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Abstract
In low-depth circuit complexity, the polynomial method is a way
to prove lower bounds by translating weak circuits into low-degree
polynomials, then analyzing properties of these polynomials. Re-
cently, this method found an application to algorithm design:
Williams (STOC 2014) used it to compute all-pairs shortest paths
in n3/2Ω(

√
log n) time on dense n-node graphs. In this paper, we

extend this methodology to solve a number of problems in combi-
natorial pattern matching and Boolean algebra, considerably faster
than previously known methods.

First, we give an algorithm for BOOLEAN ORTHOGONAL

DETECTION, which is to detect among two sets A,B ⊆ {0, 1}d
of size n if there is an x ∈ A and y ∈ B such that 〈x, y〉 = 0.
For vectors of dimension d = c(n) logn, we solve BOOLEAN

ORTHOGONAL DETECTION in n2−1/O(log c(n)) time by a Monte
Carlo randomized algorithm. We apply this as a subroutine in
several other new algorithms:

• In BATCH PARTIAL MATCH, we are given n query strings
from from {0, 1, ?}c(n) log n (? is a “don’t care”), n strings
from {0, 1}c(n) log n, and wish to determine for each query
whether or not there is a string matching the query. We
solve this problem in n2−1/O(log c(n)) time by a Monte Carlo
randomized algorithm.

• Let t ≤ v be integers. Given a DNF F on c log t variables
with t terms, and v arbitrary assignments on the variables, F
can be evaluated on all v assignments in v · t1−1/O(log c) time,
with high probability.

• There is a randomized algorithm that solves the Longest
Common Substring with don’t cares problem on two strings
of length n in n2/2Ω(

√
log n) time.

• Given two strings S, T of length n, there is a randomized
algorithm that computes the length of the longest substring
of S that has Edit-Distance less than k to a substring of T in

k1.5n2/2Ω(
√

log n
k

) time.

• Symmetric Boolean Constraint Satisfaction Problems (CSPs)
with n variables and m constraints are solvable in poly(m) ·
2n(1−1/O(log mn)) time.
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1 Introduction
The PARTIAL MATCH problem states: given a database D
of n points in {0, 1}d, process D to support queries of the
form q ∈ {0, 1, ?}d which either report a point x ∈ D
that matches all the non-? characters in q or reports that
no x exists. (The ?’s are “don’t cares” or wildcards.)
This problem naturally captures several near-neighbor search
scenarios; indeed, PARTIAL MATCH is believed by some
to be more difficult than nearest neighbor in Rd [PTW08].
PARTIAL MATCH is easily seen to be equivalent to another
important problem called SUBSET QUERY [CIP02]. In
SUBSET QUERY, we wish to preprocess a databaseD of sets
from [d] such that, for all query subsets T ⊆ [d], we can
determine if there is an S ∈ D such that T ⊆ S.1

PARTIAL MATCH has been thoroughly studied for
decades (e.g. Rivest’s PhD thesis [Riv74]). However, there
has been only minor algorithmic progress beyond the two
obvious solutions of storing 2Ω(d) space for all possi-
ble queries, or taking Ω(n) time to try all points in the
database. It is generally believed that PARTIAL MATCH is in-
tractable for sufficiently large dimension d—this is one ver-
sion of the “curse of dimensionality” hypothesis. In mod-
els such as the cell-probe model, strong lower bounds are
known [MNSW98, BOR99, JKKR04, PT06, PTW08]. For
example, Patrascu [Pat11] showed that any data structure
for partial match that probes only t cells must use space
2Ω(d/t) when the word size is O(n1−ε/t). The best known
data structures for answering partial match queries are due
to Charikar, Indyk, and Panigrahy [CIP02] for the general
case (discussed in more detail below), and Cole, Gottlieb,
and Lewenstein [CGL04] for queries with a bounded num-
ber of ?’s. Large gaps remain between the data structures
and the known lower bounds.

In this paper, we study the natural off-line variant of
answering multiple partial match queries at once. In contrast
to data structures, lower bounds in this setting will be much
more difficult to attain (if they exist at all). In the BATCH
PARTIAL MATCH problem, we have n queries x1, . . . , xn ∈
{0, 1, ?}d and a database D ⊆ {0, 1}d of size n, and wish to
answer all queries.2 We also define BATCH SUBSET QUERY

1See the Preliminaries for an overview of the reduction.
2Although we set the number of queries and the database size to be the

same, that is only for simplicity: our algorithms easily extend to cases with
different sizes of query sets and databases.



in the natural way. The obvious algorithm for these problems
runs in O(n2d) time, and by preprocessing all possible
queries to the database, one can also solve them in O(n2d)
time. However, just as in the usual partial match setting,
BATCH PARTIAL MATCH is truly theoretically interesting
for d ≥ Ω(log n); in that case, we wish to solve the problem
in time that is sub-quadratic in n.

Given a data structure for PARTIAL MATCH with O(p)
processing time and O(q) query time, we can clearly solve
BATCH PARTIAL MATCH in O(p + nq) time. Applying the
data structures of Charikar, Indyk, and Panigrahy, one ob-
tains the following algorithms for BATCH PARTIAL MATCH:

• Õ(n · 2O(
√
c·d log2 d/ log1/2 n) + n2/2c) time, for any

parameter c. Setting c = log n/ log2+ε d, the running
time is Õ(n · 2O(d/ logε d) + n2−1/ log2+ε d). Hence
for d = O(log n), one can obtain n2−1/(log logn)2+ε

running time.

• Õ(n · dc + n2d/c) time, for any c ≤ n. For d =
Ω(log n), this does not yield a running time improve-
ment better than O(n2/poly(log n)).

The following improved algorithms for BATCH PAR-
TIAL MATCH were also known.

• For sufficiently large d, one can apply fast matrix
multiplication to solve the problem faster than O(n2d).
Indeed, it is easy to observe that BATCH SUBSET
QUERY with n sets over the universe [d] can be solved
with an n × d × n matrix product. However, this
approach cannot yield an o(n2) time algorithm.

• The VECTOR DOMINATION problem is defined as:
given two sets A,B, each of n vectors in c log n di-
mensions, determine if there is x ∈ A and y ∈ B such
that xi ≤ yi for all i. Impagliazzo, Lovett, Paturi, and
Schneider [ILPS14] (building on prior work of Impagli-
azzo, Paturi, and Schneider [IPS13] and Chan [Cha05])
give an n2−1/poly(c) time algorithm for the VECTOR
DOMINATION problem: given two sets A,B, each of
n vectors in c log n dimensions, determine if there is
x ∈ A and y ∈ B such that xi ≤ yi for all i. When the
vectors are over {0, 1}, it is easy to see that this prob-
lem is equivalent to BATCH SUBSET QUERY, hence
their algorithm can be used to solve BATCH PARTIAL
MATCH in n2−1/poly(c) time when the dimensionality is
c log n. This is a substantial improvement over applying
Charikar, Indyk, and Panigrahy’s data structure.

While some lower bounds for PARTIAL MATCH (the
data structure problem) are known, no lower bounds are
known for BATCH PARTIAL MATCH at all, being an “offline”
problem. However, there is some evidence that BATCH PAR-
TIAL MATCH may not be solvable in sub-quadratic time. For

example, it is known that if BATCH BOOLEAN ORTHOGO-
NAL DETECTION (hence also BATCH PARTIAL MATCH) is
solvable in n2−ε · 2o(d) time for some ε > 0, then CNF-SAT
on formulas with n variables and m clauses is solvable in
2n(1−ε/2) ·2o(m) time [Wil05]. The Strong Exponential Time
Hypothesis ([IP01, CIP09]) effectively asserts that such SAT
algorithms do not exist. (In fact, several conditional lower
bounds based on assuming SETH can actually be based on
assuming that BATCH PARTIAL MATCH needs n2−o(1) time
instead, such as the graph diameter inapproximability results
of Roddity and Vassilevska [RV13].)

1.1 Our Results In this paper, we present a faster al-
gorithm for BATCH PARTIAL MATCH for all dimensions
d ≥ Ω(log n), and exploit the versatility of partial matches
to derive faster algorithms for other basic problems. The key
idea is to leverage a strategy outlined in recent prior work
([Wil14]) on all-pairs shortest paths. After a series of re-
ductions, we show how to rephrase the problem as a type
of Boolean circuit evaluation problem, then combine tools
from circuit complexity and from the algorithms literature
(such as fast matrix multiply) to solve the evaluation prob-
lem efficiently.

Our initial algorithm solves the BOOLEAN ORTHOGO-
NAL DETECTION problem, which is to detect among two
sets A,B ⊆ {0, 1}d of size n if there is an x ∈ A and y ∈ B
such that 〈x, y〉 = 0. In what follows, let c : N → N satisfy
c(n) ≤ nε for all ε > 0.

THEOREM 1.1. For vectors of dimension d = c(n) log n,
BOOLEAN ORTHOGONAL DETECTION can be solved in
n2−1/O(log c(n)) time by a randomized algorithm that is
correct with high probability.

This algorithm is a significant improvement over the
n2−1/poly(c) running time of [ILPS14] mentioned above (for
the Boolean case), and can be used to recover the fastest
known running time for CNF-SAT (via a known reduc-
tion from CNF-SAT to BOOLEAN ORTHOGONAL DETEC-
TION [Wil05]).

As alluded to in the above, the theorem proceeds by re-
ducing this detection problem to a circuit evaluation prob-
lem, then provide a way to efficiently evaluate this cir-
cuit. After that, we give a sub-quadratic time reduction
from the batch version of BOOLEAN ORTHOGONAL DE-
TECTION to BOOLEAN ORTHOGONAL DETECTION itself,
which roughly preserves the running time. Invoking reduc-
tions between orthogonal detection and partial match, this
yields a new sub-quadratic time algorithm for answering par-
tial match queries in batch:

COROLLARY 1.1. The BATCH PARTIAL MATCH problem
with n queries and n strings from {0, 1}c(n) logn can be
solved in n2−1/O(log c(n)) time by a randomized algorithm
that is correct with high probability.



An analogous statement holds for the batch version of
subset query.

Evaluating DNFs. Next, we prove an equivalence be-
tween (a) evaluating DNF formulas on many assignments
and (b) answering many partial match queries on a database,
resulting in a new algorithm for evaluating a DNF on many
assignments:

COROLLARY 1.2. Given a DNF F on c log t variables with
t terms, and v arbitrary assignments on the variables with
t ≤ v, F can be evaluated on all v assignments in v ·
t1−1/O(log c) time, with high probability.

That is, for exponential size DNF, we can obtain a
genuine polynomial improvement over the obvious Õ(v · t)
time bound for evaluating a t-term DNF on v assignments.
It is instructive to think of Corollary 1.2 as a multivariate
Boolean version of fast univariate polynomial evaluation.
Ideally, one would like to see that a DNF with t terms can
be evaluated on t arbitrary assignments in Õ(t) time (but
note that this would be impossible, if orthogonal detection
is hard!).

Longest Common Substring with Don’t Cares. Fast
algorithms for computing certain similarity measures be-
tween sequences (strings) are a classical area of study in
computer science. Famous examples include the Longest
Common Subsequence and Edit-Distance problems. We ap-
ply our orthogonal detection algorithm to solve natural ex-
tensions of the longest common substring problem.

Given two strings S, T ∈ Σn of length n, the LONGEST
COMMON SUBSTRING problem asks for the length of the
longest string that appears in both S and T as a contiguous
substring. The problem can be solved in optimal Θ(n) time
using Suffix-Trees [Gus97] (See [KSV14] for a recent space-
efficient algorithm). We consider the variant in which the
strings S and T are over (Σ ∪ {?})n, where ?’s correspond
to “don’t care” characters. In the LONGEST COMMON
SUBSTRING WITH DON’T CARES problem (abbreviated
as LCS∗), we ask for the longest string over Σ that is a
partial match with both a contiguous substring of S and a
contiguous substring of T . LCS∗ is natural for modeling
real-life text processing and bioinformatics, where the ?
characters may correspond to noisy or erroneous data.

The classic Smith-Waterman O(n2) time dynamic
programming algorithm for Local Alignment [SW81]
and the O(n2/ log2 n) time improvements for Edit Dis-
tance [CLZU03, MP80, BFC08] can be adapted to solve
LCS∗, but no faster algorithms were known. There are
many clever algorithms for related problems. For in-
stance, the classical pattern matching with don’t cares prob-
lem is the special case of LCS∗ where we ask whether
the whole string (or pattern) S appears in T as a sub-
string. Kalai’s algorithm [Kal02] improves previous algo-
rithms of Indyk [Ind98], Muthukrishnan and Palem [MP94],

and Fisher and Paterson [FP73], and solves the problem in
O(|T | log |S|) time.

Recently, as an attempt to explain the lack of faster
algorithms for LCS∗, Abboud, Vassilevska Williams, and
Weimann [AVW14] proved that SETH implies an n2−o(1)

lower bound for LCS∗ over binary alphabets. Thus, under
this plausible hypothesis we are left with a sub polynomial
gap in our understanding of the complexity of LCS∗ and the
question becomes whether we can decrease this gap, e.g. by
“shaving more log factors”. Our reductions imply a new
algorithm for LCS∗ running faster thanO(n2/ logc n) for any
constant c > 0, thus obtaining a “clean shave” of polylog
factors for this problem.

THEOREM 1.2. There is a randomized algorithm that solves
the Longest Common Substring with don’t cares problem on
two strings of length n in n2/2Ω(

√
logn) time.

Longest Substrings with Small Edit Distance. An
important related task is: given two long sequences, find
two substrings are as long as possible and still not far from
each other in Edit-Distance. That is, the two substrings are
not required to be equal as in LCS∗, but we want them to be
highly similar. This situation is common in a context where
small changes to the data are inherent, e.g. in biology.

DEFINITION 1.1. (THE LMSk PROBLEM) Given S and T ∈
(Σ ∪ {?})n, return the length of the longest substring s of S
such that there is a substring t of T with Edit-Distance less
than k to s.

This problem can capture many of the applications
in sequence alignment that the Local Alignment problem
solves. In Local Alignment, one specifies a scoring function
that defines the similarity between two substrings. Typically,
this scoring function tries to reward long substrings while
penalizing large weighted edit distance. The implicit scoring
function in LMSk is of the same flavor: longer substrings
score higher, as long as the edit distance is less than k.

The significance of finding good algorithms for these
tasks is witnessed by the 50,000+ citations to the paper intro-
ducing BLAST [AGM+90], a heuristic algorithm for Local
Alignment, making it one of the most cited scientific papers
of the 1990s. Since the sizes of genomes can reach billions
of “letters”, even log-factor improvements over the quadratic
upper bound of Smith-Waterman can have a noticeable im-
pact on our ability to analyze biological data.

One variant of LMSk has received a lot of attention: given
S and T , determine whether there is a substring of T that
has Edit-Distance less than k to the entire string S. Lan-
dau and Vishkin [LV86] solve this problem without don’t
care symbols in O((k + log |S|)|T |) time. Akutsu [Aku95]
showed how to use their framework to obtain an O(

√
k|S| ·

|T |) algorithm which allows for don’t cares. If we re-
place Edit-Distance with Hamming-Distance, we obtain



the k-Mismatches problem which is solved by Clifford et
al. [CEPR10] in O(|T |(k + log |S| log k) log |T |) time, and
by Amir, Lewenstein, and Porat [ALP04] in the case without
don’t cares in O(|T |

√
k log k) time. However, these algo-

rithms do not extend to find the optimal substrings of S and
T in subquadratic time, which is perhaps a more relevant task
in computational biology [Gus97].

By reduction to Boolean orthogonal vectors, we present
an algorithm for LMSk that is faster than O(n2/ logc n) time
for any constant c > 0, when the size of the alphabet and the
error threshold k are constant.

THEOREM 1.3. There is a randomized algorithm that solves
the Longest k-Matching Substring problem on two strings of
length n in k1.5n2/2Ω(

√
log n

k ) time.

Our algorithm can also be adapted to solve the simpler
“longest common substring with k-mismatches with don’t
cares” problem, in a similar runtime. Recently, practical
[FGKU14] and subquadratic [Gra14] algorithms were pro-
posed for the version of the problem without don’t cares.

Symmetric Boolean CSPs. Finally, we solve a vastly
generalized version of the CNF satisfiability problem, in a
running time that is competitive with the fastest known CNF
SAT algorithms. In particular, we show how BOOLEAN
ORTHOGONAL DETECTION can be used to solve constraint
satisfaction problems where each constraint is an arbitrary
symmetric function on a subset of variables.

A symmetric Boolean CSP [CD04] is a conjunction of
Boolean constraints over Boolean variables, such that each
constraint models some symmetric function—that is, the
truth of each constraint only depends on the number of true
literals in the constraint. In our setting, each constraint in an
instance may be modeled by a different symmetric function:
there is no restriction on which symmetric functions are
used. (Some constraint could be an XOR, another could
be an AND, another could be a MAJORITY, etc.) In the
language of Boolean circuit complexity, such a CSP is an
AND of SYM gates with negations at the bottom; the CNF
SAT problem is the special case where the SYM gates are
OR gates.

THEOREM 1.4. Symmetric Boolean CSPs with n vari-
ables and m constraints are solvable in poly(m) ·
2n(1−1/O(logmn)) time.

The fastest known CNF-SAT algorithms run in
O(2n(1−1/O(logm/n))) time [CIP06, DH09] on instances
with n variables andm clauses; this compares favorably with
Theorem 1.4 when m = poly(n). It is also useful to com-
pare Theorem 1.4 with the 0-1 integer programming algo-
rithm of Impagliazzo-Lovett-Paturi-Scheider [ILPS14] run-
ning in 2n(1−1/poly(logm/n)) time: theirs can be viewed as an

algorithm for satisfiability of ANDs of linear threshold func-
tions, whereas our algorithm works for arbitrary symmetric
functions on each constraint and runs faster in the case of
m ≥ n1+ε.

2 Preliminaries
In this section, we review a few prior known results that are
applied in this work.

Equivalence of partial match, subset query, and or-
thogonal vectors. Here we briefly sketch the equivalences
between the three aforementioned problems. First, using the
correspondence

S ⊆ T ⇐⇒ S ∩ T = ∅,

it is easy to see how to reduce between subset query and
orthogonal vectors: turn sets over [d] into d-bit vectors (or
vice-versa) and flip the bits of the database set. We can easily
simulate a subset query with a partial match query, by putting
?’s in components corresponding to elements not in the query
set, and 1s in components corresponding to elements in the
query set. Finally, partial match queries q ∈ {0, 1, ?}d can
be simulated by orthogonal vector queries vq of length 2d.
Namely, for all i = 0, . . . , d− 1,

• if qi+1 = 0, set vq[2i+ 1] := 1 and vq[2i+ 2] := 0

• if qi+1 = 1, set vq[2i+ 1] := 0 and vq[2i+ 2] := 1,

• if qi+1 = ?, set vq[2i+ 1] = 0 and vq[2i+ 2] := 0,

modifying the database accordingly.

Efficient matrix multiplication and polynomial eval-
uation. One component from prior work requires a fast rect-
angular matrix multiplication algorithm. The precise state-
ment we need is:

LEMMA 2.1. (COPPERSMITH [COP82]) For all suffi-
ciently large N , multiplication of an N × N .172 matrix
with an N .172 × N matrix can be done in O(N2 log2N)
arithmetic operations.

A full proof of this statement can be found in
the appendix of Williams’ paper on all-pairs shortest
paths [Wil14]. We will also need the following basic lemma
on efficiently evaluating polynomials on a combinatorial
rectangle. We include a sketch of it here, for completeness.

LEMMA 2.2. ([WIL14]) GivenP (x1, . . . , xd, y1, . . . , yd), a
polynomial over F2 with at most n0.1 monomials, and two
sets of n inputs A = {a1, . . . , an} ⊆ {0, 1}d, B =
{b1, . . . , bn} ⊆ {0, 1}d, we can evaluate P on all pairs
(ai, bj) ∈ A×B in Õ(n2) time.



Proof. (Sketch) The idea is to reduce the problem of evalu-
ating P to fast rectangular matrix multiplication. Let m ≤
n0.1, and put an arbitrary ordering on the monomials of P .
In particular, we create an n × m matrix M with rows in-
dexed by strings in A, and columns indexed by monomials
of P , and anm×nmatrixN with rows indexed by monomi-
als of P and columns indexed by strings in B. In particular,
for i = 1, . . . , n and j = 1, . . . ,m, define M [i, j] to be the
value of the jth monomial of P restricted to the x-variables
evaluated on ai. (That is, we set all y-variables in the jth
monomial to 1, and plug in the assignment defined by ai for
the variables x1, . . . , xd.) Similarly for j = 1, . . . ,m and
k = 1, . . . , n, define N [j, k] to be the value of the jth mono-
mial of P restricted to the y-variables evaluated on bk. Then,
M [i, j] · N [j, k] equals the value of the jth monomial of P
on the assignment (ai, bk), and

(M ·N)[i, k] =

m∑
j=1

M [i, j] ·N [j, k] = P (ai, bk);

that is, the i, k entry of the matrix product equals the value
of P on the assignment (ai, bk). Therefore, we have reduced
the evaluation problem to multiplication of an n × n0.1 and
n0.1 × n matrix over F2, which can be done in Õ(n2) time
by Lemma 2.1. �

A tool from low-depth circuit complexity. We will
also need a well-known construction from circuit complex-
ity. Suppose we wish to compute the AND over d vari-
ables z1, . . . , zd with a low-degree polynomial over F2. In
general this is impossible, but we can choose a distribu-
tion of polynomials such that for any particular input, a ran-
dom polynomial does the job. Let t ≥ 1 be an integer,
choose independently and uniformly at random t · d bits
r1,1, . . . , r1,d, r2,1, . . . , r2,d, . . . , rt,1, . . . , rt,d ∈ {0, 1},
and consider the expression

At(y1, ..., yd) =

t∏
i=1

1⊕
d⊕
j=1

ri,j · (yj ⊕ 1)

 ,

where ⊕ is addition modulo 2. For fixed ri,j ∈ {0, 1}, At is
a product of t sums of at most d+ 1 variables yj , along with
possibly the constant 1, over the field F2. Razborov [Raz87]
and Smolensky [Smo87] showed that for large t, the low-
degree arithmetic expression At simulates the AND of the
original d variables, with high probability:

LEMMA 2.3. For every fixed (y1, ..., yd) ∈ {0, 1}d,

Pr
ri,j

[At(y1, ..., yd) = AND(y1, . . . , yd)] ≥ 1− 1/2t.

Alignments and Edit Distance. An alignment A of a
string of length n1 to a string of length n2 is a pair of sets
AMatch ⊆ [n1]× [n2] and AMis ⊆ ([n1] ∪ {−})× ([n2] ∪
{−}) such that:

• every index i ∈ [n1] appears exactly once in a pair (i, x)
in AMatch ∪ AMis and every index i ∈ [n2] appears
exactly once in a pair (y, i) inAMatch∪AMis, for some
x, y ∈ [n] ∪ {−},

• the pair (−,−) does not belong to AMis, and

• for every pair of pairs (i1, j1), (i2, j2) ∈ AMatch ∪
AMis, if i1 < i2 then j1 < j2.

In words, AMatch contains the pairs of indices that are
“matched” in the alignment A while AMis contains the
mismatched pairs and the indels (insertions and deletions).
We denote by An1,n2

the set of all alignments of strings of
lengths n1, n2. The cost of an alignment A ∈ An1,n2

is the
size of AMis. An alignment A ∈ An1,n2

is valid for a pair
of strings X ∈ (Σ ∪ {?})n1 , Y ∈ (Σ ∪ {?})n2 iff for every
pair (i, j) ∈ AMatch, X[i] ≡ Y [j] (i.e. X[i]=Y[j] or one of
them is the ? symbol).

We say that the edit distance between two strings X ∈
(Σ∪{?})n1 , Y ∈ (Σ∪{?})n2 is k, and denoteED(X,Y ) =
k, iff the alignment A ∈ An1,n2

of minimal cost that is valid
for X,Y has cost |AMis| = k.

3 Detecting an orthogonal pair of Boolean vectors
We begin by presenting an algorithm for BOOLEAN OR-
THOGONAL DETECTION: given two sets of vectors A,B ⊆
{0, 1}d, each of cardinality n, determine if there is an x ∈ A
and y ∈ B such that 〈x, y〉 = 0.

REMINDER OF THEOREM 1.1 For vectors of dimension
d = c(n) log n, BOOLEAN ORTHOGONAL DETECTION can
be solved in n2−1/O(log c(n)) time by a randomized algorithm
that is correct with high probability.

In the following sections, we give a series of reductions
showing how the algorithm of Theorem 1.1 can be used to
derive the other algorithms mentioned in the introduction of
the paper.
Proof of Theorem 1.1. Before giving details, let’s sketch
the idea of the algorithm. Suppose we are given sets A,B ⊆
{0, 1}d. We divide the n vectors ofA and n vectors ofB into
dn/se groups of size at most s. Next, we design a “small”
low-depth Boolean circuit C which takes a group A′ of A
and a group B′ of B, and outputs 1 if and only if there
is an orthogonal pair of vectors in (A′, B′). Then we use
Lemma 2.3 to construct an efficiently samplable distribution
of polynomials D such that for each input x, C(x) = P (x)
for a randomly chosen P ∈ D, with probability at least 2/3.
Since the circuit C is “small”, the polynomial P will have
a “somewhat small” number of monomials. By Lemma 2.2,
we can evaluate P on all pairs of groups efficiently. Finally
we sample O(log n) polynomials, and take a majority over
all pairs of groups to increase the probability of correctness.

We now turn to the circuit construction. Let s be a
parameter such that s ≤ 2(d+1)/6; later we shall choose s



optimally. Given two groups {xi}, {yj} of s vectors from
{0, 1}d, we can design a low-depth circuit C detecting if
there is an orthogonal pair in a straightforward way: For all
pairs of vectors (xi, yj), compute the expression

E(xi, xj) = ∧dk=1(¬xi[k] ∨ ¬yj [k]).

Note E(xi, yj) = 1 if and only if 〈xi, yj〉 = 0. Then we
define the circuit C to be the OR over all s2 pairs (xi, yj) of
the expression E(xi, yj). The circuit C is therefore an OR
of s2 ANDs of d ORs of two negations of input bits, of size
O(s2d).

We can randomly convert C into a low-degree polyno-
mial, as follows. First, the bottom ORs of the form (¬a∨¬b)
can be directly converted into polynomials over F2, by re-
placing each of them with the expression 1 + a · b. Next,
applying the construction of Razborov [Raz87] and Smolen-
sky [Smo87] from Lemma 2.3, each AND gate inC of fan-in
d can be replaced by an arithmetic expression A3 log s which
is a product (i.e., an AND gate) of 3 log s XORs of d+1 fan-
in. Given an input y, each A3 log s will be incorrect on this
input with probability at most 1/s3. Finally, for the top OR
gate of C, we replace it with a NOT-AND-NOT using De-
Morgan’s law, and apply Razborov-Smolensky to the AND
gate of fan-in s2, replacing it with an expressionA2, which is
an AND of two XORs of fan-in s2+1. This replacement will
be incorrect on an input with probability at most 1/4. Taking
a union bound over all gates, for each input, with probability
at least 1 − 1/4 − s/s3 > 2/3, these randomized replace-
ments do not change the output. Let C ′ be this new circuit
over XOR and AND, which is an arithmetic circuit over F2.

The circuit C ′ is an AND of two XORs of s2 + 1 ANDs
of 3 log s XORs of d + 1 ANDs of at most two variables.
Applying the distributive law to the ANDs of 3 log s XORs
of d + 1 terms, we can expand each AND of XORs into an
XOR of ANDs. Naively, the size of the resulting expression
after this expansion would be Ω((d + 1)3 log s). However,
using the facts:

(a) x2 = x over F2,

(b) s ≤ 2(d+1)/6 (hence, 3 log s < (d+ 1)/2), and

(c) each XOR is over a subset of the same d products of
two variables,

we obtain an XOR of at mostO(
(
d+1

3 log s

)
) ANDs of variables.

Once this expansion has occurred for every AND gate in
the middle layer, we have a circuit C ′′ which is an AND
of two XORs of O(s2

(
d+1

3 log s

)
) ANDs. Expanding the top

AND gate, we obtain an XOR of O(s4
(
d+1

3 log s

)2
) ANDs of

variables; that is, we have a polynomial P over F2 with
O(s4

(
d+1

3 log s

)2
) monomials. Let

m = O

(
s4

(
d+ 1

3 log s

)2
)

be the resulting upper bound on monomials.
Let us check that expanding this circuit into a sum of

monomials can be done efficiently. Note that m is an upper
bound on the total number of monomials we could ever
generate, while expanding the polynomial via distributivity.
Each addition or multiplication of two polynomials takes
Õ(m) time, and we need to do Õ(s2d) such polynomial
operations. In the below, we will set s < n1/400 and
m ≤ n1/10. Hence it takes Õ(s2dm) ≤ O(n) time to
generate the expanded polynomial from the circuit C ′.

The above randomized procedure generates a polyno-
mial P such that for every two groups of s d-bit vectors, eval-
uating P on these two groups determines whether there is an
orthogonal pair in the two groups, with probability at least
2/3. By Lemma 2.2, we can evaluate P on all O(n2/s2)
pairs of groups in A and B in time Õ((n/s)2), provided that
m ≤ n0.1.

Now we need to set the parameter s so that m ≤
n0.1 is satisfied and s is maximized. Let s :=
2ε logn/ log(d/ logn) for sufficiently small ε > 0. Note that
ε log n/ log(d/ log n) ≤ (d + 1)/6 when d ≥ Ω(log n) and
ε is small enough; therefore, the constraint s ≤ 2(d+1)/6

holds. By standard estimates,

m ≤ O

(
s4

(
d+ 1

3 log s

)2
)

≤ O

(
s4

(
e(d+ 1)

3 log s

)6 log s
)

≤ O

(
s10

(
(d+ 1)

3 log s

)6 log s
)

≤ O

(
s10

(
(d+ 1)

3ε log n/ log(d/ log n)

)6ε logn/ log c
)

≤ O

(
s10

(
(c log n+ 1) log c

3ε log n

)6ε logn/ log c
)
.

Taking logarithms, we have

logm ≤ 10 · log s+ 6ε · log n

log c
log

(
c log n+ 1

3ε log n
· log c

)
≤ 10ε · log n

log c
+ 6ε · log n

log c
log

((
c log n+ 1

3ε log n

)2
)

≤ 10ε · log n

log(d/ log n)
+ 18ε · log n

for sufficiently large n. Setting ε < 1/400, we have logm ≤
0.1 log n. Then, the above procedure will run in time

Õ(n2/s2 +m2.5) ≤ Õ(n2/2ε logn/ log(d/ logn) + n0.25)

≤ n2−1/O(log(d/ logn)).



The above only generates a polynomial P which is correct
on a given point with probability 2/3. To amplify the
probability of success, generate k = 10 log n independent
polynomials P1, . . . , Pk, evaluate all Pi on all pairs of
groups from A and B, and for each pair, compute the
majority value reported by P1, . . . , Pk. By the Chernoff
bound, with probability at least 1 − n−3, the majority value
on a pair of groups is the correct value of the circuit C on
that pair. Hence by the union bound, with probability at least
1 − n−1, we will determine the correct output of C on all
pairs of groups from A and B. This only adds an O(log n)
additional factor to the running time of the algorithm.

For a given instance A,B, the above algorithm deter-
mines subsetsA′ ⊂ A andB′ ⊂ B such that |A′| = |B′| ≤ s
and A′, B′ contain an orthogonal pair (if such a pair exists).
Because s ≤ n0.1, we can find an explicit pair with only
O(n0.2 · d) extra running time, by exhaustive search over all
pairs of vectors in A′ ×B′. �

4 Applications
In this section, we give some consequences of the algorithm
from Theorem 1.1 in the previous section. First, we can
quickly re-derive the fastest known CNF-SAT algorithm
(up to constants in the savings) [CIP06, DH09] using the
orthogonal detection algorithm.

THEOREM 4.1. CNF-SAT on n variables and m ≤ 2o(n)

clauses is solvable in 2n(1−1/O(log(m/n))) time.

Proof. (Sketch) Williams [Wil05] showed how to reduce
CNF-SAT with m clauses and n variables to BOOLEAN
ORTHOGONAL DETECTION with N = 2n/2 size sets of
vectors in m dimensions. (The proof is very simple; the
reader is encouraged to find it.) Theorem 1.1 gives an
N2−1/O(log(m/n)) = 2n(1−1/O(log(m/n))) time algorithm. �

The above reduction shows that it may be difficult
to improve the running time dependence on the dimen-
sion of our algorithm in Theorem 1.1. For example, an
n2−1/O(log log c) time algorithm would yield a faster CNF-
SAT algorithm, strong enough to prove new circuit lower
bounds (see [JMV13]).

4.1 Processing Queries in Batch Next, we show how
to use solutions to the decision/finding problem solved in
Theorem 1.1 to solve problems with multiple outputs.

In BATCH BOOLEAN ORTHOGONAL DETECTION, we
are given A,B ⊆ {0, 1}d with |A| = |B| = n, and must
decide for every x ∈ A if there is a y ∈ B such that
〈x, y〉 = 0 (over the integers). That is, we decide for every
vector in one set if it has an orthogonal vector in the other
set. BATCH BOOLEAN ORTHOGONAL DETECTION looks
strictly harder than BOOLEAN ORTHOGONAL DETECTION,

simply because much more information needs to be com-
puted. However, the two are actually equivalent in a precise
sense: a subquadratic-time algorithm for BOOLEAN OR-
THOGONAL DETECTION implies a subquadratic-time algo-
rithm for the batch version.

LEMMA 4.1. If BOOLEAN ORTHOGONAL DETECTION is
in time T (n, d), then BATCH BOOLEAN ORTHOGONAL
DETECTION is in time O(n · T (

√
n, d)).

Proof. We first give an algorithm for BATCH BOOLEAN OR-
THOGONAL DETECTION, assuming an oracle for BOOLEAN
ORTHOGONAL DETECTION. Initialize an n-bit table T to be
all-zeros. Divide the n vectors ofA andB into dn/se groups
of size at most s. For each pair (A′, B′) of groups, call an or-
acle for BOOLEAN ORTHOGONAL DETECTION on the two
sets of size O(s), respectively. Repeat the following until no
orthogonal pair (xi, yj) ∈ A′ × B′ is found: set T [i] := 1
and remove xi from A (and hence A′ as well). (We can also
find a vector yj such that 〈xi, yj〉 = 0 as well and store it, if
desired.)

This concludes the algorithm; now we analyze it. For
each oracle call that returns an orthogonal vector pair, we
remove one vector fromA; hence there can be at most n such
calls. For each pair of groups, there is exactly one oracle call
that reports there is no orthogonal pair in the pair. Therefore
the total running time isO((n+n2/s2)·T (O(s), d)). Setting
s = Θ(

√
n) to balance the terms, the running time becomes

O(n · T (
√
n, d)). �

It follows that, in order to solve the batch orthogonal
vectors problem (and hence, BATCH PARTIAL MATCH and
BATCH SUBSET QUERY) in subquadratic time, one only
has to solve BOOLEAN ORTHOGONAL DETECTION in sub-
quadratic time:

COROLLARY 4.1. For every f : N → N and g : N → N,
BOOLEAN ORTHOGONAL DETECTION is in O(n2/g(n, d) ·
f(d)) time if and only if BATCH BOOLEAN ORTHOGONAL
DETECTION is in O(n2/g(

√
n, d) · f(d)) time.

Proof. One direction is obvious; the other directly follows
from Lemma 4.1. �

By the known equivalences between BOOLEAN OR-
THOGONAL DETECTION, PARTIAL MATCH, and SUBSET
QUERY, it follows from Theorem 1.1 and Corollary 4.1 that:

REMINDER OF COROLLARY 1.1 The BATCH PAR-
TIAL MATCH problem with n queries and n strings from
{0, 1}c(n) logn can be solved in n2−1/O(log c(n)) time by a
randomized algorithm that is correct with high probability.

COROLLARY 4.2. BATCH SUBSET QUERY with n query
sets and n database sets from [c(n) log n] can be solved
in n2−1/O(log c(n)) time by a randomized algorithm that is
correct with high probability.



4.2 Evaluating DNFs The algorithm for BATCH PARTIAL
MATCH can be used to evaluate DNF (and consequently,
CNF) formulae with t terms on v variable assignments faster
than the naive method that takes Ω(t · v) time. We provide
a simple black-box reduction, and state the resulting running
time as a corollary.

THEOREM 4.2. Given an algorithm for the BATCH
BOOLEAN ORTHOGONAL DETECTION problem with m
d-bit vectors in one set and n d-bit vectors in the other
set running in T (m,n, d) time, there is an algorithm for
evaluating DNF formulae with d variables and m terms on
n variable assignments in T (m,n, 2d) time.

Proof. Let F be a DNF formula over the variables
x1, . . . , xd, and let S ⊆ {0, 1}d be a set of assignments on
which to evaluate F . First, we reduce the problem to an “in-
verse” version of BATCH PARTIAL MATCH, where we wish
to determine for all database strings if they are a yes-answer
to some query. Set the string database D to be S. For every
conjunct c of F , define qc ∈ {0, 1, ?}d as follows:

• qc[i] := 0 if the literal ¬xi appears in c,

• qc[i] := 1 if the literal xi appears in c, and

• qc[i] := ? otherwise.

The d-bit strings matching qc correspond directly to the set
of satisfying assignments to the conjunct c. Therefore, the
problem of determining which elements of D match some
query qc is exactly the problem of evaluating F on the set of
assignments S.

This inverse batch partial match problem can be solved
by reducing partial match queries on strings of length d to or-
thogonal vector queries in 2d dimensions (as described in the
Preliminaries). Observe that, in contrast to the partial match
problem, the orthogonal vector problem is “symmetric” in
that the database list and query list are both of the same type.
Hence for all database vectors we can compute if there is
a query vector which is orthogonal, using an algorithm for
BATCH BOOLEAN ORTHOGONAL DETECTION. �

REMINDER OF COROLLARY 1.2 Given a DNF F on c log t
variables with t terms, and v arbitrary assignments on
the variables with t ≤ v, F can be evaluated on the v
assignments in v · t1−1/O(log c) time, with high probability.

Proof. First, we reduce the problem with “many” assign-
ments and “few” terms to a collection of instances with the
same number of assignments as there are terms. Assuming
v ≥ t, we divide the set of assignments into dv/te groups
of size at most t each, and evaluate the t-term DNF on each
of the t assignments in t2−Ω(1/ logn) time, by Theorem 1.1
and Theorem 4.2. The batch Boolean Orthogonal Detection
algorithm is called for O(v/t) times, yielding the claimed
running time. �

Note that if v ≤ t instead, we can obtain t ·v1−1/O(log c)

time by an analogous argument.

4.3 Symmetric Boolean CSP Here, we show how to or-
thogonal detection can be applied to solve a large class of
Boolean constraint satisfaction problems faster than exhaus-
tive search, in running time that is competitive with the
fastest known CNF-SAT algorithms.

THEOREM 4.3. If the BOOLEAN ORTHOGONAL DETEC-
TION problem with n vectors in d dimensions is solvable in
T (n, d) time, then symmetric Boolean CSPs with n variables
andm constraints is solvable in Õ(T (2n/2, O(m·n2))) time.

The reduction shows how to reduce a symmetric
Boolean CSP instance to the problem of satisfying a small
CNF problem restricted to a special combinatorial rectan-
gle A × B of variable assignments. This is surprising, as
a small CNF cannot possibly implement general symmetric
functions, such as the MAJORITY function! Our trick is to
re-encode the CSP problem in both the CNF and the choice
of the rectangle A×B, so that the CNF evaluation problem
actually takes place over a new set of variables, clauses, and
assignments, compared to the original CSP.

Proof. Let C be a symmetric Boolean CSP with n variables
and m constraints; for simplicity, assume n is even. Divide
the variables of C into two halves X and Y such that |X| =
|Y | = n/2. We will first build a related CNF F based on this
variable partition.

For each constraint c in C, create t = 2 log(n/2)
new variables xc,1, . . . , xc,t/2 and yc,1, . . . , yc,t/2 in the new
CNF F . Add O(n2) clauses to F over these t variables,
where each clause corresponds to a pair of numbers (p, q) ∈
[n/2]2 such that p + q true literals (p from variables of X ,
q from variables of Y ) makes the symmetric constraint c
evaluate to false. More precisely, let p and q be log(n/2)-
bit binary strings corresponding to non-negative numbers
such that p + q true literals yield a false output for the
symmetric function for c. Then the clause sp,q for the pair
of numbers (p, q) is as follows: for variable xi, if pi = 1
then put ¬xi in the clause sp,q; if pi = 0 then put xi in
sp,q . We do analogously for the variables yi and bits qi.
The resulting clause sp,q of literals is false precisely on the
variable assignment (p, q).

The conjunction of theseO(n2) clauses sp,q form a CNF
which is true on a variable assignment

(ac,1, . . . , ac,t/2, bc,1, . . . , bc,t/2) ∈ {0, 1}2 log(n/2)

if and only if the non-negative integer a represented by
the bit string ac,1 · · · ac,t/2 and the non-negative integer b
represented by bc,1 · · · bc,t/2 sums to a number of true inputs
which satisfies the symmetric constraint c. In total, the CNF
F has O(m · n2) clauses.



For each of the 2n/2 assignments P to the n/2 vari-
ables of X in C, make an assignment to all variables
xc,1, . . . , xc,t/2 of D corresponding to the number of true
literals in c set by P , for all constraints c in C. Let the col-
lection of such assignments be X . An analogous procedure
is done for all 2n/2 assignments to the n/2 variables of Y ,
call this assignment collection Y . We have two collections
X and Y of variable assignments such that there is a pair
of assignments (one from X and one from Y) satisfying the
CNF F if and only if the original CSP is satisfiable.

Now we reduce this restricted satisfiability problem on
F to BOOLEAN ORTHOGONAL DETECTION, similar to
Theorem 4.1. For every assignment P ′ ∈ X , make a
Boolean vector vP ′ with dimension equal to the number
of clauses of F . The vector vP ′ and has a 1 in the ith
component if and only if the ith clause of F is not satisfied
by the partial assignment P ′. Similarly, for every assignment
Q′ ∈ Y , make a Boolean vector wQ′ with dimension
equal to the number of clauses of F , and put a 1 in the
ith component if and only if the ith clause is not satisfied
by Q′. Observe that 〈vP ′ , wQ′〉 = 0 if and only if the
variable assignment (P ′, Q′) satisfies F . Therefore, a call
to BOOLEAN ORTHOGONAL DETECTION on these N =
O(2n/2) vectors of dimension d = O(m · n2) will solve
the original CSP. �

REMINDER OF THEOREM 1.4 Symmetric Boolean CSPs
with n variables and m constraints are solvable in
O(2n(1−1/O(logmn))) time.

Proof. Apply Theorem 1.1 to the previous theorem. �

4.4 Longest Matching Substrings Our algorithms for
LCS∗ and LMSk follow the same approach. We first show
how to use our new algorithm for BOOLEAN ORTHOGONAL
DETECTION to solve the problems faster when the optimal
substring is short, then we devise an algorithm (in Section 5)
that is fast when the optimal substring is long.

LEMMA 4.2. If BOOLEAN ORTHOGONAL DETECTION
with n vectors in d dimensions is solvable in T (n, d) time,
then, given two strings S, T of length n over Σ∪{?}, we can
find length of the longest common substring of S and T , or
report that it is of length at least ∆, in T (n,O(∆ log |Σ|)) ·
O(log ∆) time.

Proof. Binary search for the maximum length K ∈
{0, . . . ,∆} for which there are common substrings of length
K. For a given guess K we generate all N = n − k sub-
strings of length exactly K of S, SubK(S) = {s1, . . . , sN},
and of T , SubK(T ) = {t1, . . . , tN}.

For each σ in the alphabet Σ, associate it with a unique
bit vector vσ of length 4 log |Σ| that has exactly 2 log |Σ|
ones. Since there are

(
4 log |Σ|
2 log |Σ|

)
> |Σ| such vectors, this is

possible. For every si, we replace each alphabet symbol σ
in si with the bit vector vσ , and we replace every ? with the
all-zeroes vector of length 4 log |Σ|. For every tj , we replace
each σ in tj with the complement of vσ (the unique vector
with 1’s flipped to 0’s and 0’s flipped to 1’s), and every ? is
replaced with the all-zeroes vector.

This results in bit vectors s′1, ..., s
′
N , t
′
1, ..., t

′
N of length

4K log |Σ| such that 〈s′i, t′j〉 = 0 if and only if si and tj
match. Therefore, given the algorithm for BOOLEAN OR-
THOGONAL DETECTION we can check if there are matching
substrings of length K in T (n, 4K log |Σ|) and the overall
runtime is as claimed. �

REMINDER OF THEOREM 1.2 There is a randomized algo-
rithm that solves the Longest Common Substring with don’t
cares problem on two strings of length n in n2/2Ω(

√
logn)

time.

Proof. Lemma 5.2 in Section 5 gives an algorithm that finds
the optimal substring of length at least ∆ in Õ(n2/

√
∆)

time. Applying Theorem 1.1 to Lemma 4.2, we solve the
case in which the optimal substring is of length at most ∆

in n2−1/O(log
∆ log |Σ|

log n ) = n2−1/O(log ∆) time. Running both
algorithms and setting ∆ = 2Ω(

√
logn), we find the optimal

substring in n2/2Ω(
√

logn) time. �

We now turn to the LMSk problem.

LEMMA 4.3. If BOOLEAN ORTHOGONAL DETECTION
with n vectors in d dimensions is solvable in T (n, d) time,
then, given two strings S, T of length n over Σ∪{?}, we can
find length of the longest substring of S with edit distance
less than k to a substring of T , or report that it is of length
at least ∆, in T (n,O(∆ log |Σ|)) ·O(∆k) time.

Proof. We will look for the largest K1 ≤ ∆ such that there
exists K2 ≤ ∆ and two substrings s of S and t of T where
|s| = K1, |t| = K2 for which ED(s, t) ≤ k.

By definition of the edit distance, for two strings s, t
of lengths K1,K2, ED(s, t) ≤ k if and only if there is an
alignment A ∈ AK1,K2

of cost up to k that is valid for s and
t. Observe that the number of alignments of two strings of
length ≤ ∆ that have cost up to k can be upper bounded by
3k ·
(

∆+k
k

)
. For a pair of lengths K1,K2, let us define the set

of all such alignments A≤kK1,K2
= {A ∈ AK1,K2

| |AMis| ≤
k}. Note that this set depends on k and K1,K2 but not on
the strings s, t.

The idea is to go over all relevantO(∆2) pairsK1,K2 ∈
[∆] and for each such pair we enumerate over all 3k ·

(
∆+k
k

)
alignments A ∈ A≤kK1,K2

and try to find two substrings s, t of
S, T for which A is a valid alignment using a single call to
our BOOLEAN ORTHOGONAL DETECTION algorithm. The
number of calls becomes O(∆2 · 3k ·

(
∆+k
k

)
) = O(∆k).



Observe that checking whether A ∈ A≤kK1,K2
is a valid

alignment for a pair s, t is equivalent to checking that for
every pair (i, j) ∈ AMatch either s[i] = t[j] or one of
s[i], t[j] is a ?. To do this, we can assign a distinct index
I(i, j) to each of the pairs (i, j) ∈ AMatch and then reduce
s, t to vectors s′, t′ as follows. First, define s′′, t′′ by deleting
and reordering the characters in s, t so that for each pair
(i, j) ∈ AMatch we have s[i] at the I(i, j) position in s′′

and t[j] at the I(i, j) position in t′′. Note that s′′, t′′ must
be of the same length K ′′ ≤ K1,K2 and that s′′, t′′ match if
and only if A is a valid assignment for s, t. Then, convert
s′′, t′′ to binary vectors s′, t′ of length 4K ′′ log |Σ| as in
the proof of Lemma 4.2, so that s′′, t′′ match if and only if
〈s′, t′〉 = 0. To check whether A is valid for any substrings
|s| = K1, |t| = K2 of S, T we generate all O(n) substrings
of S, T of the given lengths and convert each substring to a
binary vector of lengthO(∆ log |Σ|) as described, and check
for an orthogonal pair of vectors. The total running time
becomes T (n,O(∆ log |Σ|)) ·O(∆k). �

REMINDER OF THEOREM 1.3 There is a randomized
algorithm that solves the Longest k-Matching Substring
problem on two strings of length n in k1.5n2/2Ω(

√
log n

k )

time.

Proof. Lemma 5.1 in Section 5 gives an algorithm that finds
the optimal substring of length at least ∆ in Õ(k1.5n2/

√
∆)

time. Applying Theorem 1.1 to Lemma 4.2 we solve the
case in which the optimal substring is of length no more
than ∆ in ∆kn2−1/O(log

∆ log |Σ|
log n ) = ∆kn2−1/O(log ∆) time.

Running both algorithms and setting ∆ = 2Ω(
√

log n
k ) we get

the optimal substring in time k1.5n2/2Ω(
√

log n
k ). �

5 Finding long matching substrings
In this section we describe an algorithm that gets two strings
S, T ∈ (Σ∪{?})n and a parameter ∆ and returns the longest
matching substring of S and T , if there is such a substring
of length at least ∆. We will first focus on LMSk and then
remark that the algorithm for LCS∗ is similar but simpler.

For a string S ∈ (Σ∪{?})n and integer K ∈ [n] let BSK
be a partition of S into N = dn/Ke segments (or blocks)
b1, . . . , bN of length up to K as follows: ∀i ∈ [N −1] : bi =
S[(i−1)K+1, · · · , iK] and bN = S[(N−1)K+1, · · · , n].

Akutsu [Aku95] presents an algorithm for the prob-
lem of finding all substrings of a text T of length n that
have Edit Distance less than k to a given pattern P of
length m, where both strings might contain don’t care sym-
bols, that runs in Õ(

√
kmn) time. This algorithm com-

bines the Landau-Vishkin [LV86] dynamic programming
procedure with an algorithm for pattern-matching with don’t
cares [FP73, Ind98, Kal02].

For any block bi ∈ BSK , we can use Akutsu’s algorithm
to check whether for some t ⊆ T : ED(bi, t) ≤ k

in Õ(
√
kKn) time. Doing this for each block, we can

check whether any block in BSK matches a substring of T
in Õ(n/K · n

√
kK) = Õ(

√
kn2/

√
K) time.

We perform this check for K = n, n/2, n/4, . . . ,∆ and
findK∗; the largest suchK for which ∃bi ∈ BSK , t ⊆ T such
that ED(bi, t) ≤ k. If no such K ≥ ∆ exists, we return that
there is no matching substring of length more than 2∆. The
following simple claim shows that we will be correct.

CLAIM 1. If z is the longest substring of S such that ∃t ⊆
T : ED(z, t) ≤ k, and K ≤ |z|/2, then there exists a block
bi ∈ BSK and t′ ⊆ T such that ED(bi, t

′) ≤ k.

Proof. Our optimal substring z must contain at least one
block bi ∈ BSK since otherwise |z| ≤ 2K − 2. Letting t′

be the substring of t that is aligned with bi when aligning z
and t we get that ED(bi, t

′) ≤ ED(z, t) ≤ k. �

This claim also shows that in case we found K∗ ≥ ∆
in the above checks, we are certain that the length of the
optimal substring z ⊆ S is between K∗ and 2K∗. An
additional observation is that in the optimal alignment of z
to some t ⊆ T we must have a substring z′ ⊆ z ⊆ S of
length at least |z′| ≥ K/k and a substring t′ ⊆ t ⊆ T such
that z′ and t′ are aligned without any mismatches/indels and,
in particular, z′ ≡ t. Note that otherwise ED(z, t) > k.
Therefore, if we set K ′ = K/2k, we are certain that there
exists a block bi ∈ BSK′ and some t′′ ⊆ T such that in
the optimal alignment of z and t, bi is aligned to t′′ without
any mismatches/indels. Consequently, if we go over all pairs
bi ∈ BSK′ , y ⊆ T for which bi ≡ y and then try to expand
these substrings left and right as much as possible without
incurring more than k mismatches/indels, we will end up
with the optimal substrings z and t.

This is exactly what we will do. Kalai’s algorithm
for pattern matching with don’t cares [Kal02] can find all
occurrences of a pattern P of length m in a text T of length
n, when don’t care symbols are allowed, inO(n logm) time.
Thus, we can find all pairs bi ∈ BSK′ , y ⊆ T for which bi ≡ y
in Õ(n/K ′ · n) = Õ(kn2/K∗). Our goal is now to expand
each of these pairs as much as possible, which gives rise to
the following definition:

DEFINITION 5.1. (LONGEST MATCHING PREFIX)
For two strings S, T ∈ (Σ ∪ {?})n and a parameter
k ∈ [n], LMP(S, T, k) is the largest i ∈ [n] such that
∃i′ ∈ [n] : ED(S[1 · · · i], T [1 · · · i′]) ≤ k.

Fix a pair bi ∈ BSK′ , y ⊆ T that we are trying to expand
and let b+i ⊆ S be the substring of S of length 2K∗ that
is immediately to the right of bi. Similarly, let y+ ⊆ T
be the substring of T of length 2K∗ that is immediately to
the right of y. Analogously we define b−i and y− to be the
substrings on the left of our pair. Let α ∈ [k] and consider



a = LMP(b+i , y
+, α), the length of the longest prefix of b+i

that has edit distance less than α to a prefix of y+. Observe
that if we expand bi to bi ◦ (b+i [1 · · · a]) we get an expansion
to the right of our pair with α mismatches/indels. Similarly,
let β ∈ [k] and consider b = LMP((b−i )T , (y−)T , β), to get
an expansion to the left with β mismatches/indels. Moreover,
we can combine these two expansions to get two superstrings
of our pair, of additional length a+b, that have Edit Distance
no more than α+β. A subtle point is that although expanding
in this way might sometimes result in strings whose Edit
Distance is less than α+β, and this might be suboptimal, we
are guaranteed to find the optimal alignment of our optimal
pair z and t this way. This is because we start the expansion
from a pair of substrings that is aligned to each other in
the optimal alignment and we solve the left and right parts
optimally.

Akutsu’s implementation [Aku95] of the Landau-
Vishkin [LV86] dynamic programming algorithm for ap-
proximate pattern matching allows us to find all substrings of
a text T that are of edit-distance less than e to a maximal pre-
fix of a pattern P , for every e ∈ [k], in Õ(

√
k|P | · |T |) time.

To support don’t cares, Akutsu replaces the Suffix Trees of
Landau and Vishkin with a less efficient lookup table that
he computes using a pattern matching with don’t cares al-
gorithm. Although finding all such occurrences is not a di-
rect goal of the Landau-Vishkin algorithm, the dynamic pro-
gramming table L[d, e] (see [LV86, Aku95]) records the in-
formation about maximal prefixes which is very useful for
us. We will run Akutsu’s algorithm with T as the text and b+i
as the pattern, for every substring bi ∈ BSK′ and obtain all
the required LMP(b+i , y

+, α) values. The computations for
b−i can be done similarly. The running time of this stage is
Õ( n

K′ ·
√
kK∗ · n) = Õ(k1.5n2/

√
K).

Thus, for each pair bi ∈ BSK′ , y ⊆ T , we will go over
all pairs of integers α, β ∈ [k] such that α + β = k and
consider the corresponding indices a, b ∈ [2K ′]. Each such
pair α, β gives us an expansion by a + b, and we can take
the pair that maximizes a+ b as the best expansion of bi and
y. Expanding each pair and returning the longest substring
found is guaranteed to give us the optimal value, and we
are done. This final computation takes O(k · n2/K ′) =
O(k2n2/K).

The overall running time is Õ(k1.5n2/
√

∆) sinceK∗ ≥
∆ and K > k.

LEMMA 5.1. Given two strings S, T of length n over Σ ∪
{?}, we can find length of the longest substring of S with
edit distance less than k to a substring of T , or report that it
is of length less than ∆, in Õ(k1.5n2/

√
∆) time.

To solve LCS∗ we follow the same approach with some
simplifications. To find K∗ and substrings of S of length
K∗ such that expanding them to length up 2K∗ would re-
sult in one of the optimal substrings, we use Kalai’s algo-

rithm instead of Akutsu’s and the running time of this stage
decreases to Õ(n2/∆). To expand each of the O(n/K∗)
blocks of S with its O(n) matching substrings of T we first
compute a matrix recording for each of theO(n2/

√
∆) pairs

of a block of length
√

∆ of S and substring of length
√

∆
of T whether they match. This matrix is computed using
Kalai’s algorithm in Õ(n2/

√
∆) time. Then, using this ta-

ble, we can expand each block from length K∗ to length up
to K∗ using K∗/

√
∆ +

√
∆ steps. The total running time

becomes Õ(n2/K∗ ·(K∗/
√

∆+
√

∆)) = Õ(n2/
√

∆) since
K∗ ≥ ∆.

LEMMA 5.2. Given two strings S, T of length n over Σ ∪
{?}, we can find length of the longest common substring
of S and T , or report that it is of length less than ∆, in
Õ(n2/

√
∆) time.

6 Conclusion
We have given a new algorithm for detecting orthogonal
vectors in a Boolean domain, with several applications to
processing partial match queries in batch, evaluating cir-
cuits, and improved optimization algorithms. Our reductions
demonstrate the considerable power of Boolean orthogonal
detection. While the reductions we introduce in this paper
are applied in a positive way, one can also think of them as
more evidence that BATCH PARTIAL MATCH and BOOLEAN
ORTHOGONAL DETECTION will be hard to solve in n2−ε

time for some universal ε > 0: such an algorithm would
not only imply faster algorithms for solving CNF-SAT, but
it would also yield faster algorithms for every symmetric
Boolean CSP (for example).

We believe the most tantalizing open problem is to
extend our results to Hamming nearest neighbors: is there
an algorithm with similar running time for finding a closest
pair of Boolean vectors under the Hamming metric? This
is a natural next step for developing good exact neighbor
search algorithms, and to apply this technique to problems
like Local Alignment and Edit Distance. However, it seems
to require the evaluation of a circuit that we do not yet know
how to handle. If one could efficiently evaluate an OR of
MAJORITY of XORs on a combinatorial rectangle of inputs,
that would yield improved exact algorithms for closest pair
in the Hamming metric.
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