OV-hardness for All-Nearest Neighbors:

Theorem 1.3. Under OVC, the All-Nearest Neighbors

problem in `
ω(logn)
2 requires n2−o(1) time, even restricted

to vectors with entries from {−1, 0, 1}.

The reduction goes through the Set Containment
problem (equivalent to OV), and uses error-correcting
codes to keep one half of the vectors “distant” from each
other, and the other half relatively “close” to the first
half.

2 Dimensionality Self-Reduction for OV

In this section, we set up the framework for proving
hardness for the aforementioned “barely-subquadratic”
problems. We begin with the following more general
theorem, which will imply the dimensionality reduction
lemma.

Theorem 2.1. For every d and integer ` ∈ [1, d],
given two sets of vectors U, V ⊆ {0, 1}d, there is a

Copyright c© 2018
Copyright for this paper is retained by authors

Barely-Subquadratic Problem Lower Bound (Under SETH or OVC)

`d2-Furthest Pair [Yao82, AESW91] n2−o(1) time for d = ω(log log n)2

Bichrom. `d2-Closest Pair [AESW91] n2−o(1) time for d = ω(log log n)2

d-dim. Hopcroft’s Problem [Cha93, Mat93] n2−o(1) time for d = ω(log log n)

Table 2: New Lower Bounds For Barely-Subquadratic Problems

deterministic algorithm running in n·dO(d/`) time which
outputs a list of t = dO(d/`) integers {k1, . . . , kt} ⊆ [0, t],
along with sets U ′, V ′ ⊆ Z`+1 such that |U ′| = |U |,
|V ′| = |V |, and all entries in u′, v′ are O((d log d)/`)-
bit integers. There is an orthogonal pair u ∈ U, v ∈ V
if and only if there is a pair u′ ∈ U ′, v′ ∈ V ′ such that
〈u′, v′〉 = ki for some i.

Although it may be difficult to see in hindsight, the
proof of Theorem 2.1 is inspired by the Merlin-Arthur
communication protocol with Õ(

√
d) communication for

Inner Product, due to Aaronson and Wigderson [AW09].
In that protocol, two parties each hold a d-bit vector,
and they wish to determine if their vectors are orthog-
onal. The protocol shows how a prover can send an
Õ(
√
d)-bit message to the two parties, such that the

two parties only need to exchange Õ(
√
d)-bits (with

O(log d) public randomness) to determine orthogonality
with high probability. They do this by encoding d-bit
vectors with O(

√
d)-degree bivariate polynomials, and

their protocol uses the key good property of low-degree
polynomials that we know (they have few roots, so eval-
uating distinct two polynomials at a random point will
yield two distinct values, with decent probability).

In the below proof of Theorem 2.1, there are sev-
eral major differences. First, we forget one of the vari-
ables, and encode our d-bit vectors with `-dimensional
vectors whose entries are d/`-degree univariate polyno-
mials. Second, the parameter ` allows for a trade-off
between the length of the vector and the degrees of the
polynomials. (This corresponds to a trade-off between
the length of the prover’s message and the length of
the others’ messages, in the Merlin-Arthur protocol.)
Third, we do not pick random points to evaluate the
polynomial on, but rather a single deterministic value.
This actually suffices for our purposes.

Proof. Without loss of generality, assume d is a multiple
of `, otherwise we can add zeroes at the end of each
vector to satisfy this assumption.

First, we will define a univariate polynomial Ru,v(x)
that captures the inner product of two vectors u and v,
then we will give a reduction that uses these polynomi-
als in a crucial way. (Intuitively, Ru,v(x) is analogous
to Merlin’s message in the Aaronson-Wigderson proto-
col [AW09].) Consider two vectors u ∈ U, v ∈ V . Di-

vide the d dimensions of both vectors into ` contiguous
blocks, each of which contains d/` dimensions. Suppose
the ith block of u is [ui,1, . . . , ui,d/`] and the ith block
of v is [vi,1, . . . , vi,d/`], where all ui,j , vi,j ∈ {0, 1}. Con-
struct the polynomials

Pu,i(x) =

d/`∑
j=1

ui,j · xj−1

and

Qv,i(x) =

d/`∑
j=1

vi,j · xd/`−j .

Let Pu(x) be the `-dimensional vector [Pu,1, . . . , Pu,`]
and Qv(x) be the `-dimensional vector [Qv,1, . . . , Qv,`].
Observe that the coefficient of xd/`−1 in the polynomial
Ru,v(x) = 〈Pu(x), Qv(x)〉 is exactly

∑̀
i=1

d/`∑
j=1

ui,j · vi,j = 〈u, v〉 .

Furthermore, note that for any u ∈ U and v ∈ V , the
polynomial Ru,v(x) has degree at most 2d/`, and each
of its coefficients are integers in [0, d].

Now we are ready to give the reduction. The idea is
to exhaustively try all such polynomials Ru,v(x) which
would correspond to a zero inner product, and for each
one we check for a pair of vectors that yields such a
polynomial.

First, enumerate all t = dO(d/`) polynomials R(x)
of degree at most 2d/` with coefficients in [0, d]∩Z such
that the coefficient of xd/`−1 equals 0.

Set x0 := d + 1. Note that, given the integer
value k = R(x0) =

∑`−1
i=0 Pu,i(x0) · Qv,i(x0), the

polynomial R(x) is uniquely determined, because all of
its coefficients are integers in [0, d].

For all u ∈ U and v ∈ V , compute u′ := Pu(x0)
and v′ := Qv(x0), creating two sets of vectors U ′ and
V ′ where all vectors have ` dimensions, with entries of
bit length at most O((d log d)/`).

By enumerating over all such polynomials R(x), we
obtain sets U ′, V ′, and collection of t integers {R(x0)}
each in O(d log d)/` bits, satisfying the conclusion of
the theorem. In particular, the vectors u ∈ U , v ∈ V

Copyright c© 2018

Copyright for this paper is retained by authors

satisfy 〈u, v〉 = 0 if and only if there is some polynomial
R(x) of degree at most 2d/` with coefficients in [0, d]∩Z
such that 〈Pu(x0), Qv(x0)〉 = R(x0) and the xd/`−1

coefficient of R(x) equals 0.

Now we prove the dimensionality reduction lemma:

Reminder of Lemma 1.1 [Dimensionality Reduction
for OV] Let ` ∈ [1, d]. There is an n · dO(d/`)-time
reduction from OV for n vectors in {0, 1}d to dO(d/`)

instances of OV over Z for n vectors in Z`+1, with
vectors of O((d log d)/`)-bit entries.

Proof. Given a set S of n (non-zero) vectors in {0, 1}d,
set U := S and V := S in Theorem 2.1, which produces
n vectors U ′ and V ′ in Z` along with a set of dO(d/`)

numbers T such that S has an orthogonal pair if and
only if there is some u ∈ U ′, v ∈ V ′, and k ∈ T such
that 〈u, v〉 = k.

For every k ∈ T , create new sets of vectors U ′k, V
′
k,

where every u ∈ U ′ is replaced by uk := [u, 1] in U ′k, and
every v ∈ V ′ is replaced by vk := [v,−k] in V ′k. Since
all entries in u and v are non-negative, we observe:

1. for all u ∈ U ′ and v ∈ V ′, 〈u, v〉 = k if and only if
〈uk, vk〉 = 0,

2. for every pair uk, u
′
k ∈ Uk, 〈uk, u′k〉 ≥ 1, and

3. for every pair vk, v
′
k ∈ Vk, 〈vk, v′k〉 ≥ k2.

Consider the set Sk := Uk∪Vk ⊂ Z`. By the above three
facts, we could only obtain an orthogonal pair of vectors
in Sk by taking one vector from Uk and one vector from
Vk, and Sk contains an orthogonal pair if and only if
there is some u ∈ U ′ and v ∈ V ′ such that 〈u, v〉 = k.
Our reduction calls OV on Sk for every k ∈ T , and
outputs the relevant orthogonal pair for S if any of the
calls return an orthogonal pair for some Sk.

2.1 Consequences Here we show how the above
Dimensionality Reduction for OV implies hardness for
the barely-subquadratic problems mentioned in the
introduction.

Reminder of Theorem 1.1 [Hopcroft’s Problem] Un-
der SETH (or OVC), Hopcroft’s problem in ω(log log n)
dimensions requires n2−o(1) time, with vectors of
O(log n)-bit entries.

Proof. Let c ≥ 1 be an arbitrary constant and let
d := c log n. We show how an oracle for Hopcroft’s
problem in ω(log log n) dimensions, running in O(n2−δ)
time for some universal δ > 0, can be used to solve OV

for n vectors in d dimensions in n2−δ+ε time (regardless
of c) for every ε > 0, which would refute the OVC.

Set ` := c(log d)/α = c log(c log n)/α, for a small
parameter α > 0 to be set later. Applying Lemma 1.1
to a given subset S ⊆ {0, 1}d, the reduction runs in time

n · (c log n)O(c logn)/`) ≤ n · cO(α logn) ≤ n1+O(α log(c)),

and produces nO(α log(c)) instances of OV with n points
in Z(c log logn)/α+O(1), with vectors of O(log n)-bit en-
tries. Setting α � ε/ log(c), the reduction generates
O(nε) instances in Ω(1/ε ·c log(c) · log log n) dimensions,
each of which our Hopcroft oracle solves in n2−δ time,
by assumption. This concludes the proof.

Reminder of Theorem 1.2 [`2-Furthest Pair] Un-
der SETH (or OVC), finding a `2-furthest pair in
ω(log log n)2 dimensions requires n2−o(1) time, with vec-
tors of O(log n)-bit entries.

Proof. Given a fast algorithm for `2-furthest pair in
ω(log log n)2 dimensions, we show how to quickly solve
Hopcroft’s problem on n points in ω(log log n) dimen-
sions, and appeal to Theorem 1.1.

Let S be a set of n vectors in Z` with ` =
ω(log log n) and with O(log n)-bit entries. Let k > 1
be such that every entry of every vector has magnitude
less than nk. In the following, let v[i] denote the ith
component of a vector v.

For every vector u ∈ S, define the (`2 + 2)-
dimensional vector

u′ := [u[1] · u[1], u[1] · u[2], . . . , u[`] · u[`], 0, n2k+1].

That is, the first `2 components of u′ are all possible
products of two components of u, followed by the entries
0 and n2k+1. Put each u′ in a set U ′. Also for every
vector v ∈ S, define the (`2 + 2)-dimensional vector

v′ := [v[1] · v[1], v[1] · v[2], . . . , v[`] · v[`], n2k+1, 0],

and put v′ in a set V ′. Now observe that:

• for u′1, u
′
2 ∈ U ′ coming from some u1, u2 ∈ S,

〈u′1, u′2〉 =
∑
i,j∈[`] u1[i]u1[j]u2[i]u2[j] + n4k+2.

• for v′1, v
′
2 ∈ V ′ coming from some v1, v2 ∈ S,

〈v′1, v′2〉 =
∑
i,j∈[`] v1[i]v1[j]v2[i]v2[j] + n4k+2.

Note that by our choice of k, |u1[i]u1[j]u2[i]u2[j]| ≤ n4k

for all i, j. So all inner products are positive, in both of
the above cases. In contrast, for u′ ∈ U ′ and v′ ∈ V ′,

〈u′, v′〉 =
∑
i,j∈[`]

u[i]u[j]v[i]v[j]

Copyright c© 2018

Copyright for this paper is retained by authors

=
∑
i,j

u[i]v[i] · u[j]v[j] = (〈u, v〉)2.

Now, all possible inner products between every u′ ∈ U ′
and v′ ∈ V ′ are non-negative, and 〈u′, v′〉 = 0 if and
only if 〈u, v〉 = 0.

Suppose we normalize all vectors in U ′ and V ′,
replacing each vector u′ and v′ by u′′ := u′/||u′||2. Since

〈u′′, v′′〉 =
1

||u′||2 · ||v′||2
〈u, v〉,

the vector pairs in U ′, V ′ with zero inner product are
exactly preserved, and all inner products of pairs within
U ′ (and of pairs within V ′) are still positive. By the law
of cosines, for all u′′ ∈ U ′ and v′′ ∈ V ′ we have

||u′′− v′′||22 = ||u′′||22−||v′||22−2〈u′′, v′′〉 = 2−2〈u′′, v′′〉.

Therefore, taking S := U ′ ∪ V ′, solving Hopcroft’s
problem on S is equivalent to finding two vectors with
`2-distance at least

√
2, and this is the maximum

possible distance between two vectors in the instance. It
follows that solving `2-furthest pair on these instances
will solve Hopcroft’s problem on them as well.

Corollary 2.1. Under SETH (or OVC), finding a
bichromatic `2-closest pair in ω(log log n)2 dimensions
requires n2−o(1) time, with vectors of O(log n)-bit en-
tries.

Proof. As before, we begin from the proof of hardness
for Hopcroft’s problem (Theorem 1.1). The reduction
there computes O(nε) instances of Hopcroft’s problem
on n points in Ω(1/ε · c log(c) · log log n) dimensions, for
any desired ε > 0. We will slightly modify the proof of
Theorem 1.2 for furthest pair to work for bichromatic
closest pair.

Let S be a set of n vectors in Z` with ` =
ω(log log n) and O(log n)-bit entries. We wish to know
if two vectors in S are orthogonal.

Let v[i] denote the ith component of a vector v.
We define the vectors in U ′ very similarly to the proof
of Theorem 1.2: for all u ∈ S, make the `2-dimensional
vector

u′ := [u[1] · u[1], u[1] · u[2], . . . , u[`] · u[`]].

That is, each component of u′ is a product of two
components of u. Put each u′ in a set U ′ of red points.
For every vector v ∈ S, define the `2-dimensional vector

v′ := [−v[1] · v[1],−v[1] · v[2], . . . ,−v[`] · v[`]],

and put v′ in a set V ′ of blue points. Now observe that
for every red u′ ∈ U ′ and every blue v′ ∈ V ′,

〈u′, v′〉 = −(〈u, v〉)2.

Thus the inner product between a red u′ and a blue
v′ is zero when 〈u, v〉 = 0, and is otherwise negative.
If we normalize all vectors in U ′ and V ′, those red-blue
pairs with zero inner product are preserved, and the rest
of the red-blue pairs still have negative inner product.
Analogously as in Theorem 1.2, this means that the
red-blue pairs with zero inner product have Euclidean
distance

√
2, and all other red-blue pairs have distance

strictly greater than
√

2. Therefore finding the closest
red-blue pair in this `2-dimensional instance will solve
the original instance S of Hopcroft’s problem.

3 Euclidean All-Nearest Neighbors

Here we prove hardness for All-Nearest Neighbors in
ω(log n) dimensions:

Reminder of Theorem 1.3 Under OVC, the All-

Nearest Neighbors problem in `
ω(logn)
2 requires n2−o(1)

time, even restricted to vectors with entries from
{−1, 0, 1}.

It seems plausible that there is a sub-quadratic-time
reduction from All-Nearest Neighbors to `2-Closest Pair
(even in high dimensions), so we think of Theorem 1.3
as good evidence that `2-Closest Pair is also hard for
ω(log n) dimensions.

Proof. Let d = O(log n). We begin with the Subset
Containment problem: Given n red subsets of [d] and
n blue subsets of [d], is there some red subset that is
contained in some blue subset? It is well-known that
this problem is equivalent to OV on n vectors in d
dimensions [Wil05] (imagine you have a red/blue version
of OV with vectors in {0, 1}d, and flip all the bits of the
blue vectors; this converts the OV instance to a Subset
Containment instance).

The main idea of the proof is to use error correcting
codes over {−1, 1} to keep the red points “far apart”
from each other, so that the nearest neighbor of each
red point x is a blue point y which is as close to being
a superset of x as possible.

Let R be the collection of red sets and let B be
the blue sets. We will think of them as vectors in
{0, 1}d in the natural way. First, we do a trick which
will help control the vector norms. Try all pairs of
integers d1, d2 ∈ [d] with d1 < d2. Take the subset
Rd1 of R which only contains vectors having exactly d1

ones, and take the subset Bd2 of B which only contains
vectors having exactly d2 ones. We will work with the
collections R′ := Rd1 and B′ := Bd2 in the following.
(The benefit is that we now may assume that all red
vectors have the same norm value vA, and all blue
vectors have the same norm value vB , and it only costs
O(d2) extra calls.)

Copyright c© 2018
Copyright for this paper is retained by authors

Let ε ∈ (0, 1/2). We say that a code with distance
at least (1/2− ε) is a collection of vectors S ⊆ {−1, 1}k
such that for all u, v ∈ S with u 6= v, 〈u, v〉 ≤ 2εk.
Note this condition is equivalent to saying that the
Hamming distance between each pair of k-dimensional
vectors is at least (1/2 − ε)k. Such codes are known
to have polynomial-time constructions. In particular,
it was recently shown how to efficiently construct a
set S of at least n such vectors, with dimension only
k ≤ t = O(log n)/ε2+o(1) [TS17]. In the following, let S
be such a code with

ε := 1/8

and the dimension k as a parameter to be set later.
We will add k dimensions to all vectors in R′ and B′.

For each vector vi ∈ R, for i = 1, . . . , n, we concatenate
the ith codeword from S to the end of it, obtaining a
(d + k)-dimensional vector v′i. For each vector wi ∈ B,
we concatenate k zeroes to the end, obtaining a (d+k)-
dimensional w′i.

Observe that for all vectors v′i from R′, their `2-
norm squared is

||v′i||22 = d1 +

(
k∑
i=1

12

)
= d1 + k(3.1)

For all vectors w′i from B′, we have ||w′i||22 = d2.
Furthermore, observe that for every distinct pair of
vectors v′i, v

′
j from R′, their inner product is at most

(d1 − 1) + 2εk, because the original vectors vi and vj
were distinct vectors with exactly d1 ones (so their inner
product is at most d1−1), and the inner product of any
two distinct codewords is at most 2εk. Therefore for all
distinct v′i, v

′
j ∈ R′ we have

||v′i − v′j ||22 = ||v′i||22 + ||v′j ||22 − 2
〈
v′i, v

′
j

〉
= 2(d1 + k)− 2

〈
v′i, v

′
j

〉
(by (3.1))

≥ 2(d1 + k)− 2(d1 − 1 + 2εk)

= 2k + 2− 4εk = 3k/2 + 2.

On the other hand, for a vector v′i from R′ and a vector
w′j from B′,

||v′i − w′j ||22 = ||v′i||22 + ||w′j ||22 − 2
〈
v′i, w

′
j

〉
= d1 + k + d2 − 2

〈
v′i, w

′
j

〉
.

Note the inner product
〈
v′i, w

′
j

〉
is maximized when the

original subset vi (of cardinality d1) is contained in the
subset wj (of cardinality d2), in which case

〈
v′i, w

′
j

〉
=

d1. So the minimum possible distance between v′i and
w′j is

||v′i − w′j ||22 = d1 + k + d2 − 2
〈
v′i, w

′
j

〉
= (d2 − d1) + k.

Putting it all together, suppose we set k large enough
that

3k/2 + 2 > d+ k

(e.g. k = 2d will do). Then, if there is some red
set (of cardinality d1) in R contained in a blue set (of
cardinality d2) in B, then the nearest neighbor of the
corresponding point in R′ will be a point in B′ with
distance precisely (d2−d1)+4k from it. Set k = Θ(log n)
so that it is at least d, and it is large enough to support
at least n distinct codewords with ε = 1/8.

We have reduced OV with n vectors in {0, 1}c logn

to n points in {−1, 0, 1}Θ(logn), such that computing
all-nearest neighbors in `2 will determine if the original
instance had a red set contained in a blue set. In
particular, we can check for every point whether its
nearest neighbor corresponds to a set containing it in
the original instance, or a set it contains. By the above,
there is a red set contained in a blue set if and only if
for the cardinalities d1 and d2 of these respective sets,
the nearest neighbor to some point v in Rd1 is a point
in Bd2 with distance only (d2 − d1) + 4k from v.

4 Conclusion

We have given some rigorous explanation for why cer-
tain point-location and proximity problems only admit
barely-subquadratic time algorithms: they can encode
difficult high-dimensional Boolean problems in surpris-
ingly low dimensions. In contrast, the nearly-linear
proximity problems seem incapable of such an encod-
ing; moreover, if any of them were found to be capable,
we would be refuting some major conjectures in fine-
grained complexity.

It is likely that many more consequences can be
derived than what we have shown here.

• For one example, Backurs and Indyk (personal
communication) noticed that our lower bound
for bichromatic `2-Closest Pair implies an in-
approximability result for the fast Gauss trans-
form [GS91], where we are given a set of n red
vectors R and n blue vectors B in Rd, and are asked
to compute

F (r) =
∑
b∈B

e−||a−b||
2

for every r ∈ R. In particular, they have observed
that (under OVC) F cannot be approximated with
an additive ε-error in n2−δ ·poly(log(1/ε), 2d) time,
for any fixed δ > 0.

• For another example, a variant of the reduction in
Lemma 1.1 (where instead of setting x := d+ 1 in
the polynomials, we imagine trying all choices for

Copyright c© 2018
Copyright for this paper is retained by authors

x from a large-enough field, and we build larger-
dimensional Boolean vectors whose inner products
model the process of computing inner products
among all values of x) was used in recent work with
Abboud and Rubenstein [ARW17] to show that
finding a vector pair of maximum inner product
among a set of n Boolean no(1)-dimensional vec-
tors is hard to non-trivially approximate in sub-
quadratic time.

There are many interesting questions to pursue
further; here are some particularly compelling ones.

1. Can the ω(log log n) and ω(log log n)2 dimen-
sionality in our hardness reductions be re-
duced down to ω(1) dimensions? This would
demonstrate very tight hardness for solving these
problems. Our results currently do not rule out

O(22d

n)-time algorithms for any of the problems
discussed. The main bottleneck is that in the main
reduction (Theorem 2.1 and Lemma 1.1) it seems
we have to compute O(log n)O(logn)/` different in-
stances to go from O(log n) dimensions down to `
dimensions; perhaps there is a more efficient reduc-
tion method.

2. All of the nearly-linear problems discussed in this
paper actually have 2O(d) · n logO(1) n-time algo-
rithms, except for bichromatic `1 and `∞ clos-
est pair, for which their best known algorithms
have the running time bound n · logO(d) n. Can
stronger hardness be established for these
two problems, or can their dependence on d
be improved? So far, prior work [Wil05, DSL16]
has only established quadratic-time hardness for
these problems when d = ω(log n), so it is quite
possible that they are in fact solvable in 2O(d) ·
n logO(1) n time, like the other nearly-linear prob-
lems.

3. The All-Nearest Neighbors problem is solvable in
2O(d) · n logO(1) n time in the general case, not just
when all vectors are in {−1, 0, 1}. Is there is a
dimensionality reduction for the special case
of {−1, 0, 1}, similar to Lemma 1.1? (Please
note that this would likely refute OVC and SETH.)

4. Do any of the “popular conjectures” in fine-
grained complexity imply that `2-Closest
Pair requires n2−o(1) time in ω(log n) dimen-
sions?

Acknowledgements

I am grateful to the SODA’18 reviewers, as well as
Amir Abboud, Arturs Backurs, Piotr Indyk, Aviad

Rubenstein, and Huacheng Yu for useful comments and
discussions. In particular, several years ago Huacheng
took patient notes from one of our meetings, and
wrote up a version of the main lemma presented here.
Unfortunately he declined to be an author on this paper.

References

[AESW91] Pankaj K. Agarwal, Herbert Edelsbrunner, Ot-
fried Schwarzkopf, and Emo Welzl. Euclidean mini-
mum spanning trees and bichromatic closest pairs. In
Discrete and Computational Geometry, pages 407–422.
ACM, 1991.

[AI17] Alexandr Andoni and Piotr Indyk. Nearest neigh-
bors in high-dimensional spaces. In Jacob E. Good-
man, Joseph O’Rourke, and Csaba D. Toth, editors,
Handbook of Discrete and Computational Geometry.
CRC Press, 2017.

[ARW17] Amir Abboud, Aviad Rubenstein, and Ryan
Williams. Distributed PCP theorems for hardness of
approximation in P. In FOCS, page to appear, 2017.

[AVW14] Amir Abboud, Virginia Vassilevska Williams, and
Oren Weimann. Consequences of faster alignment of
sequences. In ICALP, pages 39–51, 2014.

[AW09] Scott Aaronson and Avi Wigderson. Algebrization:
A new barrier in complexity theory. ACM TOCT, 1,
2009.

[AW15] Josh Alman and Ryan Williams. Probabilistic poly-
nomials and hamming nearest neighbors. In FOCS,
2015.

[AWY15] Amir Abboud, Richard Ryan Williams, and
Huacheng Yu. More applications of the polynomial
method to algorithm design. In SODA, pages 218–230,
2015.

[BS76] Jon Louis Bentley and Michael Ian Shamos. Divide-
and-conquer in multidimensional space. In STOC,
pages 220–230. ACM, 1976.

[Cha93] Bernard Chazelle. Cutting hyperplanes for divide-
and-conquer. Discrete & Computational Geometry,
9:145–158, 1993.

[Cha17] Timothy M. Chan. Orthogonal Range Searching
in Moderate Dimensions: k-d Trees and Range Trees
Strike Back. In SOCG, volume 77 of Leibniz Interna-
tional Proceedings in Informatics (LIPIcs), pages 27:1–
27:15, 2017.

[CIP09] Chris Calabro, Russell Impagliazzo, and Ramamo-
han Paturi. The complexity of satisfiability of small
depth circuits. In Parameterized and Exact Complex-
ity (IWPEC), pages 75–85, 2009.

[Cla83] Kenneth L. Clarkson. Fast algorithms for the all
nearest neighbors problem. In FOCS, pages 226–232.
IEEE, 1983.

[CW16] Timothy M. Chan and Ryan Williams. Determin-
istic APSP, Orthogonal Vectors, and more: Quickly
derandomizing Razborov-Smolensky. In SODA, pages
1246–1255, 2016.

Copyright c© 2018
Copyright for this paper is retained by authors

[DHKP97] Martin Dietzfelbinger, Torben Hagerup, Jyrki
Katajainen, and Martti Penttonen. A reliable random-
ized algorithm for the closest-pair problem. Journal of
Algorithms, 25(1):19–51, 1997.

[DL97] Michel Marie Deza and Monique Laurent. Geometry
of Cuts and Metrics. Springer, 1997.

[DSL16] Roee David, Karthik C. S., and Bundit
Laekhanukit. On the complexity of closest pair
via polar-pair of point-sets. CoRR, abs/1608.03245,
2016.

[Eri95] Jeff Erickson. On the relative complexities of some
geometric problems. In Proceedings of the 7th Cana-
dian Conference on Computational Geometry, pages
85–90, 1995.

[Eri96] Jeff Erickson. New lower bounds for Hopcroft’s
problem. Discrete & Computational Geometry,
16(4):389–418, 1996.

[GBT84] Harold N. Gabow, Jon Louis Bentley, and
Robert E. Tarjan. Scaling and related techniques for
geometry problems. In STOC, pages 135–143. ACM,
1984.

[GLR10] Venkatesan Guruswami, James R Lee, and Alexan-
der Razborov. Almost euclidean subspaces of `1 via
expander codes. Combinatorica, 30(1):47–68, 2010.

[GS91] Leslie Greengard and John Strain. The fast gauss
transform. SIAM Journal on Scientific and Statistical
Computing, 12(1):79–94, 1991.

[Ind07] Piotr Indyk. Uncertainty principles, extractors, and
explicit embeddings of `2 into `1. In STOC, pages 615–
620. ACM, 2007.

[IP01] Russell Impagliazzo and Ramamohan Paturi. On the
complexity of k-SAT. J. Comput. Syst. Sci., 62(2):367–
375, 2001.

[KM95] Samir Khuller and Yossi Matias. A simple random-
ized sieve algorithm for the closest-pair problem. In-
formation and Computation, 118(1):34–37, 1995.

[Knu73] Donald Ervin Knuth. The art of computer pro-
gramming: sorting and searching, volume 3. Pearson
Education, 1973.

[LLR94] Nathan Linial, Eran London, and Yuri Rabinovich.
The geometry of graphs and some of its algorithmic
applications. In FOCS, pages 577–591. IEEE, 1994.

[Mat93] Jiŕı Matousek. Range searching with efficient
hiearchical cutting. Discrete & Computational Geom-
etry, 10:157–182, 1993.

[MP69] Marvin Minsky and Seymour Papert. Perceptrons:
An Introduction to Computational Geometry. The MIT
Press, 1969.

[PS85] Franco P Preparata and Michael Ian Shamos. Com-
putational Geometry: An Introduction. Springer, 1985.

[TS17] Amnon Ta-Shma. Explicit, almost optimal, epsilon-
balanced codes. In STOC, 2017.

[Vai89] Pravin M. Vaidya. An o(n log n) algorithm for the
all-nearest-neighbors problem. Discrete & Computa-
tional Geometry, 4(1):101–115, 1989.

[Wil05] Ryan Williams. A new algorithm for optimal 2-
constraint satisfaction and its implications. Theor.
Comput. Sci., 348(2-3):357–365, 2005.

[WW75] J. H. Wells and L. R. Williams. Embeddings and
extensions in analysis. Springer-Verlag, 1975.

[WY14] Ryan Williams and Huacheng Yu. Finding orthog-
onal vectors in discrete structures. In SODA, pages
1867–1877, 2014.

[Yao82] Andrew Chi-Chih Yao. On constructing minimum
spanning trees in k-dimensional spaces and related
problems. SIAM Journal on Computing, 11(4):721–
736, 1982.

Copyright c© 2018

Copyright for this paper is retained by authors

