
Regularity Lemmas and Combinatorial Algorithms

Nikhil Bansal∗

IBM T.J. Watson Research Center
Yorktown Heights, NY

nikhil@us.ibm.com

Ryan Williams†

IBM Almaden Research Center
San Jose, CA

ryanw@ias.edu

Abstract— We present new combinatorial algorithms for
Boolean matrix multiplication (BMM) and preprocessing a graph
to answer independent set queries. We give the first asymptotic im-
provements on combinatorial algorithms for dense BMM in many
years, improving on the “Four Russians” O(n3/(w log n)) bound
for machine models with wordsize w. (For a pointer machine, we
can set w = log n.) The algorithms utilize notions from Regularity
Lemmas for graphs in a novel way.

• We give two randomized combinatorial algorithms for
BMM. The first algorithm is essentially a reduction from
BMM to the Triangle Removal Lemma. The best known
bounds for the Triangle Removal Lemma only imply an
O

`
(n3 log β)/(βw log n)

´
time algorithm for BMM where

β = (log∗ n)δ for some δ > 0, but improvements
on the Triangle Removal Lemma would yield correspond-
ing runtime improvements. The second algorithm applies
the Weak Regularity Lemma of Frieze and Kannan along
with several information compression ideas, running in
O

“
n3(log log n)2/(log n)9/4)

”
time with probability expo-

nentially close to 1. When w ≥ log n, it can be implemented
in O

“
n3(log log n)2/(w log n)7/6)

”
time. Our results im-

mediately imply improved combinatorial methods for CFG
parsing, detecting triangle-freeness, and transitive closure.

• Using Weak Regularity, we also give an algorithm for an-
swering queries of the form is S ⊆ V an independent set? in
a graph. Improving on prior work, we show how to randomly
preprocess a graph in O(n2+ε) time (for all ε > 0) so
that with high probability, all subsequent batches of log n
independent set queries can be answered deterministically in
O

“
n2(log log n)2/((log n)5/4)

”
time. When w ≥ log n, w

queries can be answered in O
“
n2(log log n)2/((log n)7/6)

”
time. In addition to its nice applications, this problem is
interesting in that it is not known how to do better than O(n2)
using “algebraic” methods.

1. INTRODUCTION

Szemerédi’s Regularity Lemma is one of the most remark-
able results of graph theory, having many diverse uses and
applications. In computer science, regularity notions have
been used extensively in property and parameter testing [4],
[6], [11], [41], [12], approximation algorithms [24], [25],
[17], and communication complexity [30]. In this paper

†Research performed while the author was a member of the Institute for
Advanced Study, Princeton, NJ. Supported by NSF Grant CCF-0832797
(Expeditions in Computing) at IAS, and the Josef Raviv Memorial Fellow-
ship at IBM.

we show how regularity can lead to faster combinatorial
algorithms for basic problems.

Boolean matrix multiplication (BMM) is one of the most
fundamental problems in computer science. It is a key sub-
routine in the solution of many other problems such as tran-
sitive closure, context-free grammar parsing, all-pairs path
problems, and triangle detection. Roughly speaking, there
have been two lines of theoretical research on the problem.
Algebraic algorithms, beginning with Strassen’s Õ(nlog2 7)
algorithm [46] and ending (so far) with Coppersmith and
Winograd’s Õ(n2.376) algorithm [20], reduce the Boolean
problem to ring matrix multiplication and give ingenious
methods for the ring version by utilizing cancellations. In
particular, multiplication-efficient algorithms are found for
multiplying finite matrices over an arbitrary ring, and these
algorithms are applied recursively. There have been huge
developments in this direction over the years, with many
novel ideas (cf. [39] for an overview of early work, and [18],
[19] for a more recent and promising approach). However,
these algorithms (including Strassen’s) have properties (lack
of locality, extra space usage, and leading constants) that
may make them less desirable in practice.1

The second line of work on matrix multiplication has stud-
ied so-called “combinatorial” algorithms. Generally speak-
ing, these algorithms exploit combinatorial redundancies that
arise from construing matrices as graphs, often invoking
word parallelism and lookup tables.2 They are considered
more practical, but fewer advances have been made; all
algorithms for the dense case [37], [8], [44], [9], [43],
[10], [49] are loosely based on the “Four Russians” ap-
proach of Arlazarov et al. [8] from 1970,3 which runs

1For this reason, some practical implementations of Strassen’s algorithm
switch to standard (or “Four Russians”) multiplication when the submatrices
are sufficiently small. For more discussion on the (im)practicality of
Strassen’s algorithm and variants, cf. [34], [16], [2].

2We would like to give a definition of “combinatorial algorithm”, but
this appears elusive. Although the term has been used in many of the cited
references, nothing in the literature resembles a definition. For the purposes
of this paper, let us think of a “combinatorial algorithm” simply as one that
does not call an oracle for ring matrix multiplication.

3Historical Note: Similar work of Moon and Moser [37] from 1966
shows that the inverse of a matrix over GF (2) needs exactly Θ(n2/ log n)
row operations, providing an upper and lower bound. On a RAM, their
algorithm runs in O(n3/(w log n)) time.

in O(n3/(w log n)) on modern computational models.4 To
date, this is still the fastest known combinatorial algorithm
for dense matrices.

Many works (including [1], [21], [34], [45], [40], [35],
[15]) have commented on the dearth of better combinatorial
algorithms for BMM. As combinatorial algorithms can often
be generalized in ways that the algebraic ones cannot (e.g.,
to work over certain semirings), the lack of progress does
seem to be a bottleneck, even for problems that appear to be
more difficult. For instance, the best known algorithm for the
general all-pairs shortest paths problem is combinatorial and
runs in O(n3poly(log log n)/ log2 n) time [15] – essentially
the same time as Four Russians(!). Some progress on special
cases of BMM has been made: for instance, in the sparse
case where one matrix has m << n2 nonzeros, there is
an O(mn log(n2/m)/(w log n)) time algorithm [23], [13].
See [38], [45], [35] for a sampling of other partial results.

In this paper we present what are arguably the first con-
crete improvements on combinatorial algorithms for dense
BMM since the 70’s. Our approach opens an new line of
attack on the problem by connecting the complexity of
BMM to modern topics in graph theory, such as the Weak
Regularity Lemma and the efficiency of Triangle Removal
Lemmas. A Triangle Removal Lemma [42], [28] states that
there is a function f satisfying limx→0 f(x) = 0 such that
for every graph with at most εn3 triangles, we can efficiently
find f(ε)n2 edges that hit all triangles. This lemma is one
of the many deep consequences of Szemerédi’s Regularity
Lemma [47]. We prove that good removal lemmas imply
faster Boolean matrix multiplication. Let w be the wordsize
(typically w = Θ(log n)).

Theorem 1.1 Suppose there is an O(T (n)) time algorithm
that, for every graph G = (V,E) with at most εn3

triangles, returns a set S ⊆ E with |S| ≤ f(ε)n2 such
that G′ = (V,E \ S) is triangle-free. Then there is a
randomized algorithm for Boolean matrix multiplication that
returns the correct answer with high probability and runs in
O
(
T (n) + f(ε)n3 log(1/f(ε))

w log n + n2

ε · log n + εn3
)

time.

Unfortunately the best known upper bound for f is
f(ε) = O(1/(log∗ 1/ε)δ) for some δ > 0 (cf. Section 2.1).
For ε = 1/

√
n, we obtain a very modest runtime improve-

ment over Four Russians. However no major impediment is
known (like that proven by Gowers for the full Regularity

4The algorithm in [8] was originally stated to run in O(n3/ log n) time.
At a high level, it partitions the first matrix into n×ε log n submatrices, and
the second matrix into ε log n×n submatrices. Each n×ε log n submatrix
is treated as a function from ε log n bits to n bits; this function is stored
in a table for direct access. Each table has nε entries, and n bits in each
entry. With this table one can multiply each n × ε log n and ε log n × n
submatrix together in O(n2) time. An additional w-factor can be saved
by storing the n-bit outputs of the function as a collection of n/w words,
or a log-factor is saved by storing the outputs as a collection of n/ log n
pointers to nodes encoding log n bit strings in a graph, cf. [43], [10], [49].

Lemma [29]) for obtaining a much better f for triangle
removal. The best known lower bound on f(ε) is only
2−O(

√
log(1/ε)), due to Rusza and Szemerédi [42].

Our second algorithm for BMM gives a more concrete
improvement, relying on the Weak Regularity Lemma of
Frieze and Kannan [24], [25] along with several other
combinatorial ideas.

Theorem 1.2 There is a combinatorial algorithm for
Boolean matrix multiplication in Ô(n3/(log2.25 n)) (worst-
case) expected time on a pointer machine.5 More precisely,
for any n×n Boolean matrices A and B, the algorithm com-
putes their Boolean product with probability exponentially
close to 1, and takes time O(n3(log log n)2/(log2.25 n)). On
a RAM with wordsize w ≥ log n, the algorithm can be
implemented in O(n3(log log n)/(w log7/6 n)) time.

These new algorithms are interesting not so much for
their quantitative improvements, but because they show
some further improvement. Some researchers believed that
O(n3/(w log n)) would be the end of the line for algorithms
not based on algebraic methods. This belief was quantified
by Angluin [7] and Savage [44], who proved in the mid 70’s
that for a straight-line program model which includes Four
Russians, Ω(n3/(w log n)) operations are indeed required.6

Finally, we show how our approach can improve the
solution of problems that seem beyond the reach of alge-
braic methods, and give a partial derandomization of some
applications of BMM. In the independent set query problem,
we wish to maintain a data structure (with polynomial
preprocessing time and space) that can quickly answer if a
subset S ⊆ V is independent. It is not known how to solve
this problem faster than O(n2) using Strassenesque methods.
Previously it was known that one could answer one indepen-
dent set query in O(n2/ log2 n) [49] (or O(n2/(w log n))
with wordsize w).

Theorem 1.3 For all ε ∈ (0, 1/2), we can prepro-
cess a graph G in O(n2+ε) time such that with high
probability, all subsequent batches of log n independent
set queries on G can be answered deterministically in
O(n2(log log n)2/(ε(log n)5/4)) time. On the word RAM
with w ≥ log n, we can answer w independent set queries
in O(n2(log log n)/(ε(log n)7/6)) time.

That is, the O(n2+ε) preprocessing is randomized, but
the algorithm which answers batches of queries is determin-
istic, and these answers will always be correct with high
probability. The independent set query problem has several

5The Ô notation suppresses poly(log log n) factors.
6More precisely, they proved that Boolean matrix multiplication requires

Θ(n2/ log n) bitwise OR operations on n-bit vectors, in a straight-line
program model where each line is a bitwise OR of some subset of vectors
in the matrices and a subset of previous lines in the program, and each row
of the matrix product appears as the result of some line of the program.

interesting applications. For one, Theorem 1.3 immediately
implies a faster triangle detection algorithm. (A graph is
triangle-free if and only if all vertex neighborhoods are
independent sets.) The query problem can also model a
special case of partial match retrieval, and the problem
of preprocessing a 2-CNF formula F in order to evaluate
F on arbitrary assignments a quickly [14]. It can also be
used to solve a query version of the well-known 3-SUM
problem [27]. The 3-SUM problem asks: given two sets A
and B of n elements each, are there two elements in A
that add up to some element in B? The assumption that
3-SUM can’t be solved much faster than the trivial O(n2)
bound is used to show hardness for computational geometry
problems [27]. We can define a query version as: given two
sets A and B of n elements each, preprocess them so that
for any query set S ⊆ A, one can quickly answer whether
two elements in S sum to an element in B. If we make
a graph with a node for each element in A, and an edge
between two elements in A if their sum is an element in B,
this gives exactly the independent set query problem [14].

2. PRELIMINARIES

The Boolean semiring is the semiring on {0, 1} with OR
as addition and AND as multiplication. For Boolean matrices
A and B, A∨B is the componentwise OR of A and B, A∧B
is the componentwise AND, and A ∗ B is the (Boolean)
matrix product over the Boolean semiring.

Since the running times of our algorithms involve poly-
logarithmic terms, we must make the computational model
precise. Unless otherwise specified, we assume a standard
word RAM with wordsize w. That is, accessing a memory
location takes O(1) time, and we can perform simple op-
erations (such as addition, componentwise AND and XOR,
but not multiplication) on w-bit numbers in O(1) time. In
our results, we explicitly state the dependence of the word
size, denoted by w. The reader may assume w = Θ(log n)
for convenience. In fact all algorithms in this paper can be
implemented on a pointer machine under this constraint.

We now describe some of the tools we need.

2.1. Regularity

Let G = (V,E) be a graph and let S, T ⊆ V be disjoint.
Define e(S, T) = {(u, v) ∈ E | u ∈ S, v ∈ T}. The density
of (S, T) is d(S, T) = e(S, T)/(|S||T |). Thus d(S, T) is the
probability that a random pair of vertices, one from S and
one from T , have an edge between them. For ε > 0, the
pair (S, T) is ε-regular if over all S′ ⊆ S and T ′ ⊆ T with
|S′| ≥ ε|S| and |T ′| ≥ ε|T |, we have |d(S′, T ′)−d(S, T)| ≤
ε. That is, the density of all sufficiently large subsets of
(S, T) is approximately d(S, T).

Definition 2.1 A partition {V1, . . . , Vk} of V is an ε-regular
partition of G if |Vi| ≤ ε|V | for all i, ||Vi| − |Vj || ≤ 1 for

all i, j, and all but at most εk2 of the pairs (Vi, Vj) are
ε-regular.

Szemerédi’s celebrated theorem states that in every suffi-
ciently large graph and every ε, an ε-regular partition exists.

Lemma 2.1 (Regularity Lemma) For all ε > 0, there is
a K(ε) such that every G has an ε-regular partition where
the number of parts k is at most K(ε).

We need to compute such a partition in less than cubic
time, in order to perform faster matrix multiplication. There
exist several polynomial time constructions of ε-regular
partitions [3], [26], [25], [32]. The fastest deterministic
algorithm runs in O(K ′(ε)n2) time (for some K ′(ε) related
to K(ε) and is due to Kohayakawa, Rödl, and Thoma [32].

Theorem 2.1 (Kohayakawa-Rödl-Thoma [32], Cor. 1.6)
There is an algorithm that, on input ε > 0 and graph G on
n nodes, outputs an ε-regular partition in K ′(ε) parts and
runs in O(20/(ε′)5(n2 + K ′(ε)n)) time. K ′(ε) is a tower
of at most 20/(ε′)5 twos where ε′ = (ε20/1024).

We also need the Triangle Removal Lemma, first stated by
Ruzsa and Szemerédi [42]. In one formulation, the lemma
says there is a function f such that f(ε) → 0 as ε → 0, and
for every graph with at most εn3 triangles, at most f(ε)n2

edges need to be removed to make the graph triangle-free.
We use a version stated by Green ([28], Proposition 1.3).

Lemma 2.2 (Triangle Removal Lemma) Suppose G has
at most δn3 triangles. Let k = K(ε) be the number of parts
in some ε-regular partition of G, where 4εk−3 > δ. Then
there is a set of at most O(εn2) edges such that their removal
makes G triangle-free.

In particular, let {V1, . . . , Vk} be an ε-regular partition of
G. By removing all edges in pairs (Vi, Vi), the pairs (Vi, Vj)
with density less than 2ε1/3, and all non-regular pairs, G
becomes triangle-free.

Notice that the lemma gives an effective way of discover-
ing the edges to remove, when combined with an algorithmic
Regularity Lemma. However the above proof yields only a
very weak bound on f(ε), of the form c/(log∗ 1/ε)δ for
some constants c > 1 and δ > 0. It is of great interest to
prove a triangle removal lemma with much smaller f(ε).

There are also other (weaker) notions of regularity that
suffice for certain applications, where the dependence on ε
is much better. We discuss below a variant due to Frieze
and Kannan [25]. There are also other variants known,
for example [31], [4], [22]. We refer the reader to the
survey [33]. Frieze and Kannan defined the following notion
of a pseudoregular partition.

Definition 2.2 (ε-pseudoregular partition) Let
P = V1, . . . , Vk be a partition of V , and let dij be the

density of (Vi, Vj). For a subset S ⊆ V , and i = 1, . . . , k,
let Si = S ∩ Vi. The partition P is ε-pseudoregular if the
following relation holds for all disjoint subsets S, T of V :∣∣∣∣∣∣ e(S, T)−

k∑
i,j=1

dij |Si||Tj |

∣∣∣∣∣∣ ≤ εn2.

A partition is equitable if for all i, j, ||Vi| − |Vj || ≤ 1.

Theorem 2.2 (Frieze-Kannan [25], Thm 2 and Sec 5.1)
For all ε ≥ 0, an equitable ε-pseudoregular partition of an
n node graph with at most min{n, 24d64/(3ε2)e} parts can
be constructed in O(2O(1/ε2) n2

ε2δ3) time with a randomized
algorithm that succeeds with probability at least 1− δ.

The runtime bound above is a little tighter than what
Frieze and Kannan claim, but an inspection of their algo-
rithm shows that this bound is achieved. Note that Lovasz
and Szegedy [36] have proven that for any ε-pseudoregular
partition, the number of parts must be at least 1/4 · 21/(8ε).

2.2. Preprocessing Boolean Matrices for Sparse Operations

Our algorithms exploit regularity to reduce dense BMM
to a collection of somewhat sparse matrix multiplications.
To this end, we need results on preprocessing matrices to
speed up computations on sparse inputs. The first deals with
multiplication of an arbitrary matrix with a sparse vector, and
the second deals with multiplication of a sparse matrix with
another (arbitrary) matrix.

Theorem 2.3 (Blelloch-Vassilevska-Williams [13]) Let B
be a n × n Boolean matrix and let w be the wordsize. Let
κ ≥ 1 and ` > κ be integer parameters. There is a data
structure that can be constructed with O(n2κ/` ·

∑κ
b=1

(
`
κ

)
)

preprocessing time, so that for any Boolean vector v, the
product Bv can be computed in O(n log n+ n2

`w + nt
κw) time,

where t is the number of nonzeros in v.

This result is typically applied as follows. Fix a value of t
to be the number of nonzeros we expect in a typical vector v.
Choose ` and κ such that n/` = t/κ, and

∑κ
b=1

(
`
κ

)
= nδ for

some δ > 0. Letting κ = δ ln(n)/ ln(en/t) and ` = κ · en/t
we obtain:

Theorem 2.4 Let B be a n × n Boolean matrix. There
is a data structure that can be constructed with Õ(n2+δ)
preprocessing time, so that for any Boolean vector v, the
product Bv can be computed in O(n log n+ nt ln(en/t)

δw ln n) time,
where t is the number of nonzeros in v.

We should remark that we do not explicitly apply the
above theorem, but the idea (of preprocessing for sparse
vectors) is used liberally in this paper.

The following result is useful for multiplying a sparse
matrix with another arbitrary matrix.

Theorem 2.5 There is an O(mn log(n2/m)/(w log n))
time algorithm for computing A ∗ B, for every n × n A
and B, where A has m nonzeros and B is arbitrary.

This result follows in a straightforward manner by combin-
ing the two lemmas below. The first is a graph compression
method due to Feder and Motwani.

Lemma 2.3 (From Feder-Motwani [23], Thm 3.3) Let
δ ∈ (0, 1) be constant. We can write any n × n Boolean
matrix A with m nonzeros as A = (C ∗ D) ∨ E where C,
D are n × m/n1−δ , m/n1−δ × n, respectively, both with
at most m(log n2/m)/(δ log n) nonzeros, and E is n × n
and has at most n2−δ nonzeros. Furthermore, finding C,
D, E takes O(mnδ log2 n) time.

Since the lemma is not stated explicitly in [23], let us
sketch the proof for completeness. Using Ramsey theoretic
arguments, Feder and Motwani show that for every bipartite
graph G on 2n nodes (with n nodes each on left and
right) and m > n2−δ edges, its edge set can be decom-
posed into m/n1−δ edge-disjoint bipartite cliques, where
the total sum of vertices over all bipartite cliques (a vertex
appearing in K cliques is counted K times) is at most
m(log n2/m)/(δ log n). Every A can be written in the form
(C ∗D)∨E, by having the columns of C (and rows of D)
correspond to the bipartite cliques. Set C[i, k] = 1 iff the
ith node of the LHS of G is in the kth bipartite clique, and
similarly set D for the nodes on the RHS of G. Note E is
provided just in case A turns out to be sparse.

We also need the following simple folklore result. It
is stated in terms of wordsize w, but it can easily be
implemented on other models such as pointer machines with
w = log n.

Lemma 2.4 (Folklore) There is an O(mn/w + pq + pn)
time algorithm for computing A ∗B, for every p× q A and
q × n B where A has m nonzeros and B is arbitrary.

Proof: We assume the nonzeros of A are stored in a
list structure; if not we construct this in O(pq) time. Let
Bj be the jth row of B and Ci be the ith row of C in the
following. We start with an output matrix C that is initially
zero. For each nonzero entry (i, j) of A, update Ci to be the
OR of Bj and Ci. Each update takes only O(n/w) time. It
is easy to verify that the resulting C is the matrix product.

3. COMBINATORIAL BOOLEAN MATRIX
MULTIPLICATION VIA TRIANGLE REMOVAL

In this section, we prove Theorem 1.1. That is, we show
a more efficient Triangle Removal Lemma implies more
efficient Boolean matrix multiplication. Let A and B be the
matrices whose product D we wish to compute. The key
idea is to split the task into two cases. First, we use simple
random sampling to determine the entries in the product

that have many witnesses (where k is a witness for (i, j)
if A[i, k] = B[k, j] = 1). To compute the entries with few
witnesses, we set up a tripartite graph corresponding to the
remaining undetermined entries of the matrix product, and
argue that it has few triangles. (Each triangle corresponds
to a specific witness for a specific entry in D that is still
undetermined.) By a Triangle Removal Lemma, a sparse
number of edges hit all the triangles in this graph7. Using
three carefully designed sparse matrix products (which only
require one of the matrices to be sparse), we can recover all
those entries D[i, j] = 1 which have few witnesses.

Let C be a collection of sets over a universe U . A set
R ⊆ U is an ε-net for C if for all S ∈ C with |S| ≥ ε|U |,
R ∩ S 6= ∅. The following lemma is well known.

Lemma 3.1 Let C be a collection of sets over a universe
U . A random sample R ⊆ U of size 3 ln |C|

ε is an ε-net with
probability at least 1− |C|−2.

We now describe our algorithm for BMM.

Algorithm: Let A and B be n×n matrices. We want D =
A ∗B, i.e. D[i, j] = (∨n

k=1A[i, k] ∧B[k, j]).
Random sampling for pairs with many witnesses. First, we

detect the pairs (i, j) with at least εn witnesses. Construct a
n× n matrix C as follows. Pick a sample R of (6 log n)/ε
elements from [n]. For each (i, j), 1 ≤ i, j ≤ n, check if
there is a k ∈ R that is a witness for (i, j) in the product.
If yes, set C[i, j] = 1, otherwise C[i, j] = 0. Clearly, this
takes at most O((n2 log n)/ε) time. Note C is dominated
by the desired D, in that C[i, j] ≤ D[i, j] for all i, j. Let
Si,j be the set of witnesses for (i, j). By Lemma 3.1, R is
an ε-net for the collection {Si,j} with probability at least
1 − 1/n4. Hence we may assume C[i, j] = D[i, j] = 1 for
every (i, j) with at least εn witnesses.

Triangle removal for pairs with few witnesses. It suffices
to determine those (i, j) such that C[i, j] = 0 and D[i, j] =
1. We shall exploit the fact that such pairs do not have many
witnesses. Make a tripartite graph H with vertex sets V1, V2,
V3, each with n nodes indexed by 1, . . . , n. Define edges as
follows:

• Put an edge (i, k) ∈ (V1, V2) if and only if A[i, k] = 1.

• Put an edge (k, j) ∈ (V2, V3) if and only if B[k, j] = 1.

• Put an edge (i, j) ∈ (V1, V3) if and only if C[i, j] = 0.
That is, edges from V1 to V3 are given by C, the complement
of C. Observe (i, k, j) ∈ (V1, V2, V3) is a triangle if and only
if k is a witness for (i, j) and C[i, j] = 0. Thus our goal is
to find the pairs (i, j) ∈ (V1, V3) that are in triangles of H .

Since every (i, j) ∈ (V1, V3) has at most εn witnesses,
there are at most εn3 triangles in H . Applying the promised
Triangle Removal Lemma, we can find in time O(T (n)) a

7Note that the triangle removal lemma may also return edges that do not
lie in any triangle.

set of edges F where |F | ≤ f(ε)n2 and each triangle must
use an edge in F . Hence it suffices to compute those edges
(i, j) ∈ (V1, V3) that participate in a triangle with an edge
in F . Define AF [i, j] = 1 if and only if A[i, j] = 1 and
(i, j) ∈ F . Similarly define BF and CF . Every triangle
of H passes through at least one edge from one of these
three matrices. Let TA (resp. TB and TC) denote the set of
triangles with an edge in AF (resp. BF and CF). Note that
we do not know these triangles.

We can determine the edges (i, j) ∈ (V1, V3) that are in
some triangle in TA or TB directly by computing C1 =
AF ∗B and C2 = A ∗BF , respectively. As AF and BF are
sparse, by Theorem 2.5, these products can be computed in
O(|F | log(n2/|F |)/(w log n)) time. The 1-entries of C∧C1

(resp. C∧C2) participate in a triangle in TA (resp. TB). This
determines the edges in (V1, V3) participating in triangles
from TA ∪ TB .

Set C = C ∨ (C1 ∧C)∨ (C2 ∧C), and update C and the
edges in (V1, V3) accordingly. The only remaining edges
in (V1, V3) that could be involved in a triangle are those
corresponding to 1-entries in CF . We now need to determine
which of these actually lie in a triangle.

Our remaining problem is the following: we have a tri-
partite graph on vertex set (V1, V2, V3) with at most f(ε)n2

edges between V1 and V3, and each such edge lies in at most
εn triangles. We wish to determine the edges in (V1, V3)
that participate in triangles. This problem is solved by the
following theorem.

Theorem 3.1 Let G be a tripartite graph on vertex set
(V1, V2, V3) such that there are at most δn2 edges in
(V1, V3), and every edge of (V1, V3) is in at most t triangles.
Then the set of edges in (V1, V3) that participate in triangles
can be computed in O(δn3 log(1/δ)/(w log n) + n2t) time.

Setting δ = f(ε) and t = εn, Theorem 3.1 implies the
desired time bound in Theorem 1.1. The idea of the proof
of Theorem 3.1 is to work with a new tripartite graph where
the vertices have asymptotically smaller degrees, at the cost
of adding slightly more nodes. This is achieved by having
some nodes in our new graph correspond to small subsets
of nodes in the original tripartite graph.

Proof of Theorem 3.1: We first describe how to do the
computation on a pointer machine with w = log n, then
describe how to modify it to work for the word RAM.

Graph Construction: We start by defining a new tripartite
graph G′ on vertex set (V1, V

′
2 , V ′

3). Let γ < 1/2. V ′
2 is

obtained by partitioning the nodes of V2 into n/(γ log n)
groups of size γ log n each. For each group, we replace it
by 2γ log n = nγ nodes, one corresponding to each subset of
nodes in that group. Thus V ′

2 has n1+γ/(γ log n) nodes.
V ′

3 is also constructed out of subsets of nodes. We
form n/` groups each consisting of ` nodes in V3, where
` = γ(log n)/(δ log(1/δ)). For each group, we replace it by

nγ nodes, one corresponding to each subset of size up to
κ = γ(log n)/(log(1/δ)). Simple combinatorics show this
is possible, and that V ′

3 has O(n1+γ/`) nodes.
Edges in (V ′

2 , V ′
3): Put an edge between u in V ′

2 and x in
V ′

3 if there is an edge (i, j) in (V2, V3) such that i lies in the
set corresponding to u, and j lies in the set corresponding
to w. For each such edge (u, x), we make a list of all edges
(i, j) ∈ (V2, V3) corresponding to it. Observe the list for a
single edge has size at most O(log2 n).

Edges in (V1, V
′
2): The edges from v ∈ V1 to V ′

2 are
defined as follows. For each group in V2 consider the
neighbors of v in that group. Put an edge from v to the
node in V ′

2 corresponding to this subset. Each v has at most
n/(γ log n) edges to nodes in V ′

2 .
Edges in (V1, V

′
3): Let v ∈ V1. For each group g of `

nodes in V3, let Nv,g be the set of neighbors of v in g. Let
dv,g = |Nv,g|. Partition Nv,g arbitrarily into t = ddv,g/κe
subsets s1, . . . , st each of size at most κ. Put edges from v
to s1, . . . , st in V ′

3 . The number of these edges from v is at
most

∑
gddv,g/κe ≤ n/`+dv/κ, where dv is the number of

edges from v to V3. Since
∑

v dv ≤ δn2, the total number
of edges from V1 to V ′

3 is O(δ log(1/δ)n2/(γ log n)).

Final Algorithm: For each vertex v ∈ V1, iterate over
each pair of v’s neighbors u ∈ V ′

2 and x ∈ V ′
3 . If (u, x)

is an edge in G′, output the list of edges (i, j) in (V2, V3)
corresponding to (u, x), otherwise continue to the next pair.
From these outputs we can easily determine the edges (v, j)
in (V1, V3) that are in triangles: (v, j) is in a triangle if and
only if node j in V3 is output as an end point of some edge
(i, j) ∈ (V2, V3) during the loop for v in V1.

Running Time: The graph construction takes at most
O(n2+2γ). In the final algorithm, the total number of pairs
(u, w) in (V ′

2 , V ′
3) that are examined is at most (n/ log n) ·

O(δn2(log 1/δ)/ log n)) ≤ O(δ log(1/δ)n3/ log2 n).
We claim that the time used to output the lists of edges

is at most O(n2t). A node j from V3 is on an output list
during the loop for v in V1 if and only if (v, j) is an edge in
a triangle, with some node in V2 that has a 1 in the node i in
V ′

2 . Since each edge from (V1, V3) in a triangle is guaranteed
to have at most t witnesses in V2, the node j is output at
most t times over the loop for v in V1. Hence the length of
all lists output during the loop for v is at most nt, and the
total time for output is at most O(n2t).

Modification for w-word RAM: Finally we show how to
replace a log-speedup by a w-speedup with wordsize w. In
the above, each node in V1 and V ′

3 has n/(γ log n) edges to
nodes in V ′

2 , and these edges specify an n-bit vector. The
idea is to simply replace these edge sets to V ′

2 with ordered
sets of n/w words, each holding a w-bit string. Each v ∈ V1

now points to a collection Sv of n/w words. Each node x in
V ′

3 also points to a collection Tx of n/w words, and an array
of n/w pointers, each of which point to an appropriate list of

edges in (V2, V3) analogous to the above construction. Now
for every v in V1, the ith word q from Sv for i = 1, . . . , n/w,
and every neighbor x ∈ V ′

3 to v, we look up the ith word
q′ in the Tx, and compute q ∧ q′. If this is nonzero, then
each bit location b where q∧ q′ has a 1 means that the node
corresponding to b forms a triangle with v and some vertex
in the set corresponding to x. �

Remark: Note that we only use randomness in the
BMM algorithm to determine the pairs (i, j) that have many
witnesses. Moreover, by choosing a larger sample R in the
random sampling step (notice we have a lot of slack in the
running time of the random sampling step), the probability
of failure can be made exponentially small.

Using the best known bounds for triangle removal, we
obtain the following corollary to Theorem 1.1:

Corollary 3.1 There is a δ > 0 and a randomized algorithm
for Boolean matrix multiplication that works with high
probability and runs in O

(
n3 log(log∗ n)

w(log n)(log∗ n)δ

)
time.

Proof: Let ε = 1/
√

n. By the usual proof of the triangle
removal lemma (via the Regularity Lemma), it suffices to set
f(ε) = 1/(log∗ 1/ε)δ in Theorem 1.1 for a constant δ > 0.

It is our hope that further work on triangle removal may
improve the dependency of f . In the next section, we show
how to combine the Weak Regularity Lemma along with the
above ideas to construct a faster algorithm for BMM.

4. FASTER BOOLEAN MATRIX MULTIPLICATION VIA
WEAK REGULARITY

We first state a useful lemma, inspired by Theorem 2.3.
It uses a similar technique to the proof of Theorem 3.1.

Theorem 4.1 Let B be an n × n Boolean matrix. Let
κ ≥ 1 and ` ≥ κ be integer parameters. For the pointer
machine, there is a data structure that can be built in
O(n2/`2 ·(

∑κ
b=1

(
`
b

)
)2) time, so that for any u, v ∈ {0, 1}n,

the product uT Bv over the Boolean semiring can be com-
puted in O(n`+(n

` + tu

κ)(n
` + tv

κ)) time, where tu and tv are
the number of nonzeros in u and v, respectively. Moreover,
the data structure can output the list of pairs (i, j) such
that uiB[i, j]vj = 1 in O(p) additional time, where p is the
number of such pairs.

On the word RAM with w ≥ log n, the same can be
achieved in O(n` + n

w · (n
` + min(tu,tv)

κ)) time.

For our applications, we shall set ` = log2 n and κ =
1/5 · log n/(log log n). Then the preprocessing is n3−Ω(1),
uT Bv can be computed in time

O

((
n

log2 n
+

tu log log n

log n

)(
n

log2 n
+

tv log log n

log n

))
(1)

on a pointer machine, and it can be computed on RAMs
with large wordsize w in time

O

(
n2

w log2 n
+

n min(tu, tv) log log n

w log n

)
. (2)

Proof of Theorem 4.1: As in the proof of Theorem 3.1, we
first describe how to implement the algorithm on a pointer
machine, then show how it may be adapted. We view B as
a bipartite graph G = (U, V,E) in the natural way, where
U = V = [n] and (i, j) ∈ E iff B[i, j] = 1. We group
vertices in U and V into dn/`e groups, each of size at most
`. For each group g, we introduce a new vertex for every
subset of up to κ vertices in that group. Let U ′ and V ′

be the vertices obtained. We view the nodes of U ′ and V ′

also as vectors of length ` with up to κ nonzeros. Clearly
|U ′| = |V ′| = O(n/` ·

∑κ
b=1

(
`
b

)
).

For every vertex u′ ∈ U ′, we store a table Tu′ of size |V ′|.
The v′-th entry of Tu′ is 1 iff there is an i ∈ U in the set
corresponding to u′, and a j ∈ V in the set corresponding to
v′, such that B[i, j] = 1. Each (i, j) is said to be a witness
to Tu′ [v′] = 1. In the output version of the data structure, we
associate a list Lv′ with every nonzero entry v′ in the table
Tu′ which contains those (i, j) pairs which are witnesses to
Tu′ [v′] = 1. Note that |Lv′ | ≤ O(κ2).

Given query vectors u and v, we compute uT Bv and those
(i, j) satisfying uiB[i, j]vj = 1 as follows. Let ug be the
restriction of the vector u to group g of U . Note |ug| ≤ `.
Let t(u, g) denote the number of nonzeros in ug . Express
ug as a Boolean sum of at most dt(u, g)/κe vectors (nodes)
from U ′; this can be done since each vector in U ′ has up to
κ nonzeros. Do this over all groups g of U . Now u can be
represented as a Boolean sum of at most n/`+ tu/κ vectors
from U ′. We repeat a similar procedure for v over all groups
g of V , obtaining a representation of v as a sum of at most
n/` + tv/κ vectors from V ′. These representations can be
determined in at most O(n`) time.

Let Su ⊆ U ′ be the subset of vectors representing u,
and Sv ⊆ V ′ be the vectors for v. For all u′ ∈ Su and
v′ ∈ Sv , look up Tu′ [v′]; if it is 1, output the list Lv′ .
Observe uT Bv = 1 iff there is some Tu′ [v′] that equals
1. It is easily seen that this procedure satisfies the desired
running time bounds.

We now consider the word RAM model. We will have two
(analogous) data structures depending on whether tu ≤ tv or
not. Suppose tu ≤ tv . As previously, we form the graph U ′

with vertices corresponding to subsets of up to κ nonzeros
within a vector of size `. With each such vertex u′ ∈ U ′ we
associate an n-bit vector Tu′ (which is stored as an n/w-
word vector), obtained by taking the union of the rows of B
corresponding to u′. Now, since v can also be stored as an
n/w-word vector, the product Tu′ · v can be performed in
n/w time. For a given u there are at most at most n/`+tu/κ
relevant vectors Tu′ and hence the product uT Bv can be
computed in time O((n/` + tu/κ)(n/w)). �

Theorem 4.2 There is a combinatorial algorithm that,
given any two Boolean n× n matrices A and B, computes
A ∗B correctly with probability exponentially close to 1, in
O(n3(log log n)2/(log2.25 n)) time on a pointer machine,
and O(n3(log log n)/(w log7/6 n)) time on a word RAM.

Proof: The algorithm builds on Theorem 1.1 (the
BMM algorithm using triangle removal), while applying
Theorem 4.1, Theorem 3.1, and Weak Regularity. We first
describe the algorithm for pointer machines.

Random Sampling: As in Theorem 1.1, by taking a
random sample of

√
n indices from [n], we can determine

those pairs (i, j) such that (A ∗B)[i, j] = 1 where there are
at least n3/4 witnesses to this fact. This takes O(n2.5) time
and succeeds with probability 1 − exp(−nΩ(1)). Next we
construct a tripartite graph G = (V1, V2, V3, E) exactly as
in Theorem 1.1, and just as before our goal is to determine
all edges (i, j) ∈ (V1, V3) that form at least one triangle
with some vertex in V2.

Preprocessing: Compute an ε-pseudoregular partition
{W1, . . . ,Wk} of the bipartite subgraph (V1, V3), with ε =

1
α
√

log n
for an α > 0. By Theorem 2.2 this partition can be

found in 2O(α2 log n) time. Set α to make the runtime (n2.5).
Recall dij is the density of the pair (Wi,Wj).

Sparse Pairs: Let F be the set of all edges in (V1, V3)
that lie in some pair (Wi,Wj), where dij ≤

√
ε. Note |F | ≤√

εn2. Apply the algorithm of Theorem 3.1 to determine the
subset of edges in F that participate in triangles. Remove
the edges of F from G.

Dense Pairs: For all pairs (Wi,Wj) with dij >
√

ε,
build the data structure of Theorem 4.1 for the submatrix
corresponding to the pair, with ` = log2 n and κ =
log n/(5 log log n). Then for each vertex v ∈ V2, let Si(v) =
N(v) ∩Wi, and Tj(v) = N(v) ∩Wj . Compute all pairs of
nodes in Si(v) × Tj(v) that form a triangle with v, using
the query algorithm of Theorem 4.1.

Analysis: Clearly, the random sampling step takes
O(n2.75) time. Consider the sparse pairs step. Recall |F | ≤√

εn2 and every edge in (V1, V3) is in at most n3/4 triangles.
Moreover, the function f(δ) = δ log(1/δ) is increasing
for small δ (e.g., over [0, 1/4]). Hence the algorithm in
Theorem 3.1 takes at most O(

√
εn3 log(1/ε)/ log2 n) ≤

O(n3 log log n/ log2.25 n) time.
Now we bound the runtime of the dense pairs step.

First note that the preprocessing of Theorem 4.1 takes only
O(n2

log2 n
·
(

log2 n
log n/(5 log log n)

)2
) ≤ O(n2+4/5) time overall.

Let e(S, T) denote the number of edges between subsets
S and T . Since there are at most n2.75 triangles,∑

v∈V2

e(N(v) ∩ V1, N(v) ∩ V3) ≤ n2.75. (3)

Since {Wi} is ε-pseudoregular, (3) implies∑
v∈V2

∑
i,j

dij |Si(v)||Tj(v)| ≤ εn3 + n2.75 ≤ 2εn3

for large n. Summing over densities di,j ≥
√

ε, we obtain∑
v∈V2

∑
i,j:di,j≥

√
ε

|Si(v)||Tj(v)| ≤ 2
√

εn3 ≤ 2n3

log.25 n
. (4)

Applying expression (1), the time taken by all queries on
the data structure of Theorem 4.1 for a fixed pair (Wi,Wj)
is at most∑
v∈V2

(
(n/k)
lg2 n

k

+
|Si(v)| lg lg n

k

lg n
k

)(
(n/k)
lg2 n

k

+
|Tj(v)| lg lg n

k

lg n
k

)
.

Expanding the products and applying (4), it is easy to see
that the total runtime is upper bounded by∑
v∈V2

∑
i,j:dij≥

√
ε

|Si(v)||Tj(v)|(log log n)2

w log n
≤ 2n3(log log n)2

w log1.25 n
.

Finally, the random sampling step ensures that the number
of witnesses is at most n.75 for every edge, so the output
cost in the algorithm is at most O(n2.75).

Modification for the word RAM: We apply the same
algorithm as above, except we run the sparse pairs step for
pairs (Wi,Wj) with density dij ≤ ε1/3 (instead of

√
ε as

before). For the pairs (Wi,Wj) with dij > ε1/3, construct
the data structure of Theorem 4.1 for the word RAM.

As in the analysis above, the preprocessing step of Theo-
rem 3.1 has running time O(ε1/3n3 log(1/ε)/(w log n)) ≤
O(n3 log log n/(w log7/6 n)) time. Now consider the time
due to queries on the data structure of Theorem 4.1. Using
an argument identical to that used to obtain (4), the time is∑

v∈V2

∑
i,j:di,j≥ε1/3

|Si(v)||Tj(v)| ≤ 2ε2/3n3 ≤ 2n3

log1/3 n
. (5)

Applying expression (2), the total running time is∑
v∈V2

∑
i,j

((
n
k

)2
w log2 n

k

+
n
k ·min(|Si(v)|, |Tj(v)|) log log n

k

w log(n/k)

)

≤ n3

w log2 n
k

+
∑
v∈V2

∑
i,j

n
k ·min(|Si(v)|, |Tj(v)|) log log n

k

w log n
k

.

(6)
To bound the second term, observe that∑

v∈V2

∑
i,j

min(|Si(v)|, |Tj(v)|)

≤
∑
v∈V2

∑
i,j

(|Si(v)| · |Tj(v)|)1/2

≤ k
√

n ·
√∑

v∈V2

∑
i,j

|Si(v)||Tj(v)|,

by Cauchy-Schwarz. By (5), this is at most
2kn2/ log1/6 n. Thus (6) can be upper bounded by
O(n3 log log n/(w log7/6 n)) as desired.

5. INDEPENDENT SET QUERIES VIA WEAK
REGULARITY

We consider the following independent set query problem.
We want to preprocess an n-node graph in polynomial time
and space, so that given any S1, . . . , Sw ⊆ V , we can deter-
mine in n2/f(n) time which of S1, . . . , Sw are independent
sets. Using such a subroutine, we can easily determine
in n3/(wf(n)) time if a graph has a triangle (provided
the preprocessing itself can be done in O(n3/(wf(n)))
time), by executing the subroutine on collections of sets
corresponding to the neighborhoods of each vertex.

The independent set query problem is equivalent to:
preprocess a Boolean matrix A so that w queries of the form
“vT

j Avj = 0?” can be computed in n2/f(n) time, where
the products are over the Boolean semiring. We shall solve
a more general problem: preprocess A to answer w queries
of the form “uT Av = 0?”, for arbitrary u, v ∈ {0, 1}n.

Our method employs weak regularity along with other
combinatorial ideas seen earlier in the paper.

Theorem 5.1 For all δ ∈ (0, 1/2), every n×n Boolean ma-
trix A can be preprocessed in O(n2+δ) time such that given
arbitrary Boolean vectors u1, . . . , ulog n and v1, . . . , vlog n,
we can determine if uT

p Avp = 0, for all p = 1, . . . , log n in
O(n2(log log n)2

δ(log n)5/4) time on a pointer machine.
On the word RAM we can determine if uT

p Avp = 0, for
all p = 1, . . . , w in time O(n2(log log n)

δ(log n)7/6) where w is the
wordsize.

Proof of Theorem 5.1: Due to space constraints we
only describe the algorithm on the pointer machine. The
algorithm can be extended to the word RAM by using a
modification identical to that in Theorem 4.2. We start with
the preprocessing.

Preprocessing: Interpret A as a bipartite graph in the
natural way. Compute a ε-pseudoregular partition of the
bipartite A = (V,W,E) with ε = Θ(1/

√
log n), using

Theorem 2.2. (Note this is the only randomized part of
the algorithm.) Let V1, V2, . . . , Vk be the parts of V and
let W1, . . . ,Wk be the parts of W , where k ≤ 2O(1/ε2).

Let Aij be the submatrix corresponding to the graph
(Vi,Wj). Let dij be the density of (Vi,Wj). Let ∆ =

√
ε.

For each of the k2 submatrices Aij , do the following:
1) If dij ≤ ∆, apply graph compression (Theorem 2.5)

to preprocess Aij in time mnδ log2 n, so that Aij

can be multiplied by any n/k × log n matrix B in
time O(m log((n/k)2/m)/ log(n/k)), where m is the
number of nonzeros in Aij . (Note m ≤ ∆(n/k)2.)

2) If dij > ∆, apply the preprocessing of Theorem 4.1
to Aij with ` = log2 n and κ = δ log n/(5 log log n).

Query Algorithm: Given Boolean vectors up and vp for
p = 1, . . . , log n, let Sp ⊆ [n] be the subset corresponding
to up and T p ⊆ [n] be the subset corresponding to vp. For
1 ≤ i, j ≤ k, let Sp

i = Sp ∩ Vi and T p
j = Tj ∩Wj .

1) Compute Qp =
∑k

i,j=1 dij |Sp
i ||T

p
j | for all p =

1, . . . , log n. If Qp > εn2, then output uT
p Avp = 1.

2) Let I = {p : Qp ≤ εn2}. Note |I| ≤ log n. We
determine uT

p Avp for each p ∈ I as follows:
• For all (i, j) with dij > ∆, apply the algorithm of

Theorem 4.1 to compute ep
ij = (Sp

i)T AijT
p
j for

each p ∈ I .
• For all (i, j) with dij ≤ ∆, form an n

k ×|I| matrix
Bj with columns T p

j over all p ∈ I . Compute
Cij = Aij ∗Bj using the Aij from preprocessing
step 1. For each p ∈ I , compute the (Boolean) dot
product ep

ij = (Sp
i)T · Cp

ij , where Cp
ij is the p-th

column of Cij .
• For each p ∈ I , return uT

p Avp =
∨

i,j ep
ij .

Analysis: We first consider the preprocessing time. By
Theorem 2.2, we can choose ε so that the ε-pseudoregular
partition is constructed in O(n2+δ) time. By Theorems 2.5
and 4.1, the preprocessing for matrices Aij takes at most
O(k2(n/k)2+δ) time for some δ < 1/2. Thus, the total time
is at most O(n2+δ).

We now analyze the query algorithm. Note step 1 of the
query algorithm works by ε-pseudoregularity: if Qp > εn2

then the number of edges between Sp and T p in A is greater
than 0. Computing all Qp takes time at most O(k2n log n).

Consider the second step. As
∑

i,j dij |Sp
i ||T

p
j | ≤ εn2 for

each p ∈ I , we have∑
i,j:dij≥∆

|Sp
i ||T

p
j | ≤

εn2

∆
=
√

εn2. (7)

Analogously to Theorem 4.2, the total runtime over all
p ∈ I and pairs (i, j) with dij > ∆ is on the order of∑

p∈I

∑
i,j:dij>∆

(
n/k

log2 n
k

+
|Sp

i | log log n
k

log n
k

)

·

(
n/k

log2 n
k

+
|T p

i | log log n
k

log n
k

)

≤ O

 n2

log3 n
+
∑
p∈I

∑
i,j:dij>∆

|Sp
i ||T

p
i |(log log n)2

log2 n

 .

The inequality (7), the fact that |I| ≤ log n, and our choice
of ε imply that the above is O(n3(log log n)2/ log5/4 n).

Now we consider the pairs (i, j) with dij ≤ ∆. By
Theorem 2.5, computing the product Cij = AijBj for all
p ∈ I (at once) takes

O

(
∆
(

n
k

)2 log(1/∆)
log(n/k)

)
.

Summing over all relevant pairs (i, j) (there are at most k2),
this is O(n2(log log n)/ log5/4 n) by our choice of ∆. �

6. CONCLUSION

We have shown how regularity concepts can be applied to
yield faster combinatorial algorithms for fundamental graph
problems. These results hint at an alternative line of research
on Boolean matrix multiplication that has been unexplored.
It is likely that the connections are deeper than we know;
let us give a few reasons why we believe this.

First, we applied generic tools that are probably stronger
than necessary, so it should be profitable to search for regu-
larity concepts that are designed with matrix multiplication
in mind. Secondly, Trevisan [48] has promoted the question
of whether or not the Triangle Removal Lemma requires
the full Regularity Lemma. Our work gives a rather new
motivation for this question, and opens up the possibility
that BMM may be related to other combinatorial problems
as well. Furthermore, there may be similar algorithms for
matrix products over other structures such as finite fields or
the (min,+)-semiring. These algorithms would presumably
apply removal lemmas from additive combinatorics.

We end with an open question that we believe can be
answered positively. Is there a proof of the Weak Regularity
Lemma that achieves ε = Θ(1/

√
log n) with a deterministic

algorithm that runs in O(n2.9) time? Known deterministic
algorithms (such as Alon and Naor [5]) require approx-
imately solving an SDP for the cut-norm, which is not
known to be solvable in this running time. Such an algorithm
would be sufficient to give a deterministic triangle detection
algorithm that beats Four Russians, by our results.

ACKNOWLEDGEMENTS

We thank Avrim Blum for suggesting the independent set
query problem, which led us to this work. We also thank the
anonymous referees and the program committee for helpful
comments.

REFERENCES

[1] D. Aingworth, C. Chekuri, P. Indyk, and R. Motwani. Fast
estimation of diameter and shortest paths (without matrix
multiplication). SIAM J. Comput. 28(4):1167–1181, 1999.
Preliminary version in SODA’96.

[2] M. Albrecht, G. Bard, and W. Hart. Efficient Multiplication
of Dense Matrices over GF (2). ACM Transactions on Math-
ematical Software, to appear.

[3] N. Alon, R. A. Duke, H. Lefmann, V. Rödl, and R. Yuster.
The algorithmic aspects of the regularity lemma. J. Algorithms
16(1):80–109, 1994. Preliminary version in FOCS’92.

[4] N. Alon, E. Fischer, M. Krivelevich, and M. Szegedy. Efficient
testing of large graphs. Combinatorica 20(4):451–476, 2000.
Preliminary version in FOCS’99.

[5] N. Alon and A. Naor. Approximating the cut-norm via
Grothendieck’s inequality. SIAM J. Computing 35:787–803,
2006. Preliminary version in STOC’04.

[6] N. Alon, E. Fischer, I. Newman, and A. Shapira. A combina-
torial characterization of the testable graph properties: it’s all
about regularity. Proc. of STOC, 251–260, 2006.

[7] D. Angluin. The four Russians’ algorithm for Boolean matrix
multiplication is optimal for its class. SIGACT News, 29–33,
Jan-Mar 1976.

[8] V. Z. Arlazarov, E. A. Dinic, M. A. Kronrod and I. A.
Faradzhev. On economical construction of the transitive clo-
sure of a directed graph. Doklady Academii Nauk SSSR
194:487-488, 1970. In English: Soviet Mathematics Doklady
11(5):1209-1210, 1970.

[9] M.D. Atkinson and N. Santoro. A practical algorithm for
Boolean matrix multiplication. IPL 29:37–38, 1988.

[10] J. Basch, S. Khanna, and R. Motwani. On Diameter Verifi-
cation and Boolean Matrix Multiplication. Technical Report
No. STAN-CS-95-1544, Department of Computer Science,
Stanford University, 1995.

[11] C. Borgs, J. Chayes, L. Lovász, V. T. Sós, B. Szegedy, and
K. Vesztergombi. Graph limits and parameter testing. Proc. of
STOC, 261–270, 2006.

[12] A. Bhattacharyya, V. Chen, M. Sudan, and N. Xie. Testing
Linear-Invariant Non-Linear Properties. Proc. of STACS, 135–
146, 2009.

[13] G. Blelloch, V. Vassilevska, and R. Williams. A new combi-
natorial approach for sparse graph problems. Proc. of ICALP
Vol. 1, 108–120, 2008.

[14] A. Blum. Personal communication, 2009.
[15] T. M. Chan. More algorithms for all-pairs shortest paths in

weighted graphs. Proc. of STOC, 590–598, 2007.
[16] S. Chatterjee, A. R. Lebeck, P. K. Patnala, and M. Thot-

tethodi. Recursive array layouts and fast matrix multiplica-
tion. IEEE Transactions on Parallel and Distributed Systems,
13(11):1105–1123, 2002.

[17] A. Coja-Oghlan, C. Cooper, and A. M. Frieze. An efficient
sparse regularity concept. Proc. of SODA, 207–216, 2009.

[18] H. Cohn and C. Umans. A group-theoretic approach to fast
matrix multiplication.Proc. of FOCS, 438–449, 2003.

[19] H. Cohn, R. Kleinberg, B. Szegedy, and C. Umans. Group-
theoretic algorithms for matrix multiplication. Proc. of FOCS,
379–388, 2005.

[20] D. Coppersmith and S. Winograd. Matrix multiplication via
arithmetic progressions. J. Symbolic Computation, 9(3):251–
280, 1990. Preliminary version in STOC’87.

[21] D. Dor, S. Halperin, and U. Zwick. All pairs almost shortest
paths. SIAM J. Comput. 29(5):1740–1759, 2000. Preliminary
version in FOCS’96.

[22] R. A. Duke. H. Lefmann, and V. Rödl. A fast approximation
algorithm for computing the frequencies of subgraphs in a
given graph. SIAM J. Computing 24(3):598–620, 1995.

[23] T. Feder and R. Motwani. Clique partitions, graph com-
pression and speeding-up algorithms. J. Comput. Syst. Sci.
51(2):261–272, 1995. Preliminary version in STOC’91.

[24] A. Frieze and R. Kannan. The regularity lemma and approx-
imation schemes for dense problems. Proc. of FOCS, 12–20,
1996.

[25] A. Frieze and R. Kannan. Quick approximation to matrices
and applications. Combinatorica 19(2):175–220, 1999.

[26] A. Frieze and R. Kannan. A simple algorithm for constructing
Szemerédi’s regularity partition. Electr. J. Comb. 6, 1999.

[27] A. Gajentaan and M. H. Overmars. On a class of O(n2)

problems in computational geometry. Comput. Geom. Theory
Appl. 5: 165–185, 1995.

[28] B. Green. A Szemerédi-type regularity lemma in abelian
groups. Geom. and Funct. Anal. 15(2):340–376, 2005.

[29] W. T. Gowers. Lower bounds of tower type for Szemerédi’s
uniformity lemma. Geom. and Funct. Anal. 7(2), 322–337,
1997.

[30] A. Hajnal, W. Maass, and G. Turán. On the communication
complexity of graph properties. Proc. of STOC, 186–191, 1988.

[31] Y. Kohayakawa. Szemerédi’s regularity lemma for sparse
graphs. Found. of Computational Mathem., 216–230, 1997.

[32] Y. Kohayakawa, V. Rödl, and L. Thoma. An optimal algo-
rithm for checking regularity. SIAM J. Comput. 32(5):1210–
1235, 2003.

[33] J. Komlós and M. Simonovits. Szemerédi’s Regularity
Lemma and its applications in graph theory. In Combinatorics,
Paul Erdos is Eighty, (D. Miklos et. al, eds.), Bolyai Society
Mathematical Studies 2:295–352, 1996.

[34] L. Lee. Fast context-free grammar parsing requires fast
Boolean matrix multiplication. J. ACM 49(1):1–15, 2002.

[35] A. Lingas. A geometric approach to Boolean matrix multipli-
cation. Proc. of ISAAC, Springer LNCS 2518, 501–510, 2002.

[36] L. Lovasz and B. Szegedy. Szemerédi’s theorem for the
analyst. Geom. and Funct. Anal. 17:252–270, 2007.

[37] J. W. Moon and L. Moser. A Matrix Reduction Problem.
Mathematics of Computation 20(94):328–330, 1966.

[38] P. E. O’Neil and E. J. O’Neil. A fast expected time algo-
rithm for Boolean matrix multiplication and transitive closure
matrices. Information and Control 22(2):132–138, 1973.

[39] V. I. Pan. How to multiply matrices faster. Springer-Verlag
LNCS 179, 1984.

[40] L. Roditty and U. Zwick. On Dynamic Shortest Paths Prob-
lems. Proc. of ESA, 580–591, 2004.

[41] V. Rödl and M. Schacht. Property testing in hypergraphs and
the removal lemma. Proc. of STOC, 488–495, 2007.

[42] I. Z. Ruzsa and E. Szemerédi. Triple systems with no
six points carrying three triangles. Colloquia Mathematica
Societatis János Bolyai 18:939–945, 1978.

[43] W. Rytter. Fast recognition of pushdown automaton and
context-free languages. Information and Control 67(1-3):12–
22, 1985. Preliminary version in MFCS’84.

[44] J. E. Savage. An algorithm for the computation of linear
forms. SIAM J. Comput. 3(2):150–158, 1974.

[45] C.-P. Schnorr and C. R. Subramanian. Almost optimal (on
the average) combinatorial algorithms for Boolean matrix
product witnesses, computing the diameter. Proc. of RANDOM-
APPROX, Springer LNCS 1518, 218–231, 1998.

[46] V. Strassen. Gaussian elimination is not optimal. Numerische
Mathematik 13:354–356, 1969.

[47] E. Szemerédi. Regular partitions of graphs. Proc. Colloque
Inter. CNRS (J. C. Bermond, J. C. Fournier, M. Las Vergnas
and D. Sotteau, eds.), 399–401, 1978.

[48] L. Trevisan. Additive Combinatorics and Theoretical Com-
puter Science. SIGACT News Complexity Column 63, 2009.

[49] R. Williams. Matrix-vector multiplication in subquadratic
time (some preprocessing required). Proc. of SODA, 995–1001,
2007.

