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Abstract

TheP vsNP problem arose from the question of whether exhaustive search is necessary for problems
with short verifiable solutions. We do not know if even a slight algorithmic improvement over exhaustive
search is universally possible for allNP problems, and to date no major consequences have been derived
from the assumption that an improvement exists.

We show that there are naturalNP andBPP problems for which minor algorithmic improvements
over the trivial deterministic simulation already entail lower bounds such asNEXP 6⊆ P/poly and
LOGSPACE 6= NP. These results are especially interesting given that similar improvementshavebeen
found for many other hard problems. Optimistically, one might hope our results suggest a new path
to lower bounds; pessimistically, they show that carrying out the seemingly modest program of finding
slightly better algorithms for all search problems may be extremely difficult (if not impossible).

We also prove unconditional superpolynomial time-space lower bounds for improving on exhaustive
search: there is a problem verifiable withk(n) length witnesses inO(na) time (for somea and some
functionk(n) ≤ n) that cannot be solved ink(n)cna+o(1) time andk(n)cno(1) space,for everyc ≥ 1.
While such problems can always be solved by exhaustive search in O(2k(n)na) time andO(k(n) + na)
space, we can prove asuperpolynomiallower bound in the parameterk(n) when space usage is restricted.
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by NSF Grant CCF-0832797 (Expeditions in Computing) and NSFGrant DMS-0835373 (Pseudorandomness). At IBM, the author
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1 Introduction

To what extent can we avoid exhaustive search for generic search problems? This is one of the many
offshoots of theP versusNP problem and it is the central question addressed in the area of exact algorithms
for NP-hard problems.1 The general message of this research has been that the trivial enumeration of all
possible solutionscanbe quantitatively improved upon for many problems (and their number is increasing
every year). The broad success of this program leads one to wonder if all NP problems allow some modest
improvement over brute-force search. More precisely, letV (x, y) be a verifier that runs on witnessesy of
length |x|c and takesO(|x|d) time. The runtime of exhaustive search for a witness isO(2|x|

c

|x|d). Can
we always find a witness inO(2.99|x|c|x|d)? What aboutO(2|x|

c−log2 |x||x|100d)? Can we approximate the
fraction of witnesses thatV accepts in this time? IfV uses onlys(n) space, can we find a witness in
O(2.99|x|c |x|d) time andO(|x|100c + s(n)) space? These questions are the focus of the present paper.

Here we offer the first concrete evidence that the above minorimprovements will be difficult to achieve
for some problems. We do not rule out the possibility of theseimprovements; rather, we show that they
would already imply superpolynomial lower bounds in complexity theory. (Optimists might say we have
given a new approach to proving class separations.) We show that the task of finding improved algorithms is
connected naturally to the task of proving superpolynomiallower bounds. Regardless of one’s complexity-
theoretic worldview, our results show that one cannot simultaneously believe that “superpolynomial lower
bounds are far beyond our current techniques” and “simple tricks should suffice for improved exponential
algorithms.”2

1.1 Main Results

1.1.1 Improved Algorithms Imply Circuit Lower Bounds

Let CIRCUIT SAT be the problem of finding a satisfying assignment to a Boolean circuit (over AND, OR,
NOT gates). The CIRCUIT SAT problem is often the firstNP-complete problem introduced in textbooks.
Due to its applications in hardware/software verification and automated reasoning, the problem has been
extensively studied in many areas of computer science. (Although CNF satisfiability gets all the fanfare,
most formulas obtained in practice start as Boolean circuits.) Clearly, for circuits withn input variables and
poly(n) gates, the problem can be solved in2n · poly(n) time on any robust model of computation, and it is
not known how to solve the problem even slightly faster than this.3

On a seemingly unrelated front, progress has been nearly nonexistent on proving superpolynomial circuit
lower bounds for over a decade. It is known that the exponential-time version of Merlin-Arthur does not
have polynomial size circuits [BFT98], but it is not known how to improve the lower bound to evenEXP

NP,
the class of problems solvable in exponential time with anNP oracle. Since it appears unlikely thatNP does
not have polynomial size circuits, this is indeed a frustrating state of affairs.

These two lines of research can be related to each other in a striking way:

1In fact, in Gödel’s famous letter to Von Neumann, he posed precisely this question:

“It would be interesting to know... in the case of finite combinatorial problems, how stronglyin generalthe number
of steps vis-á-visdem blossen Probieren[the “bare trying” of solutions] can be reduced.” [Har89]

2This was Mihai Patrascu’s eloquent way of putting it.
3We use the poly(n) notation to denoteO(nc) factors for a fixedc > 0 independent ofn.
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Theorem 1.1 Suppose there is a superpolynomial functions(n) such thatCIRCUIT SAT on circuits withn
variables andnk gates can be solved in2n · poly(nk)/s(n) time by a (co-non)deterministic algorithm, for
all k. ThenNEXP 6⊆ P/poly.

That is, practically any nontrivial improvement over exhaustive search for CIRCUIT SAT (or nontrivial
proofs of unsatisfiability) would already imply superpolynomial circuit lower bounds for nondeterministic
exponential time. The best known deterministic algorithm for CNF satisfiability takes2n−Ω(n/ ln(m/n))poly(m),
wherem is the number of clauses andn is the number of variables [DH08, CIP06]. For more complex cir-
cuits, the current state of the art is a randomized SAT algorithm for AC

0 circuits which runs in2n−n1−o(1)

time on circuits withn1+o(1) gates [CIP09]. Both time bounds are noticeably smaller thanthe hypothesis of
Theorem 1.1.4 Of course this does not mean that the hypothesis can be achieved, but it does seem possible
at the present time.

One intuitive way of viewing Theorem 1.1 is that, if we could understand the structure of circuits well
enough to solve their satisfiability problem faster, then this understanding could be translated into concrete
lower bounds for those circuits. We solidify this intuitionin two ways, by extending Theorem 1.1 to re-
stricted circuit classes, and by showing that even faster Circuit Satisfiability would lead to stronger lower
bounds.

For example, if satisfiability of Boolean formulas onn variables andnc connectives can be solved in
2n · poly(nc)/s(n), thenENP does not have (non-uniform) polynomial size formulas.5 If satisfiability of
AC0[6] circuits (constant depth circuits with AND, OR, NOT, and MOD6 gates) onn variables andnc gates
can be solved in2n/2 · poly(nc)/s(n), thenENP does not have polynomial sizeAC0[6] circuits.

Interestingly, it does not take a much stronger assumption to get a nearly optimal circuit lower bound for
ENP, and consequentlyEXP

NP:

Theorem 1.2 If CIRCUIT SAT onn variables andm gates is inO(2(1−δ)npoly(m)) (co-non)deterministic
time for someδ > 0, then there isε > 0 and a language inENP that does not have2εn size circuits.

That is, an algorithm for CIRCUIT SAT with running time comparable to the best known algorithms for
k-CNF SAT would entail strong circuit lower bounds.6

One may be skeptical that these small improvements are possible for Circuit Satisfiability. Similar results
can also be established for problems efficiently solvable with randomness. TheCircuit Acceptance Prob-
ability Problem(CAPP) is to approximate (within±1/6) the fraction of satisfying assignments of a given
Boolean circuit onn variables andnc gates for somec [KC99, KRC00, For01, Bar02, IKW02]. CAPP can
be solved inO(nc) time with a randomized algorithm. It is known that CAPP is in polynomial time if and
only if PromiseBPP = P [For01], so the problem is “complete” in some sense. We show that essentially
any nontrivial derandomization for CAPP implies superpolynomial circuit lower bounds.

4
AC

0 circuits have constant depth and are comprised of AND, OR, NOT gates, with unbounded fan-in for each gate.
5RecallENP is the class of languages recognized by an algorithm runningin 2O(n) time that can query anNP oracle (with

queries of2O(n) length). To the best of our knowledge, linear size circuit lower bounds are not known for this class. However an
n3−o(1) lower bound onformulasize follows from work of Hastad [Has98].

6This should be contrasted with the case of general CNF-SAT, where no algorithm of the kind required in Theorem 1.2 is known.
Recent work with Patrascu indicates that the problem of finding such a CNF-SAT algorithm is also closely related to other problems
in theoretical computer science [PW10].
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Theorem 1.3 If there is anO(2n · poly(nc)/s(n)) nondeterministic algorithm for CAPP (for any super-
polynomials(n)), thenNEXP 6⊆ P/poly.

(Here, anondeterministic approximation algorithmfor CAPP always has at least one accepting compu-
tation, and always outputs a good approximation when it enters an accept state.) The proof of Theorem 1.3
holds even if we replace CAPP with the problem of distinguishing between circuits which are unsatisfiable
and circuits with at least2n−1 satisfying assignments. We interpret Theorem 1.3 as sayingthatcircuit lower
bounds are much easier than derandomization: any weak derandomization of CAPP would already yield a
circuit lower bound that is much stronger than anything we currently know.

Theorem 1.3 also implies interesting “amplification” results:

Theorem 1.4 If CAPP has a nondeterministicO(2n · poly(n)/s(n)) time algorithm that succeeds on all
inputs, then for allε > 0, CAPP has a nondeterministicO(2nε

) time algorithm withnε advice that succeeds
on infinitely many inputs.

Theorem 1.5 If CAPP onn variables andm gates has a nondeterministicO(2(1−δ)n · poly(m)) time al-
gorithm that succeeds on all inputs, then CAPP has a nondeterministic polynomial time algorithm with
O(log n) advice that succeeds on infinitely many inputs.

The prospects seem better for achieving an improved CAPP algorithm. (Note we do not necessarily
have to build a pseudorandom generator to achieve the simulations.) For CNF formulas of lengthn, Luby

and Velikovic [LV96] have given a deterministicn2O(
√

log log n)
algorithm for approximating the number of

solutions. Note it was already known thatNEXP 6= MA iff NEXP 6⊆ P/poly [IKW02]. However it could
still have been the case thatNEXP = MA and yet Circuit SAT and CAPP have slightly better algorithms.
The above results show this conjunction is impossible.

1.1.2 Improved Algorithms Imply LOGSPACE 6= NP and Subexponential Algorithms

One strength of the above results is that there is no space restriction needed for the improved algorithms:
our hypotheses only require SAT algorithms running inO(2n/s(n)) time andO(2n/s(n)) space for suf-
ficiently larges(n). Next we show that if exhaustive search can be improved in a way that preserves the
verifier’s space bound, then very surprising consequences result.

Here we shall study problems withlimited nondeterminism, which only need short witnesses (e.g., of
poly(log n) length) although verification still takes polynomial time.In particular we look at the case where
the amount of nondeterminism islogarithmic in n (“log-nondeterminism”), and hence exhaustive search is
already inpolynomial time. This case is of interest as there are many polynomial time problems which fall
in this category, and for which researchers have tried to findfaster algorithms than a canonical one. The
3SUM problem is a well-known example [GO95]; satisfiabilityof exponential size circuits is another.7

It is natural to think that it may be easier to universally improve on log-nondeterminism problems. After
all, the search space is no longer exponential in the runningtime of the verifier — now they are both

7In 3SUM, we are given a setA of n numbers and wish to find three numbers that sum to zero. The problem can be easily
solved inO(n2), and it is a key bottleneck in the solution of many problems ingeometry and data structures. Finding anO(n1.99)
algorithm is a major challenge. Note 3SUM (on poly(log n)-bit numbers) can be reduced to CIRCUIT SAT with log n inputs
andO(n · poly(log n)) gates. The idea is to sortA in increasing order, and on inputi ∈ [n] use two pointers (one starting at
the beginning ofA and one at the end) to sweepA for numbersa andb such that theith number plusa + b is zero. Thus any
improvement on exhaustive search for exponential circuit satisfiability implies a 3SUM improvement.
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polynomials inn. From this perspective it appears more likely that a clever pruning of the search space can
be done.

Consider a problem solvable with witnesses oflog n length,O(nc) time, and poly(log n) space.8 The
obvious deterministic simulation runs inO(nc+1) time and poly(log n) space. We show that any universal
improvement in the runtime exponent can be amplified into anarbitrary polynomialspeedup with nondeter-
ministic algorithms. Such a speedup would have dramatic consequences.

Theorem 1.6 Suppose for allc, d ≥ 1 that every problemΠ solvable withlog n nondeterministic bits,nc

time, and(log n)d space can be solved by some deterministic algorithm inO(nc+.99) time andpoly(log n)d

space. Then every suchΠ can also be solved by some nondeterministic algorithm inO(n3) time.

Of course, the.99 is not special, and can be substituted with anyδ < 1.

Corollary 1.1 The hypothesis of Theorem 1.6 impliesLOGSPACE 6= NP; in fact, SC 6= NP, whereSC is
the class of problems solvable in (simultaneous) polynomial time and polylogarithmic space.

Corollary 1.2 The hypothesis of Theorem 1.6 implies that the quantified Boolean formula problem has a
proof system where every QBF of lengthn has proofs of2εn length for allε > 0.

That is, either the exponent in the trivial algorithm is optimal for some constantc, or we separate com-
plexity classes in a surprising way. Note if the trivial algorithm is optimal forc = 1, then SAT cannot be
solved in subquadratic time and polylog space, a problem that remains open despite much effort.9

Identifying an explicit natural problem in place of “every problem” in Theorem 1.6 is nontrivial. (We
could always use a form of the “Bounded Halting Problem”, butthis is undesirable.) The proof of Theo-
rem 1.6 uses a delicate inductive argument that makes it difficult to extend to lower bounds on a natural
problem.

1.1.3 Unconditional Lower Bounds

We want to understand the extent to which the exponential part of exhaustive search (namely, the expo-
nential runtime in the witness length) can be reduced, without affecting the runtime of verification. We can
prove unconditional lower bounds for improving on exhaustive search in this manner, based on Theorem 1.6
and its consequences. We first state a superpolynomial lowerbound in terms of the witness length. To our
knowledge no similar lower bounds have been reported.

Theorem 1.7 There is a problemΠ verifiable withk(n)-length witnesses inO(na) time (for some constant
a and somek(n) ≤ n) that cannot be solved ink(n)cna · poly(log n) time andk(n)c · (log n)c space,for
all c.

Note if we could “only” change the “somek(n)” to “all k(n)” then we would separateP from NP. The
theorem does rule out certain (daffy, but until now possible) strategies for trying to showLOGSPACE = NP.
For example, it is not possible to transform an arbitraryO(na) time verifier with witnesses of lengthk into

8In place of poly(log n) space, one may substitute any constructible functionf(n) satisfyinglog n ≤ f(n) ≤ no(1) for the
remaining results in this paper. We have chosen poly(log n) for concreteness.

9In fact, using the above footnote on 3SUM, one can show that if3SUM onN numbers (expressible in poly(log N) bits) cannot
be solved inO(N2−ε) for all ε > 0, then SAT cannot be solved inO(n2−ε), for all ε > 0.
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anO(na+o(1)) time andO(poly(log n)) space verifier with witnesses of length1010 log k. The proof uses
the framework of Theorem 1.6.

Extending this result to circuit satisfiability on general computational models is an interesting challenge.
We manage to show a related lower bound for CIRCUIT SAT:

Theorem 1.8 For everyε > 0, CIRCUIT SAT onk variables andm gates cannot be solved ink1−εm1+o(1)

time andmo(1) space.

This is already interesting, because we do not know how to prove that SAT is not inO(n2−ε) time and
no(1) space on general models (the case wherek = m).10 It is known that SAT (and consequently, CIRCUIT

SAT) cannot be solved in less thann1.8 time andno(1) space [Wil08b]. It is also known (in a precise sense)
that current techniques will not allow us to extend this bound to n2 [Wil10]. This limitation seems related
to our inability to extend Theorem 1.8 to arbitrary polynomials ink.

1.1.4 A Nontrivial Simulation

In Appendix B, we report a baby step towards improving brute force search. We observe a nontrivial
deterministic simulation of nondeterministic multitape Turing machines, inspired by a nontrivial derandom-
ization of randomized multitape Turing machines of Van Melkebeek and Santhanam [vMS05].

Theorem 1.9 For every multitape Turing machineM running in timet that accesses a tape of nondeter-
ministic bits, there is aδ > 0 and a deterministic TM that simulatesM in O(2(1−δ)t) time.

A group led by Lipton [Lip09a] has recently proved related results. Our simulation is not yet enough to
imply lower bounds, as the simulation runtime does not scalewith the amount of nondeterminism.

1.2 An Overview of Our Techniques

Our basic approach is simple: we assume the opposite of the desired lower bound (i.e., that we have
decent uniform algorithms and very good non-uniform circuits), and construct an efficient simulation of the
hard class, so tight that any nontrivial CIRCUIT SAT or CAPP algorithm contradicts a time hierarchy. This
idea can be traced back to the first paper onP/poly, by Karp and Lipton [KL80]. One of their corollaries
(credited to Meyer) is thatP = NP impliesEXP 6⊆ P/poly. To prove this, one shows that (1)EXP ⊆ P/poly
impliesEXP = Σ2P, and (2)P = NP impliesΣ2P = P. SinceP 6= EXP, it cannot be that both are true.
Our results can be seen as extreme sharpenings of this basic result: to get circuit lower bounds for classes
like NEXP, we may assumefar lessthanP = NP.

To illustrate, let us sketch the result that faster circuit satisfiability impliesNEXP circuit lower bounds.
It is known thatNEXP ⊆ P/poly implies a simulation ofNTIME[2n] where weexistentiallyguess a poly-
nomial size circuit encoding a witness, then run an exponential time verifier [IKW02]. We make the ob-
servation thatNEXP ⊆ P/poly implies thateveryverifier for anNEXP language has small circuits that
encode witnesses. Therefore we are free to construct any verifier we need to get a contradiction. We choose
one that exploits efficient reductions fromNP to SAT, translated up toNEXP. Using a small witness cir-
cuit, we can replace the exponential time verifier with a single call to CIRCUIT SAT on n + O(log n)
variables and poly(n) gates. It follows that anO(2n · poly(n)/s(n)) algorithm for CIRCUIT SAT implies

10Heren is the total length of the input.
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NTIME[2n] ⊆ NTIME[2n · poly(n)/s(n)], a contradiction. For the lower bound that follows from approx-
imating the solutions to a circuit, we use the highly efficient PCP of Proximityverifiers of Ben-Sassonet
al. [BGHSV05] in our CIRCUIT SAT instance.

In order to prove that stronger improved algorithms yield stronger consequences such asLOGSPACE 6=
NP, we use ideas from the existing time-space lower bounds for SAT, along with an inductive trick that
(assuming a universal speedup over exhaustive search) letsus repeatedly reduce any exponent in the time
bound of a complexity class until it becomes a fixed constant,leading to superpolynomial lower bounds.
Further development of this trick produces unconditional lower bounds for bounded nondeterminism.

2 Preliminaries

We assume the reader is familiar with basic concepts in complexity and algorithms. In the following
paragraphs, we focus on a few particulars needed for this paper.

2.1 Notation and Background

We define[n] := {1, . . . , n}. As usual, unless otherwise specified a function has domainN and co-
domainN, is assumed to be time (or space) constructible within the appropriate bounds, and is monotone
nondecreasing. All logarithms are in base two. A circuit is Boolean (with AND, OR, NOT gates), unless
indicated otherwise.

Computational Model and Complexity. In almost all our results one may assume any deterministic
computational model in whichO(poly(log n)) bits of information may be processed in a single step. This
includes all flavors of Turing machines (including random access), random access machines with logarithmic
size registers, and so on. (The main reason for this is given below.) We shall indicate clearly when this is
not the case.

Fix a finite alphabetΣ. We usually assumeΣ = {0, 1}. NTIME[t(n)] (TIME[t(n)]) denote the classes
of languages recognized inO(t(n)) time by a nondeterministic (deterministic) algorithm, respectively.
TISP[t(n), s(n)] denotes those languages recognized by some algorithm that runs in bothO(t(n)) time
andO(s(n)) space. RecallP =

⋃

k≥1 TIME[nk] andNP =
⋃

k≥1 NTIME[nk]. Steve’s Class (abbreviated
SC) is

⋃

k≥1 DTISP[nk, (log n)k].

i.o.− C is the class of languagesL ⊂ Σ∗ such that there is a languageL′ ∈ C whereL ∩ Σn = L′ ∩Σn

holds for infinitely manyn.

(∃ f(n))C is the class of languages which are recognized by machines with the following behavior: first,
the machine nondeterministically guessesf(n) bits, then it runs a subroutine recognizing a language in
C. The class(∀ f(n))C is defined similarly. For example, a language in the class(∃ n)TISP[n2, log n] is
recognized by some machine that on inputx guesses some|x|-bit stringy then runs a computation taking
O(|x|2) time andO(log |x|) space on the input〈x, y〉. (We assume the machine has a tape alphabet large
enough to accommodate an efficient pairing function.)

We shall use the following translation lemmas, whose proofsfollow by standard “padding arguments.”.

Lemma 2.1 (Translation Lemma) For all constructiblef(n), t1(n), t2(n), ands(n),
If NTIME[t1(n)] ⊆ TISP[t2(n), s(n)] thenNTIME[t1(f(n))] ⊆ TISP[t2(f(n)), s(f(n))].
If TISP[t2(n), s(n)] ⊆ NTIME[t1(n)] thenTISP[t2(f(n)), s(f(n))] ⊆ NTIME[t1(f(n))].
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We say thatL is aunary languageif L ⊆ {1}∗. We use the following nondeterministic time hierarchy
theorem.

Theorem 2.1 ([Zak83]) Lett1 andt2 be time constructible functions such thatt1(n+1) ≤ o(t2(n)). There
is a unary language inNTIME[t2(n)] that is not inNTIME[t1(n)].

Inspecting our proofs, one observes that we do not need the full strength of Theorem 2.1 but merely
that there is a unary language inNTIME[t1(n) logc t1(n))] that isn’t in NTIME[t1(n)], for somec > 0.
This particular time hierarchy is model-independent because the classNTIME[n ·poly(log n)] is very robust
with respect to the computational model. This is a family of results due to Gurevich and Shelah [GS89]. For
example, letNTIMERTM [t(n)] be the languages recognized with nondeterministict(n) time random-access
Turing machines, and letNTIMETM [t(n)] denote the same class for multitape Turing machines.

Theorem 2.2 (Gurevich and Shelah [GS89])
⋃

c>0 NTIMERTM [n logc n] =
⋃

c>0 NTIMETM [n logc n].

The random-access Turing machine can be replaced by any model M which has programs ofO(1) size
and processesO(poly(log n)) bits of information in a single step. Let us sketch the proof of Theorem 2.2
under this generic requirement. The idea is that a multitapeTM can simulate anM -computation running in
timeO(n ·poly(log n)) by guessing a computation history and verifying the correctness of the history. More
precisely, the length of such a history isO(n · poly(log n)) bits: we useO(poly(log n)) bits for each step,
giving a “snapshot” which describes the timestep, bits readand written, the memory locations of these bits,
and the state or program counter during that step. These snapshots are guessed in temporal order: theith
snapshot corresponds to theith step. In this ordering, a multitape TM can verify that, assuming that all the
reads are correct, the program counter and writes are all correct. A multitape TM can (inO(n · poly(log n))
time) sort these snapshots inspatial order as well, ordering the snapshots primarily by the indexof the
register/cell being read in that time step, and using the temporal order as a secondary key. In this ordering,
a multitape TM can verify that the reads are correct by verifying that the previous snapshotwrote the same
information.

2.2 Related Work

Subexponential Complexity and Parameterized Complexity. A theory of (sub)exponential time com-
plexity for NP-hard problems has been developing. Much work has gone into extending reducibility notions
to subexponential time algorithms (e.g., [IP01, IPZ01, CJ03, CG07, CIP06, Tra08]). The theory has found
interesting evidence for theexponential time hypothesis(ETH) that3-SAT is not in2o(m) time, wherem is
the number of clauses. If ETH is false, then many other problems have subexponential algorithms as well.

In the field of parameterized complexity initiated by Downeyand Fellows [DF99], one studies paired
problems with an input and an additional numerical parameter k. It is often convenient to define a param-
eterized problem when the computational problem of interest is hard, but only for certain inputs where the
difficulty can be measured by the parameter. For example, theLONGEST PATH problem isNP-complete,
but if one wants to find a longest path in a graph with treewidthat mostk, there is a2O(k log k)poly(n) algo-
rithm [FL89]. Parameterized complexity is closely relatedto the study of exact algorithms forNP (although
note that parameterized complexity can be used for other purposes as well, such as distinguishing between
the efficiencies of approximation schemes, cf. [FG06]). A problem isfixed-parameter tractable(FPT) when
it has an algorithm withf(k)nc runtime for some functionf and a universalc.
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If a problem does not seem to be FPT, one tries to find evidence for this, using reducibility notions similar
to NP-completeness. There is a hierarchy of problems, all technically solvable in polynomial time when the
parameterk is constant, which do not seem to be FPT. (In fact many hierarchies have been proposed; cf.
the texts of Downey and Fellows [DF99] and Flum and Grohe [FG06].) The most basic is theW-hierarchy,
where the lowest level is the classFPT of problems which are FPT. The next levelW[1] already contains
problems which are not inFPT, assuming ETH. There is a rough analogy between theW-hierarchy and
the polynomial time hierarchy: in theW-hierarchy,f(k) log n bits are guessed in each alternation (instead
of poly(n)), and the deterministic verifier only reads somef(k) bits of the input. FPT equals the entire
W-hierarchy if and only if Circuit SAT (withn variables andm gates) is in2n/s(n)poly(m) time for some
unboundeds(n) [ADF95]. (Note this runtime is faster than those in our hypotheses.) Indeed, there is a
sense in which the aforementioned subexponential time theory is isomorphic to questions in parameterized
complexity [CG07].

Limited Nondeterminism. Kintala and Fisher [KF77] initiated the study of classes with limited nonde-
terminism. Buss and Goldsmith [BG93] and Bloch, Buss, and Goldsmith [BBG98] considered classes with
only logarithmic nondeterminism, as we study here. A related but more refined model (the guess-and-check
model) was introduced by Cai and Chen [CC97]. Flum, Grohe, and Weyer [FGW06] gave a framework
connecting limited nondeterminism with parameterized complexity.

Better Algorithms And Better Lower Bounds. The idea that better algorithms can lead to better lower
bounds is a recurring theme in theoretical computer science. Here we cite a few examples which seem to be
most relevant to our work.

• Work of Francis Zane and his co-authors from the late 90’s [Zan98] alternated between finding faster
SAT algorithms and proving new exponential lower bounds fordepth-three circuits, both accom-
plished using new structure theorems for CNF formulas.

• In the DFA INTERSECTIONproblem, one is givenk DFAs with at mostn states each, and the task is
to decide if all DFAs accept a common string. Karakostas, Lipton, and Viglas [KLV03] prove if DFA
INTERSECTION is solvable inno(k) time thenLOGSPACE 6= NP. However DFA INTERSECTION

is PSPACE-complete [Koz77], while the problems we consider are either in BPP or NP, and we do
not need to assume subexponential algorithms. Lipton has also advocated this type of approach for
proving lower bounds in his popular blog [Lip09b].

• Impagliazzo, Kabanets, and Wigderson [IKW02] showed that if CAPP is solvable in nondeterministic
2no(1)

time infinitely often, thenNEXP 6⊆ P/poly. Kabanets and Impagliazzo [KI04] showed that a
nondeterministic2no(1)

time algorithm forPolynomial Identity Testingimplies that eitherNEXP 6⊆
P/poly or the Permanent does not have arithmetic circuits of polynomial size. Our results appear to
be incomparable: while identity testing looks easier than the problems we study (even CAPP), our
running time assumptions are much weaker and there is no “or”in our conclusion.

• Mike Fellows (personal communication) has observed that new separations between complexity classes
in parameterized complexity would follow from improving exhaustive search. In particular, if there
is anno(k) time algorithm fork-Clique thenM[1] 6= XP, and if there is anno(k) algorithm fork-
Dominating Set thenW[1] ⊆ M[2] 6= XP. (Very roughly speaking, the “W[1] vs XP” and “M[1] vs
XP” problems are parameterized complexity versions of the “NP vsEXP” problem: see [DF99, FG06]
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for definitions.) These observations follow from theorems which show that if the desired above al-
gorithms exist, then the respectiveM-class is equal toFPT [CHKX06, CCFHJKX06]; however it is
known thatFPT 6= XP [DF99].

If improved algorithms of the kind needed in this paper exist, their discovery probably will not be hin-
dered by the known barriers in complexity theory (but perhaps another unforseen one). In Appendix C we
briefly discuss this.

3 Improved Algorithms Imply Circuit Lower Bounds

We start by proving consequences of better CIRCUIT SAT algorithms. The notion of “universal witness
circuits” shall be useful. A languageL has universal witness circuits if every correct verifier forL has
circuits that encode a witness accepted by the verifier, on every input inL.

Definition 3.1 Let L ∈ NTIME[t(n)]. A polynomial time algorithmV is a verifier for L if x ∈ L ⇐⇒
(∃y : |y| ≤ t(|x|))[V (x, y) = 1].

Definition 3.2 A languageL ∈ NTIME[t(n)] hasS(n)-size universal witness circuitsif for all polynomial
time verifiersV for L, there is ak and anO(S(n))-size Boolean circuit family{Cn} with the property:

x ∈ L ⇐⇒ V (x,w(x)) = 1, wherew(x) is the concatenation of the outputs ofCℓ(〈x, z〉) evaluated
over allz ∈ {0, 1}⌈log2 t(n)⌉+1 in lexicographical order, andℓ ≥ n is an integer of appropriate length.

The universal witness property may look strong, but all ofNEXP has universal witness circuits of poly-
nomial size, in the case thatNEXP ⊆ P/poly. The key to this observation is that if a language does not
have such circuits, thensomecorrect verifier forNEXP accepts witnesses thatcannotbe encoded with small
circuits, infinitely often. This verifier can be used to test strings for high circuit complexity, which is enough
to obtain pseudorandom generators, leading to a contradiction. The following can be easily obtained from
Impagliazzo, Kabanets, and Wigderson [IKW02]; we include aproof for completeness in Appendix A.

Lemma 3.1 (Follows from [IKW02]) If NEXP ⊆ P/poly then every language inNEXP has universal
witness circuits of polynomial size.

We also need a strong completeness result for satisfiability.

Theorem 3.1 (Tourlakis [Tou01], Fortnowet al. [FLvMV05]) There is a fixedd such that for everyL ∈
NTIME[n], L reduces to 3SAT inO(n(log n)d) time. Moreover there is an algorithm (with random access
to its input) that, given an instance ofL and an integeri ∈ [cn(log n)d] in binary (for somec depending on
L), outputs theith clause of the resulting 3SAT formula inO((log n)d) time.

The value ofd depends on the particular computational model chosen. For most models one can taked to
be small, e.g.d = 4. Theorem 3.1 holds under any computational model that accesses up toO(poly(log n))
bits per step. Most proofs of it essentially rely the fact that nondeterministic Turing machines can simulate
most other nondeterministic models with polylog overhead,as well as the Hennie-Stearns two-tape simu-
lation of multitape Turing machines (cf. [AB09], Section 1.7) which introduces another log overhead. The
Hennie-Stearns simulation can be converted (with constantoverhead) into a circuit [PF79], which can then
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be efficiently converted to 3-CNF using the Tseitin transformation [Tse68]. See Van Melkebeek ([vM07],
Lemma 2.2) for an alternative proof based on sorting networks. By standard translation/padding arguments
(substituting2n in place ofn in the above), the theorem can be scaled up to exponential time bounds:

Corollary 3.1 Every languageL in NTIME[2n] can be reduced to 3SAT instances ofc2n ·n4 size. Moreover
there is an algorithm that, given an instance ofL and an integeri ∈ [c2n · n4] in binary, outputs theith
clause of the resulting 3SAT formula inO(n4) time.

We are now ready to prove the main result of this section: a generic theorem relating the solvability of
CIRCUIT SAT to lower bounds on universal witness circuits forNEXP.

Theorem 3.2 (Faster Circuit SAT Implies Circuit Lower Bounds) Let c ≥ 1. Let a(n) be a monotone
increasing and unbounded function. LetS(n) andT (n) be functions such that

• T (n)/(S(n) + n8)c ≥ Ω(n4 · a(n)) and

• n ≤ S(n) ≤ O(2n/n · 1/a(n)).

SupposeCIRCUIT SAT on n variables andm gates can be solved inO(2nmc/T (n)) co-nondeterministic
time. ThenNTIME[2n] does not haveS(n)-size universal witness circuits.

Proof. SupposeNTIME[2n] hasS(n) universal witness circuits. We show that a faster (co-non)deterministic
algorithm for Circuit Satisfiability implies a contradiction to the nondeterministic time hierarchy.

Let L ∈ NTIME[2n] be arbitrary. By Corollary 3.1,L can be reduced to 3SAT instances ofc2n ·n4 size,
for somec. LetV (x, y) be a verifier forL that reducesx to a 3-CNF formulaφx of c2n ·n4 size, substitutes
theith bit of y for theith variable ofφx, then returns1 if and only if the resulting formula evaluates to1.

SinceL has universal witness circuits, it is the case that for allx ∈ L, there is somey of length at most
c2n · n4 such thatV (x, y) = 1, andy can be encoded with aS(|x|) size circuit. That is, for allx, there is a
circuit Cy that takes inputs of lengthℓ = log(c2|x||x|4) and has size at mostS(|x|), such that the witnessy
equals the concatenation ofCy(z) over allz ∈ {0, 1}ℓ in lexicographical order.

Consider the following nondeterministic algorithmN for L. On inputx, existentially guess the circuit
Cy, usingO(S(|x|) log S(|x|)) ≤ O(2n/a(n)) bits. Then construct a circuitD with ℓ input variablesX,
as follows. Given an integeri ∈ [c2n · n4], the ith clause ofφx can be computed inO(n4) time (via
Corollary 3.1). By the standard translation of algorithms into circuits, it follows that theith clause can be
computed with anO(n8) size circuit; call itE. Lead the input variablesX of D into the inputs ofE, whose
3n + O(log n) output wires encode theXth clause ofφx. These output wires encode the indices of three
variables inφx, along with three “negation bits” indicating1 for variables which are negated, if any. For
convenience, call the variable indicesz1, z2, z3. Evaluatea1 = Cy(z1), a2 = Cy(z2), anda3 = Cy(z3).
Lettingb1, b2, b3 be the negation bits ofz1, z2, z3 (respectively), output¬[(a1 ⊕ b1)∨ (a2 ⊕ b2)∨ (a3 ⊕ b3)].
That is,D(X) outputs1 if and only if theXth clause is not satisfied, i.e.,D is unsatisfiable if and only if
Cy encodes a satisfying assignment forφx. The circuitD hasO(n8 + S(|x|)) size andℓ input variables.

Finally, N calls a fast algorithm for circuit satisfiability onD, andacceptsif and only if D is unsatisfi-
able.N runs in time

O(2n/a(n) + 2ℓ · (n8 + S(n))c/T (n)) ≤ O(2n/a(n) + 2nn4 · (n8 + S(n))c/T (n)).
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By assumption onT (n) andS(n), this time bound is at mostO(2n/a(n)).

Recall thatL was an arbitrary language fromNTIME[2n], so we now have

NTIME[2n] ⊆ NTIME[2n/a(n)].

Since2n+1/a(n + 1) = o(2n), we have a contradiction to the strong nondeterministic time hierarchy
theorem [SFM78, Zak83]. �

It is now easy to show that faster Circuit Satisfiability impliesNEXP 6⊆ P/poly. We say that a function
f is superpolynomial inn if for all k, nk = o(f(n)).

Reminder of Theorem 1.1 Suppose there is a superpolynomial functions(n) such thatCIRCUIT SAT on
circuits withn variables andnk gates can be solved in2n · poly(nk)/s(n) time by a (co-non)deterministic
algorithm, for allk. ThenNEXP 6⊆ P/poly.

Proof. Let S(n) = nk andT (n) = s(n) in Theorem 3.2. Then a2n · poly(nk)/s(n) time algorithm for
Circuit Satisfiability implies thatNTIME[2n] does not havenk universal witness circuits. Sincek can be
arbitrary,NTIME[2n] does not have polynomial size universal witness circuits, henceNEXP also does not.
By the contrapositive of Lemma 3.1, we conclude thatNEXP 6⊆ P/poly. �

3.1 Extensions

It is also possible to extend Theorem 1.1 to larger circuit lower bounds, and to weaker problems such
as FORMULA SAT, the problem of satisfying Boolean formulas. Unfortunately the derandomization results
do not seem to apply to restricted circuit classes. Also, as far as we know, Lemma 3.1 does not extend
to superpolynomial circuit sizes [Imp10], so we need another way to obtain universal witness circuits for
NEXP. This can be accomplished with the following lemma:

Lemma 3.2 (Folklore) Let C be any class of circuits. IfENP has (non-uniform) circuits of sizeS(n) from
classC, thenNTIME[2n] has universal witness circuits of sizeS(n) from classC.

Proof. Let L be a language inNTIME[2n]. Let V (x, y) be a nondeterministic verifier forL running in
d2|x| time. Consider the followingENP machine:

N(x, i): Binary search for the lexicographically smallestz such thatV (x, z) accepts, by querying:given
(x, y) where|y| = d2|x|, is therez ≤ y such thatV (x, z) accepts?Then output theith bit ofz.

Note the queries can be computed inNP, andN needs at mostd2n queries to the oracle. Since every
suchN has sizeS(n) circuits from classC, NTIME[2n] hasS(n)-size universal witness circuits fromC. �

Reminder of Theorem 1.2 If CIRCUIT SAT onn variables andm gates is inO(2(1−δ)nmc) time for some
δ > 0 andc ≥ 1, then there isε > 0 and a language inENP that does not have2εn size circuits.

Proof. Let T (n) = 2δn andS(n) = 2δn/c/n5. Note the constraints of Theorem 3.2 are satisfied, hence
we have: if Circuit SAT onn variables andm gates is inO(2(1−δ)nmc) time, thenNEXP does not have
2δn/c/n5-size universal witness circuits. The result follows from Lemma 3.2 and settingε < δ/c. �

To get lower bound consequences from FORMULA SAT algorithms, we need another complete problem.
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Theorem 3.3 ([BGHSV05], Section 4)There is a constraint graph problemΠ such that every language in
NTIME[2n] can be reduced to graph instancesΠ of sizeℓ = O(2npoly(n)), such that the graph can be
succinctly represented by apoly(n) size formula onn + O(log n) variables. In particular, on an inputi the
formula outputs theith edge of the graph along with the relevant constraints for that edge.

The proof goes through nearly the same process as the completeness theorem for SAT (Theorem 3.1).11

First use the fact that everyNTIME[2n] language can be accepted by a nondeterministic multitape Turing
machine inO(2npoly(n)) time. (The polynomial factor depends on the computational model.) Then make
this TM “oblivious” in that its head movements have extremely regular structure, running inO(2npoly(n)2)
time. Now [BGHSV05] show this TM computation can be represented by a (deBruijn) graph ofO(2npoly(n)4)
size, where the edge function can be described by a poly(n) size formula. The latter step uses the regular
structure of the simulation. Carrying out the same argumentas Theorem 3.2, and applying Lemma 3.2:

Theorem 3.4 Let s(n) be superpolynomial. IfFORMULA SAT on n variables andnc connectives can be
solved in2n · poly(nc)/s(n) time, thenENP does not have (non-uniform) polynomial size formulas.

Similarly, letC be any non-uniform class of circuits that containsAC
0 and is closed under composition

of circuits. That is, if{Cn} and{Dn} are families inC, then those circuit families consisting of circuits
which taken bits of input, feed them to at most poly(n) copies of circuits fromCn, and feed those outputs
to the inputs ofDpoly(n), are also circuit families inC. (Note that all well-studied classes of circuits have
this property.)

Theorem 3.5 If satisfiability ofC-circuits onn variables andnc gates can be solved in2n/3 ·poly(nc)/s(n)
time, thenENP does not have polynomial sizeC-circuits.

Proof. (Sketch) By Theorem 2.2, we may assume (with only poly(n) extra multiplicative factors in
computation time) that our machine model for nondeterminism is the multitape Turing machine. Let
L ∈ NTIME[2n] and letN be a nondeterministic multitape TM recognizing it. By a standard simulation,
there is a single-tape machineN ′ that is equivalent toN and runs inO(22n) time andO(2n) space.

Now consider a reduction fromL(N ′) to 3SAT which uses the standard tableau reduction (originally due
to Savage, cf. Theorem 7.30 in Sipser [Sip05]). Here the tableau hasO(22n) rows andO(2n) columns, due
to the time and space usage, respectively. This reduction creates a 3SAT instance onO(23n) clauses and
O(23n) variables, such that if we are given an indexi of 3n + O(1) bits, we can compute theith clause of
this formula with anAC

0 circuit of poly(n) size. In particular, we can make anAC
0 circuit D that given the

pair(i, j) ∈ [O(22n)]× [O(2n)] outputs a group ofO(1) clauses which represent the circuitry for computing
cell (i, j) in an accepting tableau. The only dependence that this circuitry has oni andj is thati andj are
addedto certain variable indices. Since addition is inAC

0, the circuits have constant depth and polynomial
size.

If ENP has polysizeC circuits, then there are universal witnessC circuits forNTIME[23n] of polynomial
size, by Lemma 3.2. So letM be a nondeterministic machine which on inputx guesses a witness circuitC
of |x|k size, constructs a circuitE which feeds its inputi to D, obtainsO(|x|) output bits specifyingO(1)
clauses, feeds allO(1) variable indices from these clauses to copies ofC, then evaluates these outputs.E
outputs0 iff C encodes a satisfying assignment for theith clause of the reduction. ProvidedC andD areC-
circuits,E is aC-circuit also, sinceC is closed under composition. Finally,M runs a satisfiability algorithm

11In fact, the reduction of Theorem 3.3 can probably be carriedout with SAT, although we have not verified this.
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on E and accepts iffE is unsatisfiable. By arguments similar to those of Theorem 3.2, we conclude that
L(M) = L.

If satisfiability ofC circuits withN variables and poly(N) gates can be determined in2N/3poly(N)/s(N)
time, the machineM runs in2n/s(n) time, contradicting the nondeterministic time hierarchy. �

The general approach also has the potential of proving non-linear circuit lower bounds for much smaller
classes such asPNP. In this setting, we would need faster SAT algorithms for circuits with very few inputs.
Here is an example theorem:

Theorem 3.6 Let s(n) be superpolynomial. If there is ac > 1 such thatCIRCUIT SAT on instances with
cn inputs andO(2n · poly(n)) gates can be solved inO(2cn/s(n)) time, thenPNP does not have linear size
circuits.

Proof. If PNP has linear size circuits, then there are linear size universal witness circuits forNP. (The
proof is analogous to Lemma 3.2.) Applying the succinct SAT reduction of Theorem 3.1 and arguing sim-
ilarly to Theorem 3.2, we can simulate anNTIME[nc] computation by guessing a linear size circuit, then
solving a CIRCUIT SAT instance withc log n+ O(log log n) inputs andO(n) gates. (Note that almost all of
this circuit’s size comes from the three copies of the witness circuit; the remaining components have only
O(poly(log n)) size.) The presumed circuit satisfiability algorithm wouldimply an o(nc) time nondeter-
ministic simulation, contradicting the nondeterministictime hierarchy. �

Extending our approach to concludeEXP lower bounds is an interesting open problem. In order to get a
lower bound forEXP, it seems we need much stronger hypotheses. The following can be easily shown.

Proposition 1 If CIRCUIT SAT onn inputs andm gates is in2no(1)
poly(m) time, thenEXP 6⊆ P/poly.

Proposition 2 Let f : N → N satisfyf(f(nk)k) ≤ o(2n/n2) for all constantsk. If 3SAT is inO(f(n))
time thenEXP 6⊆ P/poly.

3.2 Extremely Weak Derandomization Implies Circuit Lower Bounds

We now turn to theCircuit Acceptance Probability Problem(CAPP): given a Boolean circuitC with n
input variables and poly(n) gates, the goal is to compute an approximation to the number of assignments
satisfyingC, within a factor of1/6. More precisely, we wish to output a numberv such that

∣
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∣

∣

∣

∣

v −
1

2n
·

∑

x∈{0,1}n

C(x)

∣
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∣

∣

∣

∣

< 1/6.

CAPP has been studied extensively [KC99, KRC00, For01, Bar02, IKW02]. We prove:

Reminder of Theorem 1.3 If there is anO(2n · poly(n)/s(n)) nondeterministic algorithm for CAPP (for
any superpolynomials(n)), thenNEXP 6⊆ P/poly.

In the previous section, we saw that strong reductions to 3SAT imply an efficientNEXP verifier. The
verifier universally tries all possible clauses in an exponentially long 3-CNF formula, and checks the values
of three variables in each trial. This universal quantifier is replaced with a poly(n) size circuit which (on
a variable assignment) checks the clause indexed by the input to the circuit. Our idea is to replace this
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universal quantifier with a random choice, so that instead oftesting satisfiability of the circuit, it suffices to
approximate the number of solutions. Naturally, this suggests the use ofprobabilistically checkable proofs
(PCPs). We use thePCPs of Proximityof Ben-Sasson, Goldreich, Harsha, Sudan, and Vadhan, whichimply
PCPs forNEXP with nice properties.12

Theorem 3.7 ([BGHSV05]) Let T : Z
+ → Z

+ be a non-decreasing function. Then for everys > 0 and
every languageL ∈ NTIME[T (n)] there exists a PCP verifierV (x, y) with soundnesss, perfect complete-
ness, randomness complexityr = log2 T (|x|) + O(log log T (|x|)), query complexityq = poly(log T (|x|)),
and verification timet = poly(|x|, log T ). More precisely:

• V has random access tox andy, uses at mostr random bits in any execution, makesq queries to the
candidate proofy. and runs in at mostt steps.

• If x ∈ L then there is ay of lengthT (|x|)poly(log T (|x|)) such thatPr[V (x, y) accepts] = 1.

• If x /∈ L then for ally, Pr[V (x, y) accepts] ≤ s.

We shall be interested in the caseT (n) = 2n. Then the above PCP verifier usesn + O(log n) bits of
randomness, poly(n) verification time, and poly(n) query complexity.

Proof of Theorem 1.3. The proof proceeds similarly to Theorem 1.1. We start by assuming NEXP ⊆
P/poly, so that all languages inNEXP have universal witness circuits. LetL be a language inNTIME[2n]−
NTIME[2n · poly(n)/s(n)].

Let V (x, y) be the PCP verifier of Theorem 3.7 forL whereT (n) = 2n ands = 1/2. For somek > 0,
V tossesn + k log n coins, queries theO(2n) length stringy in O(nk) places, and runs inO(nk) time. Let
c > 0 be such that the circuit complexity of any function encodinga 2nnk-bit witness ofV on inputs of
lengthn is at mostnc + c.

We now describe an alternative nondeterministic algorithmN for L. On inputx of lengthn, existentially
guess a circuitC with nc + c size. Construct a circuitD that simulatesV as follows. The circuitD has
n + k log n input wiresr, corresponding to the random bits ofV . Oncer is fixed, the verifierV runs in
O(nk) time and queriesy in O(nk) positions. By the standard translation of oracle machines to circuits,V
can be simulated by a circuit of sizeO(n2k) with oracle gatesfor the stringy. These oracle gates each have
n + O(1) input wires and output the bit ofy indexed by the input wires. Replace each oracle gate with a
copy ofC. The resulting circuitD hasO(n2k+c) size. Run the presumed nondeterministic algorithm for
CAPP on theD, andacceptif and only if the fraction returned is greater than3/4.

Let y be the string obtained by evaluatingC on all inputs in lexicographical order. By construction,
D(z) = 1 if and only if V (x, y) outputs1 on the string of coin tossesz.

If there is a witnessy for the inputx, then there is aC of sizeO(nc) which encodesy. On such aC,
the fraction of inputs accepted byD is 1. On the other hand, if there is no witnessy for x, then certainly no
circuit C encodes a witness forx, and hence on every circuitC, the fraction of inputs accepted byD is at
most1/2. Hence the algorithmN is correct.

Assuming CAPP can be solved in2n · poly(n)/s(n) time for some superpolynomials(n), the running
time of the entire simulation is2n · poly(n)/s(n). This contradicts the choice ofL. �

12Note that Or Meir has recently found a more combinatorial approach to these results, cf. [Mei09].
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The above proof can be generalized along the lines of Theorem3.2 in a straightforward way. A com-
pletely analogous argument to Theorem 1.2 shows the following.

Theorem 3.8 If there is anO(2(1−δ)nmc) nondeterministic algorithm for CAPP on circuits ofn variables
andm gates, thenNEXP does not have2εn-size universal witness circuits for someε > 0. Consequently,
ENP does not have2o(n) size circuits.

Impagliazzo, Kabanets, Wigderson [IKW02] showed partial converses to Theorem 1.3 and Theorem 3.8:

• If NEXP 6⊆ P/poly, then CAPP has a nondeterministic algorithm that workson infinitely many inputs
in O(2nε

) time withnε advice, for everyε > 0.

• (Implicitly shown) If NTIME[2n] does not have2o(n)-size universal witness circuits, then CAPP has
a nondeterministic polytime algorithm that works on infinitely many inputs withO(log n) advice.13

Combining these results with Theorem 1.3 and Theorem 3.8, wehave the following “amplifications” of
CAPP algorithms:

Reminder of Theorem 1.4 If CAPP has a nondeterministicO(2n · poly(n)/s(n)) time algorithm that
succeeds on all inputs, then for allε > 0, CAPP (in fact, all ofMA) has a nondeterministicO(2nε

) time
algorithm withnε advice that succeeds on infinitely many inputs.

Reminder of Theorem 1.5 If CAPP onn variables andm gates has a nondeterministicO(2(1−δ)n ·
poly(m)) time algorithm that succeeds on all inputs, then CAPP has a nondeterministic polynomial time
algorithm withO(log n) advice that succeeds on infinitely many inputs.

The above two results can also be viewed as gap theorems: if CAPP can’t be solved infinitely often in
NP with logarithmic advice, then CAPP can’t be in2.99n · poly(m) nondeterministic time.

Evidence for Derandomization of CAPP(?) The hypothesis of Theorem 1.3 looks potentially provable to
us. Van Melkebeek and Santhanam [vMS05] have shown that for every probabilistick-tape Turing machine
running in timet, there is aδ > 0 such that the machine can be simulated deterministically inO(2(1−δ)t)
time. Unfortunately this is not quite enough to achieve the circuit lower bound forNEXP. To do that,
we would need (for example) that every probabilistick-tape Turing machine withb(n) bits of randomness
running in timet(n) can be simulated deterministically in poly(t) · 2b/s(b) time, for a superpolynomial
functions. In our desired application,t(n) is a polynomial factor larger thanb(n).

13This follows because, ifNTIME[2n] did not have such circuits, then there is anε > 0 and a poly(2n) time algorithm withn
bits of advice that, on infinitely many inputs, nondeterministically generates a2n-bit truth table of a Boolean functionfn which has
circuit complexity at least2εn for sufficiently largen. (This is essentially the negation of what it means to have universal witness
circuits: there is a verifier for someL which on infinitely many inputsxi ∈ L, only accepts witnesses whichdo nothave small
circuits. Hardcoding thesexi as advice, we get that any witness accepted by the verifier onxi has high circuit complexity.) But it
is known (even from [KvM99]) that this assumption implies pseudorandom generators for polynomial size circuits, strong enough
to proveMA ⊆ i.o. − NP/O(log n). Hence CAPP has the desired type of algorithm.
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4 Further Improvements Imply LOGSPACE 6= NP and Subexponential proofs
for QBF

We now show that improving the runtime of exhaustive search for problems with limited nondeterminism
would have surprising consequences. Our results use a tool from prior work on time-space lower bounds for
satisfiability. Namely, we use a lemma to “speed up” arbitrary space-bounded computations with alternating
machines. (The notation below is discussed in the Preliminaries.14)

Lemma 4.1 (Speedup Lemma [Kan84, FLvMV05])Leta ≥ 2 and log n ≤ s(n) ≤ o(n). Then

TISP[na, s(n)] ⊆ (∃ n)(∀ log n − log s(n))TISP[na−1 · s(n), s(n)].

Moreover, theTISP part of the RHS only readsn + O(s(n)) bits of its input, and erases the rest.

Proof. Let M be an algorithm usingna time ands(n) space. Note that a configuration ofM on an input of
lengthn (a description of the entire state of the algorithm at any moment in time) can be represented within
ℓ = dS(n) bits, for somed > 1.

To simulateM in (∃ n)(∀ log n − log s(n))TISP[na−1 · s(n), s(n)], the machineN(x) existentially
guesses a sequence of configurationsC1, . . . , Cn/ℓ of M(x), usingn bits. ThenN(x) appends the initial
configurationC0 to the beginning of the sequence and the (unique) accepting configurationC(n/ℓ)+1 to the
end of the sequence. ThenN(x) universally guessesi ∈ {0, . . . , n/ℓ} usinglog(n/ℓ)+1 ≤ log n−log s(n)
bits, erases all configurations exceptCi andCi+1, then simulatesM(x) starting fromCi, accepting if and
only if theCi+1 is reached withinna−1 · ℓ steps. It is easy to see the simulation is correct. �

The key idea behind our results is to exploit the fact that theuniversal quantifier in the Speedup Lemma
is only logarithmic. Any improvement over exhaustive search of alllog n − log s(n) bit strings gives us a
very slight advantage, which can be amplified by repeated applications of the assumed algorithm. We arrive
at the main theorem of this section.

Reminder of Theorem 1.6 Suppose there isδ > 0 such that for allc, d ≥ 1, every problemΠ solvable
with log n nondeterministic bits,nc time, and(log n)d space can be solved by a deterministic algorithm in
O(nc+(1−δ)) time andpoly(log n)d space. Then every suchΠ can also be solved with a nondeterministic
algorithm inO(n3) time, i.e.,SC ⊆ NTIME[n3].

In fact, the proof shows that(∃ n)TISP[nk, poly(log n)] ⊆ (∃ O(n))TISP[n3, poly(log n)], given the
hypothesis. (Interestingly, this containment of classes is not known to be false, but as we shall see, it would
be surprising if it were true.) The containment is proven by applying the Speedup Lemma along with the
hypothesis for a constant number of times, with different values ofc in each application.

Proof of Theorem 1.6. Written in our complexity class notation, the hypothesis is:

∀c, d ≥ 1, ∃k ≥ 1 (∃ log n)TISP[nc, (log n)d] ⊆ TISP[nc+1−δ, (log n)dk]. (1)

By taking the complement of both sides, we also have(∀ log n)TISP[nc, (log n)d] ⊆ TISP[nc+1−δ, (log n)dk].
That is, there is always a deterministic algorithm which candetermine if there is a witness iff there is always
one that can determine if every string is a witness.

14Readers familiar with the notation of our prior work [Wil08b, Wil10] should beware that the notation in this paper has very
slightly different meaning. In this work, we must pay attention to the constant factors in alternations, whereas in prior work we did
not bother even withno(1) factors. Our notation here reflects these differences.
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Assume (1). First we prove the following containment by induction onℓ, for all integersℓ > 0, k > 2,
andd > 0 satisfyingk − δℓ ≥ 2:

(∃ n)TISP[nk, (log n)d] ⊆ (∃ ℓn)TISP[nk−δℓ · poly(log n), poly(log n)], (2)

(Note the poly factors depend only onk, d, andℓ.)

Whenℓ = 1, we have

(∃ n)TISP[nk, (log n)d] ⊆ (∃ n)(∀ log n − d log log n)TISP[nk−1(log n)d, (log n)d] (3)

by the Speedup Lemma (Lemma 4.1). Consider the class(∀ log n−d log log n)TISP[nk−1(log n)d, (log n)d]
on the RHS of (3). An algorithm from the class receives an input of length2n (the original input and the
n bits guessed). Applying (1) withc = k − 1 and taking the complement, the universal quantifier can be
removed, concluding that

(∀ log n − d log log n)TISP[nk−1(log n)d, (log n)d] ⊆ TISP[nk−1+(1−δ) · poly(log n), poly(log n)],

provided thatk ≥ 2. Substituting the RHS of the above into (3), we obtain

(∃ n)TISP[nk, (log n)d] ⊆ (∃ n)TISP[nk−δ · poly(log n), poly(log n)].

This completes the base case of (2). For the inductive step, consider the following chain of containments.
First, the induction hypothesis says

(∃ n)TISP[nk, (log n)d] ⊆ (∃ ℓn)TISP[nk−δℓ · poly(log n), poly(log n)].

Note theTISP[nk−δℓ ·poly(log n), poly(log n)] part on the RHS receives an input of length(ℓ+1)n ≤ O(n).
Applying the Speedup Lemma to this part, the above class is then contained in

(∃ ℓn)(∃ n)(∀ log n − log log n)TISP[nk−δℓ−1poly(log n), poly(log n)].

Observe that∃ quantifiers can be merged, resulting in the class

(∃ (ℓ + 1)n)(∀ log n − log log n)TISP[nk−δℓ−1poly(log n), poly(log n)].

Applying (1) with c = k − δℓ − 1 (this is possible whenk − δℓ − 1 ≥ 1), the above is in

(∃ (ℓ + 1)n)TISP[nk−δℓ−1+(1−δ)poly(log n), poly(log n)].

Finally, note that the exponentk − δℓ − 1 + (1 − δ) = k − δ(ℓ + 1). This completes the proof of (2).

Now letk > 3 be arbitrary. Sinceδ > 0, the quantityδℓ is positive and can be made as large as desired,
provided thatk − δℓ ≥ 2.

Setℓ = ⌊(k − 2)/δ⌋. We havek − δℓ ≥ k − δ(k − 2)/δ = 2, and

k − δℓ = k − δ⌊(k − 2)/(δ)⌋ < k − δ((k − 2)/(δ) − 1) = 2 + δ < 3.

That is,
(∃ n)TISP[nk, (log n)d] ⊆ (∃ ℓn)TISP[nk−δℓ · poly(log n), poly(log n)]
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by (2), and

(∃ ℓn)TISP[nk−δℓ · poly(log n), poly(log n)] ⊆ (∃ ℓn)TISP[n3, poly(log n)] ⊆ NTIME[n3],

by our choice ofℓ. �

Reminder of Corollary 1.1 The hypothesis of Theorem 1.6 impliesLOGSPACE 6= NP.

Proof. If LOGSPACE = NP then there is ac such thatNTIME[n] ⊆ TISP[nc, log n]. We have
NTIME[n4] ⊆ TISP[n4c, log n] by the translation lemma (Lemma 2.1). By Theorem 1.6,TISP[n4c, log n] ⊆
NTIME[n3]. This is a contradiction to the nondeterministic time hierarchy. �

Reminder of Corollary 1.2 The hypothesis of Theorem 1.6 implies that the quantified Boolean formula
problem has a proof system where every QBF of lengthn has proofs of2εn length for allε > 0.

Proof. Theorem 1.6 says that for allk, TISP[nk, O(log n)] ⊆ NTIME[n3].

Let ε > 0, and letf(n) = 2εn/3. By the translation lemma (Lemma 2.1),TISP[f(n)k, O(log f(n))] ⊆
NTIME[f(n)3], which isTISP[2εkn/3, O(n)] ⊆ NTIME[2εn]. Sincek can be arbitrarily large, it follows that
SPACE[O(n)] ⊆ NTIME[2εn]. A quantified Boolean formula of lengthn can be easily solved usingO(n)
space. Therefore quantified Boolean formulas of lengthn can be solved in2εn time with a nondeterministic
algorithm. The conclusion follows. �

5 Unconditional Lower Bounds

The ideas of the previous section lead to anunconditionallower bound.

Reminder of Theorem 1.7 For somea and somek(n) ≤ n, there is a problemΠ solvable withk(n)
nondeterminism andO(na) time that cannot be solved ink(n)cna ·poly(log n) time andk(n)c ·poly(log n)
space,for all constantsc.

Proof. Assume the opposite: for alla ≥ 1 and for every problemΠ solvable withk(n) nondeterminism and
O(na) time, there is aca such thatΠ can be solved ink(n)cana · poly(log n) time andk(n)ca · poly(log n)
space. For eacha ≥ 1, define

Πa = {(i, x) | ∃y ∈ {0, 1}log |x|+1 machineMi(x, y) accepts within|x|a + a steps}.

Settingk(n) = log n, we have by assumption that

Πa ∈ TISP[na(log n)capoly(log n), (log n)capoly(log n)poly(log n)].

By efficiently reducing all languages in(∃ log n)TIME[na] to Πa, we have for alla ≥ 1 that

(∃ log n)TIME[na] ⊆ TISP[na · poly(log n), poly(log n)]
(∀ log n)TIME[na] ⊆ TISP[na · poly(log n), poly(log n)].

(4)

Settingk(n) = n anda = 2, we have a polynomial time algorithm for SAT. Letℓ be an integer such that
SAT is inO(nℓ) time. By Theorem 3.1, we have

NTIME[n] ⊆ TIME[nℓpoly(log n)]. (5)
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Similar to the proof of Theorem 1.6, we derive

TIME[nℓ+1] ⊆ TISP[nℓ+1 · poly(log n), poly(log n)] (applying (4) witha = ℓ + 1)

⊆ (∃ n)(∀ log n)TISP[nℓ · poly(log n), poly(log n)] (Speedup Lemma)

⊆ (∃ n)TISP[nℓ · poly(log n), poly(log n)] (applying (4))

⊆ (∃ 2n)(∀ log n)TISP[nℓ−1 · poly(log n), poly(log n)] (Speedup Lemma)

⊆ (∃ 2n)TISP[nℓ−1 · poly(log n), poly(log n)] (applying (4))

⊆ ...

⊆ (∃ ℓn)TISP[n · poly(log n), poly(log n)]

⊆ NTIME[n · poly(log n)] (trivial)

⊆ TIME[nℓ · poly(log n)], (applying (5))

contradicting the deterministic time hierarchy. �

In fact, a stronger statement holds: either polynomial nondeterminism cannot be simulated in polytime,
or we have strong time lower bounds on simulating log-nondeterminism with polylog space.

Theorem 5.1 Either P 6= NP or there is a problem solvable withlog n bits of nondeterminism inO(nc)
time that isnot solvable inO(nc+.99) time andpoly(log n) space, for somec ≥ 1.

Proof. Assume the opposite, so thatP = NP and

(∃ log n)TIME[nc] ⊆ TISP[nc+.99, poly(log n)]. (6)

for all c. Note that (6) implies the hypothesis of Theorem 1.6, soSC ⊆ NTIME[n3] by Theorem 1.6.
Moreover, (6) implies thatP ⊆ SC. ThereforeNP ⊆ NTIME[n3], a contradiction. �

We cannot yet extend these lower bounds to problems like Circuit SAT on general computational models,
due to the inefficiency of reductions from arbitrary languages to Circuit SAT. We could extend them to
Circuit SAT on multitape Turing machines, but those lower bounds are easy: the opposite of the lower
bound implies that Circuit Evaluation (the case where thereareno input variables) is inn · poly(log n) time
and poly(log n) space, which is already known to be false. (In fact, on multitape Turing machines the set of
palindromes requires nearly quadratic time in the polylog space setting.)

However we can extend the lower bound slightly to generic computational models, using the strong
nondeterministic time hierarchy [Zak83] (Theorem 2.1).

Theorem 5.2 For all ε > 0, CIRCUIT SAT on circuits withk input gates andm total gates cannot be
solved inm1+o(1)k1−ε time andmo(1) space.

Recall we do not know how to prove that SAT can’t be solved inO(N2−ε) time andNo(1) space on
general models (the particular case wherek = m).

Proof. Let ε > 0 be arbitrarily small. By Theorem 2.1, there is a unary languageL that is inNTIME[n2]
but not inNTIME[n2−ε+ε′] for all 0 < ε′ < ε.

Assume that CIRCUIT SAT can always be solved ink1−εm1+o(1) time andmo(1) space. Lettingk =
m = n2, we have thatL ∈ NTIME[n2] implies L ∈ DTISP[n4−2ε, no(1)] by Theorem 3.1 (the strong
completeness theorem for SAT).
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We now describe a nondeterministic algorithm forL that runs inn2−ε+o(1) time (a contradiction). Let
A be an algorithm forL running inn4−2ε time andno(1) space. Start by rejecting if the input is not unary.
Suppose the input is1n.

Similar to the Speedup Lemma (Lemma 4.1), nondeterministically guess a list ofn2−ε configurations
of A(1n) where the first configuration is the initial configuration andthe last configuration is an accepting
configuration. Build a circuit with(2 − ε) log n input variables, which “selects” an adjacent pair out of the
n2−ε configurations. This pair is then fed to another circuit, which given a pair of configurations ofA(1n),
outputs1 iff the first configuration does not lead to the second configuration withinn2−ε steps of running
A. To simulateA on the input1n, store the length of the inputn in a batch ofO(log n) wiresW . Then on
any simulated step, the circuit just needs to check if the current position of the input head (or, the current
input register being read) is greater than the value inW . If it is, the input symbol isblank, otherwise it is
1. The circuit only has to carry the current configuration and these wiresW throughout the simulation of
n2−ε steps. Without loss of generality, we may assume thatA simply iterates through its working storage
cell by cell in a predictive way, adding a multiplicativeno(1) to the runtime. The upshot is that each step of
A(1n) can be simulated by a circuit ofno(1) size. The circuit size overall isn2−ε+o(1) and has(2 − ε) log n
inputs. Observe that the circuit isunsatisfiableif and only if the configuration list is part of a valid accepting
computation history forA(1n).

Applying the assumed Circuit SAT algorithm to this circuit,we obtain a nondeterministic algorithm for
L which guessesn2−ε+o(1) bits then runs deterministically inn2−ε+o(1) · O(log n)c time andno(1) space.
That is, the nondeterministic algorithm forL runs inn2−ε time. This contradicts our choice ofL. �

6 Discussion

We have seen that universal improvements over exhaustive search, even marginal ones, would have sur-
prising consequences in complexity theory. This connection between improved exponential algorithms and
superpolynomial lower bounds shows that two communities have been implicitly working towards similar
goals. Let us point to a few open problems that should producefurther connections.

1. It seems possible that we may be able to prove interesting non-uniform lower bounds assuming only a
2.9n ·poly(m) algorithm for CNF SAT onn variables andm clauses. Using the reduction from Theorem 3.5,
one can show that if 3SAT is in2εn time for all ε > 0, then we obtain mild circuit lower bounds.

Theorem 6.1 If the Exponential Time Hypothesis is false, thenENP does not have linear size circuits.

Proof. (Sketch) IfENP hasO(n) size circuits, thenNTIME[2n] hasO(n)-size universal witness circuits.
We can convert our nondeterministic machine into a single-tape one that usesO(22n) time andO(2n)
space. Consider the verifier that on inputx constructs an accepting tableau ofO(23n) size for the single-
tape machine, turns that into a 3CNF formulaφx, then treats the witness as a satisfying assignment toφx.
We can therefore simulate everyL ∈ NTIME[2n] on inputx by guessing a circuitC on cn gates (for some
c) that encodes a satisfying assignment forφx, then calling CIRCUIT SAT on a circuitD with O(cn) wires
and3n + O(1) inputs, whereD(i) determines if theith clause ofφx is satisfied by the variable assignment
encoded byC. In more detail, the set ofO(1) clauses corresponding to the(i, j) cell of anO(22n)×O(2n)
tableau can be computed withO(n) size circuits which are given the indicesi andj as input. This set of
clauses is nearly identical for each cell, except in some places wherei andj are added to the indices of some
variables. However note that addition can be done with linear size circuits.
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If 3SAT is in 2εn time for allε > 0, then the CIRCUIT SAT call can be simulated in2εn time for allε > 0,
regardless of the value ofc. This would implyNTIME[2n] ⊆ NTIME[2εn] for all ε > 0, a contradiction.�

2. A very interesting open question (asked by Russell Impagliazzo [Imp10]) is if any converses to
our results hold. For example, ifNEXP 6⊆ P/poly, could this lower bound be used to obtain faster SAT
algorithms? Note it is known how to partially derandomize CAPP assumingNEXP 6⊆ P/poly [IKW02].

3. It would be nice to weaken the algorithmic hypotheses evenfurther. Can we replace CAPP with a
form of Polynomial Identity Testing(PIT) in our results? The known proofs that “subexponentialalgorithms
for PIT imply circuit lower bounds” go through Toda’s theorem [Tod91], which prevents us from getting a
tight simulation.

4. We were able to show that some problems withk-bit witnesses verifiable inO(n) time cannot be
solved inO(poly(k) · n) time and poly(k, log n) space. However we do not know ifNP problems such as
SAT havelinear time algorithms when the space bound is relaxed. Such lower bounds are not even known
for the PSPACE-complete QBF problem [Wil08a]. Perhaps progress can be made on these old questions
by considering parameterized versions. Is it possible to prove unconditionally that QBFs withk quantifier
blocks cannot be solved inO(kn) time? The existence of such an algorithm would imply that SATcan be
solved in linear time, and that QBF can be solved in quadratictime. It seems plausible that the conjunction
of these two propositions can be more easily refuted.

5. Finally, can we prove unconditionally that there issomek > 3 satisfying

(∃ n)TISP[nk, no(1)] 6⊆ (∃ O(n))TISP[n3, no(1)]?

Given our results, this separation would imply strong unconditional lower bounds for improving on ex-
haustive search with space-bounded verifiers. (Interestingly, such lower bounds may be achievablewithout
proving class separations likeLOGSPACE 6= NP.)
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A Appendix: Proof of Lemma 3.1

Here we show that ifNEXP ⊆ P/poly, then every language inNEXP has universal witness circuits. The
argument is analogous to that used in the proof thatNEXP ⊆ P/poly =⇒ NEXP = MA [IKW02].

Proof. First we show that the absence of witness-producing circuits for NEXP implies a faster nondeter-
ministic simulation ofMA. This is combined with the fact thatNEXP ⊆ P/poly implies anMA-simulation
of NEXP, to yield a contradiction with a time hierarchy theorem.

Suppose there is anL ∈ NEXP which does not have universal witness circuits. Letc > 0 be such that
L ∈ NTIME[2nc

]. Then there issomecorrect verifierV for L such that for all constantsd ≥ 1, there is an
infinite sequence of inputsS = {xik} with the properties:

• for all k, xik ∈ L and

• for all sufficiently largek and ally of length2|xik
|c , V (xik , y) = 1 implies that the circuit complexity

of the functionf(xik , i) = yi is greater than|xik |
d.

Work of Babaiet al. [BFNW93] and Klivans-Van Melkebeek [KvM99] shows the following hardness-
randomness connection: for everyε > 0 there is aδ < ε and integere such that, given random access to
a Boolean function onnδ variables with circuit complexity at leastnδe, there is a pseudorandom generator
G : {0, 1}nε

→ {0, 1}n computable in2O(nε) time which fools circuits of sizen.

We can simulateMA infinitely often in nondeterministic timeO(2n) with n bits of advice, as follows. Let
P be anMA protocol, and suppose the computation of Arthur inP (given Merlin’s string) can be simulated
by a circuit of sizena. For each input lengthn, we set the advice forn-bit inputs to be the stringxiℓ ∈ S,
wherexiℓ has lengthnεa; if there is no such string, we set the advice to0n.

On an inputx of lengthn with advicexik , theMA simulation first nondeterministically guesses a witness
y of length2|xik

|c for the verifierV , and checks thatV (xik , y) = 1 (if this is not the case, the simulation
rejects). Note by our choice of advice, this step takesO(2nεac

) time. Next, we nondeterministically guess
Merlin’s polynomial length string in theMA simulation. Finally, we simulate Arthur by evaluatingG on all
nεa possible seeds (treating the stringy as a hard function), evaluating the circuit for Arthur on theoutputs
of G, and taking the majority answer.

We claim the generatorG fools Arthur. On thenεa length inputxik , the stringy can be treated as a
Boolean function onnεac variables with circuit complexity at leastnεad. We can makenεad ≥ nεaδe since
we can setd to be arbitrarily large. HenceG armed withy can fool circuits of sizenεad/(δe) ≥ na, by the
hardness-randomness connection. That is,G fools circuits of sizena, and therefore Arthur as well.

The total running time of the simulation isO(2ncεa

+ 2nεa

). Settingε > 0 to be arbitrarily small (note

it is independent ofc anda), we have establishedMA ⊆ i.o. − NTIME[2nε
′

]/nε′ for all ε′ > 0. Since
NEXP ⊆ P/poly, there is a fixed constantq such thatNTIME[2n]/n has circuits of sizeO(nq). SoMA has
infinitely many input lengths that can be computed by a circuit family of O(nq) size. (In the language of
complexity classes, we haveMA ⊆ i.o. − SIZE[O(nq)].)

Now, EXP ⊆ P/poly implies thatEXP = MA, by Babai, Fortnow, Nisan, and Wigderson [BFNW93].
Hence there is ac′ > 0 such that

EXP = MA ⊆ i.o. − NTIME[2n]/n ⊆ i.o. − SIZE[O(nq)].

However, the above is false, by a simple diagonalization argument. �
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B Appendix: Proof of Theorem 1.9

Reminder of Theorem 1.9 For every multitape Turing machineM running in timet and accessing a
tape of nondeterministic bits, there is aδ > 0 and a deterministic Turing machine that can simulateM in
O(2(1−δ)t) time.

The idea is to perform a brute-force simulation ofM up to (1 − δ)t, for an appropriateδ > 0. This
generates2(1−δ)t different configuration states ofM . Observe that for ak-tape machine, there are only2kδt
different tape cells that could possibly be accessed inδt steps. Hence we can “compress” these configura-
tions so that onlyc2kδt configurations remain for somec > 0, and the necessary information to complete
the simulation is still preserved. Then we simulate the remaining configurations forδt steps to see if any
accept. We can chooseδ so that these procedures all take less than2t time.

Proof. Let δ > 0 be a parameter. Letσ be the cardinality of the tape alphabet ofM , and letk be the
number of tapes ofM . For all possible stringsy of (1 − δ)t bits, simulateM for its first (1 − δ)t steps,
assuming the nondeterministic tape hasy written on it. For eachy, save theconfigurationCy of M after
(1− δ)t steps, where a configuration consists of all tape cells that are within δt cells of some tape head. For
each of thek tapes, there are2δt + 1 such cells. Note that for the nondeterministic tape inCy, some tape
cells may beundetermined, as they refer to bits of the nondeterministic tape that havenot yet been read by
M . We denote those cells with a fresh symbols that is not already in the alphabet ofM .

Note the total number of such configurations is(σ + 1)k(2δt+1). Hence in order to remember all possible
configurations ofM , it suffices to store a bit arrayA of only (σ + 1)k(2δt+1) size.

Now for every configurationC marked in arrayA, and for all22δt ways to fill in the undetermined
symbols of the nondeterministic tape inC with 2δt bits, simulateM for δt steps. If any simulation ofM
results in acceptance, then accept.

To optimize the running time, we want to setδ to minimize2(1−δ)t + 22δt(σ + 1)k(2δt+1). (Note that
polynomial factors int do not matter in the optimization, as they can be subsumed by simply adding anε
factor to the exponents.) Routine calculation shows thatδ = 1/(3 + 2k log(σ + 1)) suffices. �

C A Remark About Barriers

Certainly, a slightly faster Circuit SAT or CAPP algorithm will need significantly new ideas. Let us
remark why this strategy may be viable for proving lower bounds. Any potential approach to proving
strong lower bounds must pass certain litmus tests that complexity theory has developed. The three primary
barriers are relativization, natural proofs, and algebrization. We believe our work may provide a path that
circumvents all three (provided the appropriate algorithms exist, of course!). The natural proofs barrier does
not apply due to our use of diagonalization, which avoids the“largeness” of natural proofs. We believe the
relativization and algebrization barriers would be avoided, becauseall nontrivial SAT algorithms that we
know do not relativize or algebrize. That is, the interesting SAT algorithms in the literature cannot be used
to solve SATA when the algorithm is given oracle access to an arbitrary oracle A (or its algebraic extension
Ã).15

15Recall that SATA is the problem of satisfying CNF formulas with clauses of theform (ℓ1 ∨ · · · ∨ ℓk ∨ A(ℓk+1, . . . , ℓk+k′)),
where theℓi are literals, and the predicateA(ℓk+1, . . . , ℓk+k′) is true if and only ifℓk+1 · · · ℓk+k′ ∈ A. It is the natural variant on
SAT obtained by applying the Cook-Levin theorem to a language inNP

A.
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We invite the reader to examine their favorite (nontrivial)SAT algorithm to understand why it does not
extend to SATA. As a simple example, consider the branching algorithm which looks for clauses of length
one, and sets the variable in that clause accordingly. (If there is no length-one clause, say it branches on
an arbitrary variable.) In an instance of SATA, a length-one clause may have the formA(ℓk+1, . . . , ℓk+k′),
with possibly some 0-1 values substituted for some of the literals. Determining a correct assignment for
the variables in this predicate requires at least an oracle for “Satisfiability ofA.” More precisely, we would
need to efficiently solve the problem:given a pattern stringp ∈ {0, 1, ⋆}n, determine if there is a binary
assignment to the⋆’s in p which yields a string inA. This would requirenondeterministicaccess to the oracle
A. Furthermore, if theA-predicate has more than one satisfying assignment, then the correct assignment to
A may simply beunderdetermined. Access to the algebraic extensioñA would not suffice for simulating
such queries toA.

Given the above, we believe it is not outrageous to think thatone might design slightly better CIRCUIT

SAT or CAPP algorithms that circumvent all the known lower bound barriers in complexity theory.
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