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Abstract—We present a new distributed model of
probabilistically checkable proofs (PCP). A satisfying
assignment x ∈ {0, 1}n to a CNF formula φ is shared
between two parties, where Alice knows x1, . . . , xn/2,
Bob knows xn/2+1, . . . , xn, and both parties know φ.
The goal is to have Alice and Bob jointly write a
PCP that x satisfies φ, while exchanging little or no
information. Unfortunately, this model as-is does not
allow for nontrivial query complexity. Instead, we focus
on a non-deterministic variant, where the players are
helped by Merlin, a third party who knows all of x.

Using our framework, we obtain, for the first time,
PCP-like reductions from the Strong Exponential Time
Hypothesis (SETH) to approximation problems in P. In
particular, under SETH we show that there are no truly-
subquadratic approximation algorithms for Maximum
Inner Product over {0, 1}-vectors, LCS Closest Pair
over permutations, Approximate Partial Match, Ap-
proximate Regular Expression Matching, and Diameter
in Product Metric. All our inapproximability factors are
nearly-tight. In particular, for the first three problems
we obtain nearly-polynomial factors of 2(logn)1−o(1)

;
only (1+o(1))-factor lower bounds (under SETH) were
known before.

As an additional feature of our reduction, we obtain
new SETH lower bounds for the exact “monochro-
matic” Closest Pair problem in the Euclidean, Man-
hattan, and Hamming metrics.

Index Terms—fine-grained complexity; similarity
search; strong exponential-time hypothesis; closest pair;
longest common subsequence; inapproximability

I. INTRODUCTION

Fine-Grained Complexity classifies the time com-
plexity of fundamental problems under popular con-
jectures, the most productive of which has been the
Strong Exponential Time Hypothesis1 (SETH). The
list of “SETH-Hard” problems is long, including cen-
tral problems in pattern matching and bioinformatics

1SETH is a pessimistic version of P6= NP, stating that for every
ε > 0 there is a k such that k-SAT cannot be solved in O((2−ε)n)
time.

[1], [2], [3], graph algorithms [4], [5], dynamic data
structures [6], parameterized complexity and exact
algorithms [7], [8], [9], computational geometry [10],
time-series analysis [11], [12], and even economics
[13] (a longer list can be found in [14]).

For most problems in the above references, there
are natural and meaningful approximate versions,
and for most of them the time complexity is wide
open (a notable exception is [4]). Perhaps the most
important and challenging open question in the field
of Fine-Grained Complexity is whether a framework
for hardness of approximation in P is possible. To
appreciate the gaps in our knowledge regarding in-
approximability, consider the following fundamental
problem from the realms of similarity search and
statistics, of finding the most correlated pair in a
dataset.

Definition I.1 (The MAX INNER PRODUCT Prob-
lem (MAX-IP)). Given a set of N binary vectors
in {0, 1}d, return a pair that maximizes the inner
product.

Thinking of the vectors as subsets of [d], this
MAX-IP problem asks to find the pair with largest
overlap, a natural similarity measure. A naı̈ve algo-
rithm solves the problem in O(N2d) time, and one of
the most-cited fine-grained results is a SETH lower
bound for this problem.2 Assuming SETH, we cannot
solve MAX-IP (exactly) in N2−ε ·2o(d) time, for any
ε > 0 [15].

This lower bound is hardly pleasing when one

2As a matter of fact, the lower bound is only for the bichromatic
version of the problem, where we are given two sets of vector
and want to find the best pair, one from each list. This distinction
between monochromatic and bichromatic not so important for now,
and we will only address it in Section I-B1.



of the most vibrant areas of Algorithms3 is con-
cerned with designing approximate but near-linear
time solutions for such similarity search problems.
For example, the original motivation of the celebrated
MinHash algorithm was to solve the indexing version
of this problem [16], [17], and one of the first im-
plementations was at the core of the AltaVista search
engine. The problem has important applications all
across Computer Science, most notably in Machine
Learning, databases, and information retrieval, e.g.
[18], [19], [20], [21], [22], [23], [24], [25], [26], [27],
[28], [29], [30], [31], [32], [33], [34].

MAX-IP seems to be more challenging than
closely related problems where similarity is defined
as small Euclidean distance rather than large in-
ner product. For the latter, we can get near-linear
O(N1+ε) time algorithms, for all ε > 0, at the cost
of some constant f(ε) error that depends on ε [18],
[19], [23], [25]. In contrast, for MAX-IP, even for a
moderately subquadratic running time of O(N2−ε),
all known algorithms suffer from polynomial Ng(ε)

approximation factors.
Meanwhile, the SETH lower bound for MAX-IP

was only slightly improved by Ahle, Pagh, Razen-
shteyn, and Silvestri [31] to rule out 1 + o(1) ap-
proximations, leaving a huge gap between the not-
even-1.001 lower bound and the polynomial upper
bound.

Open Question 1. Is there an O(N1+ε)-time algo-
rithm for computing an f(ε)-approximation to MAX
INNER PRODUCT over binary vectors?

This is just one of the many significant open
questions that highlight our inability to prove hard-
ness of approximation in P, and pour cold water on
the excitement from the successes of Fine-Grained
Complexity. It is natural to try to adapt tools from the
NP-Hardness-of-approximation framework (namely,
the celebrated PCP Theorem) to P. Unfortunately,
when starting from SETH, almost everything in the
existing theory of PCPs breaks down. Whether PCP-
like theorems for Fine-Grained Complexity are pos-
sible, and what they could look like, are fascinating
open questions.

Our main result is the first SETH-based PCP-
like theorem, from which several strong hardness
of approximation in P results follow. We identify a
canonical problem that is hard to approximate, and
further gadget-reductions allow us to prove SETH-
based inapproximability results for basic problems
such as Subset Queries, Closest Pair under the
Longest Common Subsequence similarity measure,

3In SODA’17, two entire sessions were dedicated to algorithms
for similarity search.

and Furthest Pair (Diameter) in product metrics. In
particular, assuming SETH, we negatively resolve
Open Question 1 in a very strong way, proving an
almost tight lower bound for MAX-IP.

A. PCP-like Theorems for Fine-Grained Complexity

The following meta-structure is common to most
SETH-based reductions: given a CNF ϕ, construct
N = O

(
2

n
2

)
gadgets, one for each assignment to

the first/last n/2 variables, and embed those gadgets
into some problem A. The embedding is designed so
that if A can be solved in O

(
N2−ε) = O

(
2(1− ε

2 )n
)

time, a satisfying assignment for ϕ can be efficiently
recovered from the solution, contradicting SETH.

The most obvious barrier to proving fine-grained
hardness of approximation is the lack of an appropri-
ate PCP theorem. Given a 3-SAT formula ϕ, testing
that an assignment x ∈ {0, 1}n satisfies ϕ requires
reading all n bits of x. The PCP Theorem [35],
[36], shows how to transform x ∈ {0, 1}n into a
PCP (probabilistically checkable proof) π = π (ϕ, x),
which can be tested by a probabilistic verifier who
only reads a few bits from π. This is the starting
point for almost all proofs of NP-hardness of approx-
imation. The main obstacle in using PCPs for fine-
grained hardness of approximation is that all known
PCPs incur a blowup in the size proof: π (ϕ, x)
requires n′ � n bits. The most efficient known
PCP, due to Dinur [37], incurs a polylogarithmic
blowup (n′ = n · polylog(n)), and obtaining a PCP
with a constant blowup is a major open problem
(e.g. [38], [39]). However, note that even if we had
a fantastic PCP with only n′ = 10n, a reduction of
size N ′ = 2

n′
2 = 25n does not imply any hardness

at all. Our goal is to overcome this barrier:

Open Question 2. Is there a PCP-like theorem for
fine-grained complexity?

Distributed PCPs

Our starting point is that of error-correcting codes,
a fundamental building block of PCPs. Suppose that
Alice and Bob want to encode a message m =
(α;β) ∈ {0, 1}n in a distributed fashion. Neither
Alice nor Bob knows the entire message: Alice
knows the first half (α ∈ {0, 1}

n
2 ), and Bob knows

the second half (β ∈ {0, 1}
n
2 ). Alice can locally

compute an encoding E′ (α) of her half, and Bob
locally computes an encoding E′ (β) of his. Then
the concatenation of the Alice’s and Bob’s strings,
E (m) = (E′ (α) ;E′ (β)), is an error-correcting
encoding of m.



Now let us return to distributed PCPs. Alice
and Bob share a k-SAT4 formula ϕ. Alice has an
assignment α ∈ {0, 1}

n
2 to the first half of the

variables, and Bob has an assignment β ∈ {0, 1}
n
2

to the second half. We want a protocol where Alice
locally computes a string π′ (α) ∈ {0, 1}n

′
, Bob

locally computes π′ (β) ∈ {0, 1}n
′
, and together

π (α;β) = (π′ (α) , π′ (β)) is a valid probabilistically
checkable proof that x = (α, β) satisfies ϕ. That is,
a probabilistic verifier can read a constant number of
bits from (π′ (α) , π′ (β)) and decide (with success
probability at least 2/3) whether (α, β) satisfies ϕ.

It is significant to note that if distributed PCPs
can be constructed, then very strong reductions
for fine-grained hardness of approximation follow,
completely overcoming the barrier for fine-grained
PCPs outlined above. The reason is that we can
still construct N = O

(
2

n
2

)
gadgets, one for each

half assignment α, β ∈ {0, 1}
n
2 , where the gad-

get for α also encodes π′ (α). The blowup of the
PCP only affects the size of each gadget, which is
negligible compared to the number of gadgets. In
fact, this technique would be so powerful, that we
could reduce SETH to problems like approximate `2-
Nearest Neighbor, where the existing sub-quadratic
approximation algorithms (e.g. [25]) would falsify
SETH!

Alas, distributed PCPs are unconditionally impos-
sible (even for 2-SAT) by a simple reduction from
Set Disjointness:

Theorem I.2 (Reingold [40]; informal). Distributed
PCPs are impossible.

Proof (sketch). Consider the 2-SAT formula ϕ ,∧n/2
i=1 (¬αi ∨ ¬βi). This ϕ is satisfied by assignment

(α;β) iff the vectors α, β ∈ {0, 1}
n
2 are disjoint. If

a PCP verifier can decide whether (α;β) satisfies ϕ
by a constant number of queries to (π′ (α) , π′ (β)),
then Alice and Bob can simulate the PCP verifier
to decide whether their vectors are disjoint, while
communicating only a constant number of bits (the
values read by the PCP verifier). This contradicts the
randomized communication complexity lower bounds
of Ω(n) for set disjointness [41], [42], [43].

Note that the proof shows that even distributed
PCPs with o(n) queries are impossible.

Distributed and non-deterministic PCPs: As noted
above, set disjointness is very hard for randomized
communication, and hard even for non-deterministic

4In the formulation of SETH, k is a “sufficiently large constant”.
However, for the purposes of our discussion here it suffices to think
of k = 3.

communication [44]. But Aaronson and Wigder-
son [45] showed that set disjointness does have
Õ (
√
n) Merlin-Arthur (MA) communication com-

plexity. In particular, they construct a simple protocol
where the standard Bob and an untrusted Merlin (who
can see both sets of Alice and Bob) each send Alice
a message of length Õ (

√
n). If the sets are disjoint,

Merlin can convince Alice to accept; if they are not,
Alice will reject with high probability regardless of
Merlin’s message.

Our second main insight in this paper is this: for
problems where the reduction from SETH allows for
an efficient OR gadget, we can enumerate over all
possible messages from Merlin and Bob5. Thus we
incur only a subexponential blowup6 in the reduction
size,while overcoming the communication barrier.
Indeed, the construction in our PCP-like theorem can
be interpreted as implementing a variant of Aaronson
and Wigderson’s MA communication protocol. The
resulting PCP construction is distributed (in the sense
described above) and non-deterministic (in the sense
that Alice receives sublinear advice from Merlin).

It can be instructive to view our distributed PCP
model as a 4-party (computationally-efficient) com-
munication problem. Merlin wants to convince Alice,
Bob, and Veronica (the verifier) that Alice and Bob
jointly hold a satisfying assignment to a publicly-
known formula. Merlin sees everything except the
outcome of random coin tosses, but he can only send
o(n) bits to only Alice. Alice and Bob each know
half of the (allegedly) satisfying assignment, and each
of them must (deterministically) send a (possibly
longer) message to Veronica. Finally, Veronica tosses
coins and is restricted to reading only o(n) bits from
Alice’s and Bob’s messages, after which she must
output Accept/Reject.

Patrascu and Williams [7] asked whether it is pos-
sible to use Aaronson and Wigderson’s MA protocol
for Set Disjointness to obtain better algorithms for
satisfiability. Taking an optimistic twist, our results
in this paper may suggest this is indeed possible:
if any of several important and simple problems
admit efficient approximation algorithms, then faster
algorithms for (exact) satisfiability may be obtained
via Aaronson and Wigderson’s MA protocol.

B. Our results

Our distributed and non-deterministic PCP theorem
is formalized and proved in the full version. Since our

5In fact, enumerating over Merlin’s possible messages turns out
to be easy to implement in the reductions; the main bottleneck is
the communication with Bob.

6Subexponential in n (the number of k-SAT variables), which
implies subpolynomial in N ≈ 2n/2.



main interest is proving hardness-of-approximation
results, we abstract the prover-verifier formulation
by reducing our PCP to an Orthogonal-Vectors-like
problem which we call PCP-VECTORS (see below).
PCP-VECTORS turns out to be an excellent starting
point for many results, yielding easy reductions for
fundamental problems and giving essentially tight
inapproximability bounds. We begin with the descrip-
tion of PCP-VECTORS, and then exhibit what we
think are the most interesting applications.

a) PCP-Vectors: We introduce an intermediate
problem which we call PCP VECTORS. The purpose
of introducing this problem is to abstract out the
prover-verifier formulation before proving hardness
of approximation in P, very much like NP-hardness
of approximation reductions start from gap-3-SAT or
LABEL COVER.

Definition I.3 (PCP-VECTORS). The input to this
problem consists of two sets of vectors A ⊂ ΣL×K

and B ⊂ ΣL, The goal is to find vectors a ∈ A and
b ∈ B that maximize

s (a, b) , Pr
`∈L

[ ∨
k∈K

(a`,k = b`)

]
. (1)

Theorem I.4. Let ε > 0 be any constant, and let
(A,B) be an instance of PCP-VECTORS with N
vectors and parameters |L|, |K|, |Σ| = No(1).Then,
assuming SETH, O

(
N2−ε)-time algorithms cannot

distinguish between:
• (Completeness) there exist a∗, b∗ such that
s (a∗, b∗) = 1; and

• (Soundness) for every a ∈ A, b ∈ B, we have
s (a, b) ≤ 1/2(log N)1−o(1)

.

We also have a symmetric variant of PCP-
VECTORS (which we call SYMMETRIC PCP-
VECTORS), where the vectors come from one set.
There is some tradeoff between the properties of the
two variants: In PCP-VECTORS, we can afford to
assume additional structure on the hard instances,
which supports reductions to structured problems
like SUBSET QUERY and REGULAR EXPRESSION.
In contrast, having one set of vectors in SYMMET-
RIC PCP-VECTORS simplifies reductions to Closest
Pair problems with one set, like MAX IP and LCS
CLOSEST PAIR.

Definition I.5 (SYMMETRIC PCP-VECTORS). The
input to this problem consists of a single set of
vectors U ⊂ ΣL×K .The goal is to find a pair of
vectors u∗, v∗ ∈ U (where u∗ 6= v∗) that maximize

s (u, v) , Pr
`∈L

[ ∨
k∈K

(u`,k = v`,k)

]
. (2)

Theorem I.6. Let ε > 0 be any constant, and let U
be an instance of SYMMETRIC PCP-VECTORS with
N vectors and parameters |L|, |K|, |Σ| = No(1).
Then, assuming SETH, O

(
N2−ε)-time algorithms

cannot distinguish between:
• (Completeness) there exist u∗ 6= v∗ ∈ U such

that s (u∗, v∗) = 1; and
• (Soundness) for every u, v ∈ U we have
s (u, v) ≤ 1/2(log N)1−o(1)

.
Furthermore, we have the guarantee that for every
` ∈ L, there is at most one k ∈ K such that u`,k =
v`,k

7.

b) Max Inner Product: Our first application is
a strong resolution of Open Question 1, under SETH.
Not only is an O(1)-factor approximation impossible
in O(N1+ε) time, but we must pay a near-polynomial
2(log N)1−o(1)

approximation factor if we do not spend
nearly-quadratic N2−o(1) time!

Theorem I.7. Assuming SETH, for all ε > 0,
every O(N2−ε) time algorithm for MAX INNER
PRODUCT on N vectors from {0, 1}d with dimension
d = No(1) must have approximation factor at least
2(log N)1−o(1)

.

Improving our lower bound even to some Nε

factor would refute SETH via the known MAX-IP
algorithms (see e.g. [31]). Using a standard trick,
Theorem I.7 also applies to the harder (but more
useful) search version widely known as MIPS.

Corollary I.8. Assuming SETH, for all ε > 0,
no algorithm can preprocess a set of N vectors
p1, . . . , pN ∈ D ⊆ {0, 1}d in polynomial time, and
subsequently given a query vector q ∈ {0, 1}d can
distinguish in O(N1−ε) time between the cases:
• (Completeness) there is a pi ∈ D such that
〈pi, q〉 ≥ s; and

• (Soundness) for all pi ∈ D, 〈pi, q〉 ≤
s/2(log N)1−o(1)

,
even when d = No(1) and the similarity threshold
s ∈ [d] is fixed for all queries q.

Except for the (1 + o(1))-factor lower bound [31]
which transfers to MIPS as well, the only lower
bounds known were either for specific techniques
[46], [47], [48], [24], or were in the cell-probe model
but only ruled out extremely efficient queries [49],
[50], [51], [52], [53], [54].

An important version of MAX-IP is when the
vectors are in {−1, 1}d rather than {0, 1}d. This

7Notice that for the asymmetric variant PCP-VECTORS, this is
true without loss of generalitysince all a`,k are compared to the
same b`.



version is closely related to other famous problems
such as the light bulb problem and the problem
of learning parity with noise (see the reductions in
[28]). Negative coordinates often imply trivial results
for multiplicative hardness of approximation: it is
possible to shift a tiny gap of k vs. k + 1 to a large
multiplicative gap of 0 vs 1 by adding k coordinates
with −1 contribution. In the natural version where
we search for a pair with maximum inner product
in absolute value, this trick does not quite work.
Still, Ahle et al. [31] exploit such cancellations to
get a strong hardness of approximation result using
an interesting application of Chebychev embeddings.
The authors had expected that a different approach
must be taken to prove constant factor hardness for
the {0, 1} case. Interestingly, since it is easy to reduce
{0, 1} to {−1, 1}8, our reduction also improves their
lower bound for the {−1, 1} case from 2Ω̃(

√
log N) to

the almost-tight 2(log N)1−o(1)

. This also implies an
N1−o(1)-time lower bound for queries in the indexing
version of the problem.

c) Subset Queries: A seemingly easier spe-
cial case of MAX-IP which has received extensive
attention is the Subset Query problem [55], [56],
[57], [58] which is known to be equivalent to the
classical Partial Match problem, for which the first
non-trivial algorithms appeared in Ronald Rivest’s
PhD thesis [59], [60]. Since our goal is to prove lower
bounds, we consider its offline or batch version (and
the lower bound will transfer to the data structure
version):

Given a collection of (text) sets
T1, . . . , TN ⊆ [d] and a collection of
(pattern) sets P1, . . . , PN ⊆ [d], is there a
set Pi that is contained in a set Tj?

In the c-approximate case, we want to distinguish
between the case of exact containment, and the case
where no Tj can cover more than a c-fraction of any
Pi. We prove that even this very simple problem must
pay a 2(log N)1−o(1)

approximation factor if it is to
be solved in truly-subquadratic time. Again, the only
previous lower bound factor was (1 + o(1)), which
follows from [31].

Theorem I.9. Assuming SETH, for any ε > 0, given
two sets D,P of N subsets of a universe [d] where
d = No(1) and all sets P ∈ P have size k, no
O(N2−ε) time algorithm can distinguish between the
cases:

• (Completeness) there are P ∈ P, D ∈ D such
that P ⊆ D; and

8E.g. map each 0 to a random string in {±1}d, and map each
1 to the string 1d.

• (Soundness) for all P ∈ P, D ∈ D we have
|D ∩ P | ≤ k/2(log N)1−o(1)

.

d) Longest Common Subsequence Closest Pair:
Efficient approximation algorithms have the potential
for major impact in sequence alignment problems,
the standard similarity measure between genomes
and biological data. One of the most cited scien-
tific papers of all time studies BLAST, a heuristic
algorithm for sequence alignment that often returns
grossly sub-optimal solutions9 but always runs in
near-linear time, in contrast to the best-known worst-
case quadratic-time algorithms. For theoreticians, to
get the most insight into these similarity measures,
it is common to think of them as Longest Com-
mon Subsequence (LCS) or Edit Distance. The LCS
CLOSEST PAIR problem is:

Given a (data) set of N strings and a
(query) set of N strings, all of which have
length m� N , find a pair, one from each
set, that have the maximum length common
subsequence (noncontiguous).

The search version and the Edit Distance version
are defined analogously. Good algorithms for these
problems would be highly relevant for bioinformatics.

The known gaps between upper and lower bounds
are huge. A series of breakthroughs [61], [62],
[63], [64], [65], [66] led to “good” approxima-
tion algorithms for Edit Distance: the closest pair
version can be solved in near-linear time with a
2O(
√

log m log log m) approximation. Meanwhile, LCS
resisted all these attacks, and to our knowledge, no
non-trivial algorithms are known. On the complexity
side, only a (1 + o(1))-approximation factor lower
bound is known for LCS [11], [12], [67], and getting
a 1.001 approximation in near-linear time is not
known to have any consequences. For certain algo-
rithmic techniques like metric embeddings there are
nearly logarithmic lower bounds for Edit-Distance,
but even under such restrictions the gaps are large
[68], [69], [70], [71], [72].

Perhaps our most surprising result is a separation
between these two classical similarity measures. Al-
though there is no formal equivalence between the
two, they have appeared to have the same complexity
no matter what the model and setting are. We prove
that LCS Closest Pair is much harder to approximate
than Edit Distance.

Theorem I.10. Assuming SETH, there is no(
2(log N)1−o(1)

)
-approximation algorithm for LCS

9Note that many of its sixty-thousand citations are by other
algorithms achieving better results (on certain datasets).



CLOSEST PAIR on N permutations of length m =
No(1) in time O

(
N2−ε), for all ε > 0.

Notice that our theorem holds even under the
restriction that the sequences are permutations. This
is significant: in the “global” version of the problem
where we want to compute the LCS between two long
strings of length n, one can get the exact solution
in near-linear time if the strings are permutations
(the problem becomes the famous Longest Increas-
ing Subsequence), while on arbitrary strings there
is an N2−o(1) time lower bound from SETH. The
special case of permutations has received consider-
able attention due to connections to preference lists,
applications to biology, and also as a test-case for
various techniques. In 2001, Cormode, Muthukrish-
nan, and Sahinalp [73] gave an O(log d)-approximate
nearest neighbor data structure for Edit Distance on
permutations with No(1) time queries (improved to
O(log logm) in [74]), and raised the question of
getting similar results for LCS. Our result gives a
strong negative answer under SETH, showing that
LCS CLOSEST PAIR suffers from near-polynomial
approximation factors when the query time is truly
sublinear.

e) Regular Expression Matching: Given two
sets of strings of length m, a simple hashing-based
approach lets us decide in near-linear time if there
is a pair of Hamming distance 0 (equal strings), or
whether all pairs have distance at least 1. A harder
version of this problem, which appears in many
important applications, is when one of the sets of
strings is described by a regular expression:

Given a regular expression R of size N
and a set S of N strings of length m, can
we distinguish between the case that some
string in S is matched by R, and the case
that every string in S is far in Hamming
distance10 from every string in L(R) (the
language defined by R)?

This is a basic approximate version of the classical
regular expression matching problem that has been
attacked from various angles throughout five decades,
e.g. [75], [76], [77], [78], [79], [80], [81], [82], [83],
[3], [84]. Surprisingly, we show that this problem is
essentially as hard as it gets: even if there is an exact
match, it is hard to find any pair with Hamming
distance (1 − ε) · m, for any ε > 0. For the case
of binary alphabets, we show that even if an exact
match exists (a pair of distance 0), it is hard to
find a pair of distance ( 1

2 − ε) · m, for any ε > 0.
Our lower bounds also rule out interesting algorithms

10In our hard instances, all the strings in L(R) will be of length
m, so Hamming distance is well defined.

for the harder setting of Nearest-Neighbor queries:
Preprocess a regular expression so that given a string,
we can find a string in the language of the expression
that is approximately-the-closest one to our query
string. The formal statement and definitions of regular
expressions are given in the full version.

Theorem I.11 (informal). Assuming SETH, no
O(N2−ε)-time algorithm can, given a regular expres-
sion R of size N and a set S of N strings of length
m = No(1), distinguish between the two cases:

• (Completeness) some string in S is in L(R)
• (Soundness) all strings in S have Hamming

distance (1 − o(1)) · m (or, ( 1
2 − o(1)) · m if

the alphabet is binary) from all strings in L(R).

f) Diameter in Product Metrics: The diameter
(or furthest pair) problem has been well-studied in
a variety of metrics (e.g. graph metrics [85], [4],
[86]). There is a trivial 2-approximation in near-linear
time (return the largest distance from an arbitrary
point), and for arbitrary metrics (to which we get
query access) there is a lower bound stating that
a quadratic number of queries is required to get a
(2− δ)-approximation [87]. For `2-metric, there is a
sequence of improved subquadratic-time approxima-
tion algorithms [88], [89], [90], [91], [92], [93]. The
natural generalization to the `p-metric for arbitrary p
is, to the best of our knowledge, wide open.

While we come short of resolving the complexity
of approximating the diameter for `p-metrics, we
prove a tight inapproximability result for the slightly
more general problem for the product of `p metrics.
Given a collection of metric spaces Mi = 〈Xi,∆i〉,
their f -product metric is defined as

∆
(

(x1, . . . , xk), (y1, . . . , yk)
)

, f
(

∆1(x1, y1), . . . ,∆k(xk, yk)
)
.

In particular, we are concerned with the `2-product
of `∞-spaces, whose metric is defined as:

∆2,∞(x, y) ,

√√√√ d2∑
i=1

(
d∞

max
j=2

{∣∣∣xi,j − yi,j∣∣∣})2

. (3)

(This is a special case of the more general
∆2,∞,1(·, ·) product metric, studied by [74].)

Product metrics (or cascaded norms) are useful
for aggregating different types of data [94], [95],
[96], [97]. They also received significant attention
from the algorithms community because they allow
rich embeddings, yet are amenable to algorithmic
techniques (e.g. [95], [93], [98], [74], [72], [66]).



Theorem I.12 (Diameter). Assuming SETH, there
are no (2 − δ)-approximation algorithms for
PRODUCT-METRIC DIAMETER in time O

(
N2−ε),

for any constants ε, δ > 0.

1) Closest Pair vs. “Bichromatic” Closest Pair:
The main results in this paper extend known
hardness-in-P results to also rule out efficient ap-
proximation algorithms. An additional feature of our
reduction is that it does not suffer from the following
caveat, common to almost all previous work. Going
back to the MAX-IP problem, for example, the
known hardness results of [15], [31] hold only for
the “bichromatic” variant of the problem: given sets
of vectors A,B, the algorithm must find a pair a ∈ A
and b ∈ B that maximizes a · b. In contrast, our
results hold both for the bichromatic variant and the
“monochromatic” variant, where given a single set
U , one must find a pair x, y ∈ U (s.t. x 6= y) that
maximizes x · y.11 For the latter variant, even in the
exact setting (no approximation allowed), it was open
whether there is a SETH-based lower bound.

As a corollary, we obtain via known reductions12

exact hardness for monochromatic variants of other
problems. For example,

Corollary I.13 (Monochromatic Euclidean and Ham-
ming Closest Pair). Assuming SETH, there are no
O
(
N2−ε)-time exact algorithms for the (monochro-

matic) CLOSEST PAIR problem, with Euclidean,
Manhattan, or Hamming metrics, for any constant
ε > 0.

Note that in low dimensions, the monochromatic
version of Euclidean Closest Pair is known to admit
polynomially faster algorithms than the bichromatic
version [99]. Furthermore, [100] recently showed
that even in higher dimensions, hardness for the
monochromatic Euclidean CLOSEST PAIR cannot be
proven by reducing the bichromatic to the monochro-
matic.

C. Related work

For all the problems we consider, SETH lower
bounds for the exact (bichromatic) version are known.
See [15], [29] for the MAX-IP and SUBSET QUERIES
problems, [1], [11], [12], [101] for LCS CLOSEST
PAIR, [3], [84] for REGULAR EXPRESSION MATCH-
ING, and [15] for METRIC DIAMETER.

11In fact, our results hold for an even stronger variant: given
two sets A,B, we show that it is hard to distinguish between the
case where there is a pair a ∈ A and b ∈ B with a large inner
product, and the case where every pair x 6= y ∈ (A ∪ B) has a
small inner product.

12In fact, via the “trivial” reduction that uses the exact same
instance.

Prior to our work, some hardness of approxima-
tion results were known using more problem-specific
techniques. For example, distinguishing whether the
diameter of a graph on O(n) edges is 2 or at least
3 in truly-subquadratic time refutes SETH [4], which
implies hardness for (3/2−ε) approximations. (This
is somewhat analogous to the NP-hardness of dis-
tinguishing 3-colorable graphs from graphs requiring
at least 4 colors, immediately giving hardness of
approximation for the chromatic number.) In most
cases, however, this fortunate situation does not oc-
cur. The only prior SETH-based hardness of ap-
proximation results proved with more approximation-
oriented techniques are by Ahle et al. [31] for MAX-
IP via clever embeddings of the vectors. As discussed
above, for the case of {0, 1}-valued vectors, their
inapproximability factor is still only 1 + o(1).

[67] show that, under certain complexity assump-
tions, deterministic algorithms cannot approximate
the Longest Common Subsequence (LCS) of two
strings to within 1 + o(1) in truly-subquadratic
time. They tackle a completely orthogonal obstacle
to proving SETH-based hardness of approximation:
for problems like LCS with two long strings, the
quality of approximation depends on the fraction of
assignments that satisfy a SAT instance. There is
a trivial algorithm for approximating this fraction:
sample assignments uniformly at random. See further
discussion on Open Question 4.

Recent works by Williams [102] (refuting the MA-
variant of SETH) and Ball et al. [103] also utilize
low-degree polynomials in the context of SETH
and related conjectures. Their polynomials are quite
different from ours: they sum over many possible
assignments, and are hard to evaluate (in contrast,
the polynomials used in our proof correspond to a
single assignment, and they are trivial to evaluate).

The main technical barrier to hardness of approx-
imation in P is the blowup incurred by standard
PCP constructions; in particular, we overcome it
with distributed constructions. There is also a known
construction of PCP with linear blowup for large (but
sublinear) query complexity [38] with non-uniform
verifiers; note however that merely obtaining lin-
ear blowup is not small enough for our purposes.
Different models of “non-traditional” PCPs, such as
interactive PCPs [104] and interactive oracle proofs
(IOP) [105], [106] have been considered and found
“positive” applications in cryptography (e.g. [107],
[108], [105]). In particular, [109] obtain a linear-size
IOP. It is an open question whether these interactive
variants can imply interesting hardness of approxima-
tion results [109]. (And it would be very interesting
if our distributed PCPs have any cryptographic appli-



cations!)
After the first version of this paper became public,

it was brought to our attention that the term ”dis-
tributed PCP” has been used before in a different
context by Drucker [110]. In the simplest variant of
Drucker’s model, Alice and Bob want to compute
f(α, β) with minimal communication. They receive
a PCP that allegedly proves that f(α, β) = 1; Alice
and Bob each query the PCP at two random locations
and independently decide whether to accept or reject
the PCP. As with the interactive variants of PCP, we
don’t know of any implications of Drucker’s work
for hardness of approximation, but we think that this
is a fascinating research direction.

D. Discussion

In addition to resolving the fine-grained approxi-
mation complexity of several fundamental problems,
our work opens a hope to understanding more basic
questions in this area. We list a few that seem to
represent some of the most fundamental challenges,
as well as exciting applications.

a) LCS CLOSEST PAIR PROBLEM over {0, 1}:
The LCS CLOSEST PAIR PROBLEM is most interest-
ing in two regimes: permutations (which, by defini-
tion, require a large alphabet); and small alphabet,
most notably {0, 1}. For the regime of permutations,
we obtain nearly-polynomial hardness of approxima-
tion. For small alphabet Σ, per contra, there is a trivial
1/|Σ|-approximation algorithm in near-linear time:
pick a random σ ∈ Σ, and restrict all strings to their
σ-subset. Are there better approximation algorithms?

Our current hardness techniques are limited be-
cause this problem does not admit an approximation
preserving OR-gadget for a large OR. In particular
the 1/|Σ|-approximation algorithm outlined above
implies that we cannot combine much more than |Σ|
substrings in a clever way and expect the LCS to
correspond to just one substring.

Open Question 3. Is there a 1.1-approximation for
the LCS CLOSEST PAIR PROBLEM on binary inputs
running in O(n2−ε) time, for some ε > 0?

b) LCS PROBLEM (with two strings): Gadgets
constructed in a fashion similar to our proof of
Theorem I.10 can be combined together (along with
some additional gadgets) into two long strings A,B
of length m, in a way that yields a reduction from
SETH to computing the longest common subse-
quence (LCS) of (A,B), ruling out exact algorithms
in O(m2−ε) [11], [12]. However, in the instances
output by this reduction, approximating the value
of the LCS reduces to approximating the fraction
of assignments that satisfy the original formula; it

is easy to obtain a good additive approximation by
sampling random assignments. The recent work of
[67] mentioned above, uses complexity assumptions
on deterministic algorithms to tackle this issue, but
their ideas do not seem to generalize to randomized
algorithms.

Open Question 4. Is there a 1.1-approximation for
LCS running in O(n2−ε) time, for some ε > 0?
(Open for all alphabet sizes.)

c) Dynamic Maximum Matching: A holy grail
in dynamic graph algorithms is to maintain a (1 +
ε)-approximation for the Maximum Matching in a
dynamically changing graph, while only spending
amortized no(1) time on each update. Despite a lot of
attention in the past few years [111], [112], [113],
[114], [115], [116], [117], [118], [119], [120], current
algorithms are far from achieving this goal: one can
obtain a (1 + ε)-approximation by spending Ω(

√
m)

time per update, or one can get an 2-approximation
with Õ(1) time updates.

For exact algorithms, we know that no(1) update
times are impossible under popular conjectures [121],
[6], [122], [123], [124], such as 3-SUM13, Triangle
Detection14 and the related Online Matrix Vector
Multiplication15. From the viewpoint of PCP’s, this
question is particularly intriguing since it seems to
require hardness amplification for one of these other
conjectures. Unlike all the previously mentioned
problems, even the exact case of dynamic matching
is not known to be SETH-hard.

Open Question 5. Can one maintain an (1 + ε)-
approximate maximum matching dynamically, with
no(1) amortized update time?

New frameworks for hardness of approximation:
More fundamental than resolving any particular prob-
lem, our main contribution is a conceptually new
framework for proving hardness of approximation for
problems in P via distributed PCPs. In particular,
we were able to resolve several open problems while
relying on simple algebrization techniques from early
days of PCPs (e.g. [127] and reference therein). It is
plausible that our results can be improved by import-
ing into our framework more advanced techniques

13The 3-SUM Conjecture, from the pioneering work of [125],
states that we cannot find three numbers that sum to zero in a list
of n integers in O(n2−ε) time, for some ε > 0.

14The conjecture that no algorithm can find a triangle in a graph
on m edges in O(m4/3−ε) time, for some ε > 0, or even just
that O(m1+o(1)) algorithms are impossible [6].

15The conjecture that given a Boolean n × n matrix M and a
sequence of n vectors v1, . . . , vn ∈ {0, 1}n we cannot compute
the n products M · xi in an online fashion (output Mxi before
seeing xi+1) in a total of O(n3−ε) time [123]. See [126] for a
recent upper bound.



from decades of work on PCPs — starting with
verifier composition [35], parallel repetition [128],
Fourier analysis [129], etc.

d) Hardness from other sublinear communica-
tion protocols for Set Disjointness: A key to our
results is an MA protocol for Set Disjointness with
sublinear communication, which trades off between
the size of Merlin’s message and the size of Alice
and Bob’s messages. There are other non-standard
communication models where Set Disjointness en-
joys a sublinear communication protocol, for example
quantum communication16 [130].

Open Question 6. Can other communication models
inspire new reductions (or algorithms) for standard
computational complexity?

e) Hardness of approximation from new models
of PCPs: This is the most open-ended question. For-
mulating a clean conjecture about distributed PCPs
was extremely useful for understanding the limita-
tions and possibilities of our framework — even
though our original conjecture turned out to be false.

Open Question 7. Formulate a simple and plausible
PCP-like conjecture that resolves any of the open
questions mentioned in this section.
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