
On Oracles and Algorithmic Methods for Proving
Lower Bounds
Nikhil Vyas #

Harvard University, USA

Ryan Williams #

MIT CSAIL and EECS, USA

Abstract
This paper studies the interaction of oracles with algorithmic approaches to proving circuit complexity
lower bounds, establishing new results on two different kinds of questions.

1. We revisit some prominent open questions in circuit lower bounds, and provide a clean way of
viewing them as circuit upper bound questions. Let Missing-String be the (total) search problem
of producing a string that does not appear in a given list L containing M bit-strings of length N ,
where M < 2n. We show in a generic way how algorithms and uniform circuits (from restricted
classes) for Missing-String imply complexity lower bounds (and in some cases, the converse holds
as well).
• We give a local algorithm for Missing-String, which can compute any desired output bit making
very few probes into the input, when the number of strings M is small enough. We apply this to
prove a new nearly-optimal (up to oracles) time hierarchy theorem with advice.
• We show that the problem of constructing restricted uniform circuits for Missing-String is
essentially equivalent to constructing functions without small non-uniform circuits, in a relativiz-
ing way. For example, we prove that small uniform depth-3 circuits for Missing-String would
imply exponential circuit lower bounds for Σ2EXP, and depth-3 lower bounds for Missing-String
would imply non-trivial circuits (relative to an oracle) for Σ2EXP problems. Both conclusions are
longstanding open problems in circuit complexity.

2. It has been known since Impagliazzo, Kabanets, and Wigderson [JCSS 2002] that generic
derandomizations improving subexponentially over exhaustive search would imply lower bounds such
as NEXP ̸⊂ P/poly. Williams [SICOMP 2013] showed that Circuit-SAT algorithms running barely
faster than exhaustive search would imply similar lower bounds. The known proofs of such results do
not relativize (they use techniques from interactive proofs/PCPs). However, it has remained open
whether there is an oracle under which the generic implications from circuit-analysis algorithms to
circuit lower bounds fail.
• Building on an oracle of Fortnow, we construct an oracle relative to which the circuit approximation
probability problem (CAPP) is in P, yet EXPNP has polynomial-size circuits.
• We construct an oracle relative to which SAT can be solved in “half-exponential” time, yet
exponential time (EXP) has polynomial-size circuits. Improving EXP to NEXP would give an oracle
relative to which Σ2E has “half-exponential” size circuits, which is open. (Recall it is known that
Σ2E is not in “sub-half-exponential” size, and the proof relativizes.) Moreover, the running time of
the SAT algorithm cannot be improved: relative to all oracles, if SAT is in “sub-half-exponential”
time then EXP does not have polynomial-size circuits.

2012 ACM Subject Classification Theory of computation → Circuit complexity; Theory of compu-
tation → Complexity classes

Keywords and phrases oracles, relativization, circuit complexity, missing string, exponential hierarchy

Digital Object Identifier 10.4230/LIPIcs.ITCS.2023.22

Funding Nikhil Vyas: This work was done while the author was a PhD student at MIT, supported
by NSF CCF-1909429.
Ryan Williams: Supported by NSF CCF-1909429.

Acknowledgements We thank Dylan McKay and Brynmor Chapman for helpful discussions on the

© Nikhil Vyas and Ryan Williams;
licensed under Creative Commons License CC-BY 4.0

14th Innovations in Theoretical Computer Science Conference (ITCS 2023).
Editor: Yael Tauman Kalai; Article No. 22; pp. 22:1–22:27

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:nikhilv@mit.edu
https://orcid.org/0000-0002-4055-7693
mailto:rrw@umit.edu
https://orcid.org/0000-0003-2326-2233
https://doi.org/10.4230/LIPIcs.ITCS.2023.22
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

22:2 On Oracles and Algorithmic Methods for Proving Lower Bounds

missing string problem.

1 Introduction

Which complexity classes have small-size non-uniform circuit families, and which do not?
While this question dates back to the 1970s [37, 24, 36], our known answers are astound-
ingly incomplete. We believe that NP does not have polynomial-size circuit families, but
our best-known results have to replace the class NP with considerably larger complexity
classes. Kannan [24] proved that Σ2EXP (the exponential-time version of Σ2P) does not
have polynomial-size circuits, and his proof extends to “sub-half-exponential” size circuits,
i.e., for size functions H(n) where H(H(n)c)c < o(2n/n) for a fixed constant c ≥ 1 [31].
Buhrman, Fortnow, and Theirauf [15] proved that the exponential-time version of Merlin-
Arthur (MAEXP) does not have polynomial-size circuits. However, it remains open whether
NEXP (nondeterministic exponential time) has polynomial-size circuits, in spite of research
attempting to attack the problem via faster circuit-analysis algorithms [21, 23, 41]. Perhaps
even more embarrassingly, there could be infinitely many input lengths for which even Σ2EXP
and MAEXP problems have polynomial-size circuits on just those input lengths. Furthermore,
there is no known barrier to establishing stronger lower bounds for Σ2EXP—not even a rela-
tivization barrier. For example, according to current knowledge, there could be a relativizing
proof (one that holds with respect to all oracles) that Σ2EXP requires maximum (Θ(2n/n))
circuit complexity, or there could be an oracle under which Σ2EXP has at most 2nε circuit
complexity, for all ε > 0.1 (Note that we could not have both.)

We propose a clean way of studying such lower bound questions, as circuit upper bound
questions. We begin by defining a simple search problem over binary strings.

Missing-String: Let N, M be such that M < 2N . Given a list L of M strings which
are N -bits long, output an N -bit string y that is not in L.

We call such a string y a missing string for L. Missing-String is a natural and classic
problem arising (for example) whenever one wishes to assign a “name” to a new resource in a
network.2 Note that Missing-String is a total search problem; since M < 2N , every instance
has a solution.3 Building on long-known connections showing how circuit lower bounds lead
to oracles separating complexity classes [18], we show that the above circuit lower bound
questions (and more) can be viewed as questions about how efficiently Missing-String can
be solved, giving equivalences between algorithms for Missing-String and circuit lower
bounds. In particular, the depth-3 circuit complexity of Missing-String is innately tied to
the question of whether Σ2EXP has functions with exponential circuit complexity.

1 Using the oracle that makes P = NP, there is an oracle relative to which Σ2EXP requires maximum
circuit complexity. However, we don’t know any oracles relative to which Σ2EXP has smaller circuit
complexity.

2 In the literature, the representation is often a list of integers, and the problem is called the “missing
integer” problem. There is a well-known linear time algorithm (see for example Chapter 1 of [13]) which
is apparently a common tech interview problem.

3 One may view Missing-String as an “exponential-sized” version of the Empty problem, studied
in [27, 29, 34]: given a circuit C : {0, 1}m → {0, 1}N where N > m, find an N -bit string y such that no
x has C(x) = y. In Empty, one is given a (small) circuit with m outputs whose truth table is the list of
strings, and the task is to find a missing string in the list.

N. Vyas and R. Williams 22:3

1.1 Local Algorithms for Missing-String and New Time Hierarchies

First, we study how well Missing-String can be solved by algorithms which only probe a
few bits of the list in order to determine an output bit, and use our results to derive new
time hierarchy theorems with advice that are very close to tight (relative to oracles).

As a starting point, observe that when M ≤ N (the number of strings is at most the
length of the strings) Cantor’s diagonal argument shows that one can make only 1 probe to
determine each output bit of a missing string. We consider natural generalizations of this
fundamental algorithm. Let K ≥ 1 be a small parameter. How many probes are needed to
compute a missing string, when M ≤ KN? In Section 3, we give an algorithm for Missing-
String that is local in that each output bit of the missing string can be computed separately
in about O(K log2 K) time, making only O(K log K) probes into the list L, provided that
M ≤ KN . (It is easy to show that Ω(K) probes are required; see Appendix A.) It is an
interesting open problem to close the gap between our O(K log K) upper bound and the
Ω(K) lower bound.

Applying our Missing-String algorithm directly, we prove a new relativizing time
hierarchy theorem against super-linear advice. The most generic form of our hierarchy is the
following.

▶ Theorem 1. For all (time-constructible) α(n) ≥ 0, t(n) ≥ n2, unbounded β(n), and every
oracle A,

TIMEA[t(n) log t(n) · (α(n) + β(n)) · 2α(n)+β(n)] ̸⊂ i.o.-TIMEA[t(n)]/(n + α(n)).

That is, there are functions in time O(t(n) log t(n) · (α(n) + β(n)) · 2α(n)+β(n)) that cannot
be simulated in time t(n) even with n + α(n) non-uniform advice, for all but finitely many
input lengths n.

The above theorem holds for “reasonable” models of computation such as multitape Turing
machines, random access Turing machines, random access machines, and so on. Previously,
it was known that TIME(t(n) log2 t(n)) ̸⊂ i.o.-TIME(t(n))/(n − ω(1)) for appropriate time
bounds t(n) [38, 17]. The basic idea in such proofs is to use the input itself as potential
advice in the hard function; however, this strategy can only possibly diagonalize against
advice of length less than n, whereas the lower bound in Theorem 1 holds for machines with
advice longer than n. It was also well-known that by running for at least Ω(2α(n)) time, one
could enumerate all α(n)-bit advice strings, and diagonalize against α(n)-bit advice machines
(see e.g.,Theorem 3 of [21]). Our Theorem 1 adds a factor of n to the advice length of such
time hierarchies. In contrast, Theorem 1 is interesting in that it is not proved by directly
diagonalizing over algorithms with n + α(n) advice: on any given input, the hard function
in Theorem 1 has to simulate multiple algorithms on multiple advice strings and inputs, in
order to determine its output.

Theorem 1 has several interesting corollaries, illustrating tradeoffs between running time
and advice. As time hierarchies are so fundamental to complexity lower bounds, we believe
these new hierarchies may be useful in future separations.

▶ Corollary 2. For all c ≥ 1, TIME[2n · nc+3] ̸⊂ i.o.-TIME[2n]/(n + c log n).

▶ Corollary 3. For all ε > 0, TIME[n3 · 22εn] ̸⊂ i.o.-TIME[2εn]/((1 + ε)n).

▶ Corollary 4. For every c, TIME[n2c log3 n] ̸⊂ i.o.-TIME[nc]/(n + c log n).

ITCS 2023

22:4 On Oracles and Algorithmic Methods for Proving Lower Bounds

For example, Corollary 3 says there are problems solvable in about 22εn time which cannot
be solved in 2εn time with (1 + ε)n advice: we can compute a hard function in significantly
less time than the number of possible advice strings (2n+εn) that we must diagonalize against.

The lower bound of Theorem 1 is essentially tight, in that there are oracles relative to
which the containment actually holds if the running time of the hard function is slightly
decreased [43] (see also Appendix A).

Good Circuits for Missing-String Are Equivalent to Circuit Lower Bounds.

Next, we show that the problem of constructing good uniform circuits for Missing-String
is equivalent to constructing relativizing circuit lower bounds for uniform complexity classes.
First, we give an equivalence between almost-everywhere circuit lower bounds and circuits
for Missing-String. To keep the presentation clean, we start with stating our results for
ΣkE = ΣkTIME[2O(n)], but our connection holds for any exponential-time complexity class,
with appropriate modifications for Missing-String circuits (See Theorem 7). Recall that
SIZEA(s(n)) is the class of functions with an A-oracle circuit family of size O(s(n)), and
i.o.-SIZEA(s(n)) is the class of functions having A-oracle circuits of size O(s(n)) on infinitely
many input lengths n.

▶ Theorem 5 (Equivalence of Missing-String Lower Bounds and Circuit Upper Bounds). For
all k, the following are equivalent:

For every oracle A, ΣkEA ̸⊂ i.o.-SIZEA(Õ(s(O(n)))).
For all n, Missing-String has a poly(N)-time uniform depth-(k + 1) circuit family of
2poly(N) size and poly(N) bottom fan-in, on all lists of length M := 2Õ(s(O(log N))) with
N = 2n.4

According to current knowledge, Theorem 5 only refers to an open problem in the case of
k = 2. The other values of k are already settled, and Theorem 5 implies interesting results
about the Missing-String problem in those cases:

For k = 1, it is known ([43]) that there is an oracle A such that NEA = NTIMEA[2O(n)] ⊂
SIZEA(O(n)). Theorem 6 implies that Missing-String cannot be solved by depth-2
circuits of quasi-polynomial size, even for M ≤ 2log1.1(N).
For k ≥ 3, recall it is known ([24, 31]) that for all oracles A, Σ3EA has maximum
A-oracle circuit complexity almost everywhere (that is, Σ3EA ̸⊂ i.o.-SIZE(H(n) − 1),
where H(n) = (1 ± o(1))2n/n denotes the maximum circuit complexity of n-bit Boolean
functions). This directly corresponds to the existence of uniform depth-4 circuits solving
Missing-String for all M < 2N .

Recall it is open whether Σ2E ⊂ i.o.-SIZE(Õ(n)) (even relative to some oracle). Theorem 5
shows that the problem of proving “almost-everywhere” (relativizing) lower bounds for Σ2E
is equivalent to constructing uniform depth-3 circuits for Missing-String over lists of length
M = 2Õ(log N).

Similarly to Theorem 5, we can show that constructing uniform circuits for Missing-
String that succeed on only infinitely many bit-string lengths N = 2n would still imply
circuit lower bounds.

4 Our notion of uniformity is the typical “direct connect” uniformity; see the Preliminaries (Section 2) for
more details.

N. Vyas and R. Williams 22:5

▶ Theorem 6 (Circuits for Missing-String Imply Circuit Lower Bounds). Let k ≥ 1. If for
infinitely many n, Missing-String has a poly(log N)-time uniform depth-(k + 1) circuit
family of 2poly(N) size and poly(N) bottom fan-in, on all lists of length M := 2Õ(s(log N)) with
strings of length N = 2n, then ΣkEA ̸⊂ SIZEA(s(n)) for all oracles A.

As mentioned above, the proofs of Theorems 5 and 6 easily generalize to other exponential-
time complexity classes (and correspondingly, other circuit types for Missing-String). Let
us briefly describe what the generalization looks like. For t ≥ 0, let Y1, . . . , Y2t be the list of
all t-bit strings in lexicographical order. For an arbitrary G : {0, 1}⋆ → {0, 1}, we define the
complexity class G-E, where a decision problem f is in GE if and only if there is a constant
c > 0 and Turing machine M(x, y) running in 2cn time when |x| = n and |y| = 2cn, such
that for all x,

f(x) = 1 ⇐⇒ G(M(x, Y1), . . . , M(x, Y22cn)) = 1.

That is, the value of f(x) is determined by computing G on a doubly-exponential length
input, and this input is computed by evaluating M(x, ·) on all possible strings of length 2cn.
It is easy to see that OR-E = NE, AND-E = co-NE, Σ2E is equivalent to a case where G is
an OR of AND, and so on.

▶ Theorem 7 (Generic Equivalence). The following are equivalent:
For every oracle A, G-EA ̸⊂ i.o.-SIZEA(Õ(s(O(n)))).
For all n, Missing-String has a poly(N)-time uniform circuit family of 2poly(N) size on
all lists of length M := 2Õ(s(O(log N))) with N = 2n, where the output gate of each circuit
is a copy of G, and the inputs to G are decision trees of depth poly(N).

Non-Relativizing Circuit Lower Bounds as Circuits for Missing-String on “Easy”
Inputs.

Although no relativization barriers are known against circuit lower bounds for Σ2EXP, it
would be natural for a complexity theorist to be unsettled by the relativizing nature of the
previous theorems. Our perspective also yields insight into the precise difference between
non-relativizing circuit lower bounds (e.g. NEXP ̸⊂ SIZE(nO(1)), MAEXP ̸⊂ SIZE(nO(1)) [15])
and relativizing ones, by viewing these questions in terms of low-depth circuits for Missing-
String.

Let L be an ordered list of M = 2t bit strings, each of length N = 2n. We say that L is
S(n)-compressible if there is a circuit C of at most S(n) size, with t + n inputs, such that the
2t+n-bit truth table of C corresponds exactly to L. In other words, L is S(n)-compressible if
there is an S(n)-size circuit encoding it. We observe that constructing low-depth circuits
for Missing-String on S(n)-compressible inputs corresponds directly to (non-relativizing)
circuit lower bounds. We illustrate the idea with the case of NE := NTIME[2O(n)].

▶ Theorem 8. Let S(n) ≥ n. NE ̸⊂ SIZE(S(n)) if and only if there is a poly(N)-time uniform
depth-two circuit family of size 2poly(N) for Missing-String that succeeds for infinitely many
N = 2n, when M = 2O(S(n) log S(n)) and the list L is S(n)-compressible.

As noted above, since there is an oracle relative to which NE ⊂ SIZE(O(n)), Theorem 6
shows that Missing-String on M = 2poly(log N) strings cannot be solved on general inputs
with depth-two circuits of 2poly(N) size. Theorem 8 says that, if we believe NE ̸⊂ SIZE(nO(1))
is true (and we do!), then we should believe that Missing-String can be solved with
small uniform depth-two circuits on nO(1)-compressible inputs. The fact that compressible

ITCS 2023

22:6 On Oracles and Algorithmic Methods for Proving Lower Bounds

inputs make the problem easier is counterintuitive; many complexity theorists believe that
separations like EXP ̸= NEXP are just as likely as separations like P ̸= NP, but the EXP vs
NEXP problem is exactly the P versus NP problem restricted to highly compressible inputs.
In our setting, the difference between non-relativizing circuit lower bounds versus relativizing
ones is precisely the difference between solving Missing-String on highly-compressible
inputs versus general, arbitrary inputs (oracles).

1.2 Non-Relativizing Aspects of the Algorithmic Method
A secondary set of results in this paper concern the so-called “algorithmic method” for
proving circuit complexity lower bounds via the design of circuit-analysis algorithms that
beat exhaustive search. Impagliazzo-Kabanets-Wigderson [21] showed that faster algorithms
for approximating circuit acceptance probability implies circuit lower bounds. Let CAPP be
the task: given a Boolean circuit C, output a value v such that |v − Prx[C(x) = 1]| < 1/10.

▶ Theorem 9 ([21]). If CAPP is solvable on n-size circuits in 2nε time for every ε > 0, then
NEXP does not have polynomial-size circuits.

This algorithms-to-lower-bounds connection was sharpened in subsequent work, and
extended to SAT algorithms. An example result is:

▶ Theorem 10 ([41]). Suppose for all k, Circuit-SAT on nk-size circuits can be solved in
O(2n/nk) time. Then NEXP does not have polynomial-size circuits.

It has been generally believed that this “algorithmic method” is not subject to the typical
complexity barriers [11, 33, 4, 20, 8]. Indeed, Williams [41] states of the algorithmic method:

“we believe the relativization and algebrization barriers would be avoided, because all
nontrivial SAT algorithms that we know do not relativize or algebrize.”

However, until now, no specific oracles have been provided relative to which the connection
from circuit-analysis algorithms to circuit lower bounds fails.5 Relativized versions of these
algorithms-to-lower-bounds connections would be very useful for applying this methodology
more broadly in complexity theory, for at least two reasons.
1. For one, a line of work [3, 9, 10] has shown how weak nondeterministic simulations of

Arthur-Merlin games would imply certain lower bounds against nondeterministic circuits,
suggesting that the algorithmic method might relativize in some sense. More recently, it
has been shown how more efficient quantum algorithms can imply quantum circuit lower
bounds [7]. A generic relativizing algorithms-to-lower-bounds theorem could potentially
yield theorems like these “for free”.

2. For another, it has been known for many years that lower-bounds-to-algorithms connec-
tions showing how circuit complexity lower bounds imply pseudorandom generators [32, 22]
do relativize [28]. This relativizing property has been incredibly useful in the devel-
opment of pseudorandom generators based on hardness assumptions. In other words,
we have known for many years that there are relativizing connections in the “reverse”
direction, from lower bounds to algorithms.

5 Since there are oracles (and algebraic extensions thereof) relative to which NEXP ⊂ ACC0 [43, 4],
it follows that the overall combination of a circuit-analysis algorithm plus the connection between
circuit-analysis algorithms and circuit lower bounds avoids barriers [42]. Here, we are interested in the
question of whether the connections themselves avoid barriers.

N. Vyas and R. Williams 22:7

We show that, unfortunately, relativizing connections between circuit-analysis algorithms
and circuit lower bounds do not exist in general. On the one hand, this is bad news for those
who would like to have a single generic theorem connecting algorithms to lower bounds for
different “modes” of computation (such as nondeterministic, quantum, etc). On the other
hand, perhaps it is simply inherent in any powerful-enough connection that its methods must
not relativize.

A World Where CAPP is Easy, But There Are No Circuit Lower Bounds.

First, improving an oracle of Fortnow [16], we show that the connection of [21] does not
relativize, in a very strong sense:

▶ Theorem 11. There is an oracle A such that CAPP (for A-oracle circuits) is in PA but
EXPNPA

has polynomial-size A-oracle circuits.

(Fortnow [16] gave an A relative to which the theorem holds with EXP, instead of EXPNP.)
In this relativized world, circuit acceptance probabilities can be approximated in P, yet
no meaningful new circuit lower bounds follow. This oracle exists in spite of the fact that
equivalences between circuit complexity and pseudorandom generators do relativize [28]. So
under the same oracle A, no meaningful pseudorandom generators exist either (even ones
equipped an NP oracle), but white-box derandomization (CAPP) is in P.

A World Where SAT is Easy, But There Are No Circuit Lower Bounds for EXP.

What about the case of faster SAT algorithms? Are there oracles relative to which SAT can be
solved more efficiently, yet no circuit lower bounds follow? It is known (e.g., [41], Proposition
2) that if SAT is in O(H(n)) time then EXP ̸⊂ P/poly, for any “sub-half-exponential” H(n)
satisfying H(H(nk)2) ≤ 2n for all k, and that proof relativizes.6 Could one conclude EXP
lower bounds from a SAT algorithm that runs just slightly slower? We give an oracle relative
to which this is not true:

▶ Theorem 12. There is an oracle A and a function H such that TIMEA[2n] ⊂ SIZEA[O(n)],
SATA can be solved in poly(H(poly(n))) time with an A-oracle, H(H(n)) ≤ 2n and H is
monotone increasing.

Could a slower SAT algorithm imply NEXP circuit lower bounds instead? If we could
replace EXP with NEXP in Theorem 12, that would yield an oracle relative to which Σ2E
has “half-exponential” size circuits, which is open. (Recall it is known that Σ2E is not in
“sub-half-exponential” size, and the proof relativizes.) That is, our oracle stops just short of
showing that non-relativizing methods are necessary for proving stronger Σ2E circuit lower
bounds. While half-exponential functions have been known to pop up naturally in circuit
complexity for over 20 years [31], Theorem 12 is the first oracle result (to our knowledge)
that “explains” the half-exponential barrier. We leave it as interesting open problems to
show an algebrization barrier for similar settings.

2 Preliminaries

We assume familiarity with complexity theory, especially notions such as the polynomial
hierarchy and non-uniform circuit families [6]. Here, we recall some particularly important

6 See Appendix B for a proof outline.

ITCS 2023

22:8 On Oracles and Algorithmic Methods for Proving Lower Bounds

notions for this work.
We use h : N → N to denote a “half-exponential” function, i.e., for all n, h(n) is a strictly

monotone increasing function satisfying h(h(n)) = 2n.7 It is widely believed (and sometimes
claimed) that there exist h(n) which are is time constructible [31, 2, 1].8 For a function
f : {0, 1}⋆ → {0, 1}, we let fn : {0, 1}n → {0, 1} denote the n-th slice of f , i.e., the function
f restricted to n-bit inputs.

We say that a function s : N → N is nice if it satisfies s(n + log(n)) ≤ Õ(s(n)) = s(n) ·
poly(log s(n)). We note that most commonly studied functions such as cn, nk, nlogk(n), 2nε

, 2εn

are all nice. Unless otherwise specified, we will assume all functions s are nice.

Uniform Circuits.

In Theorems 6 and 5, we consider poly(N)-time constant-depth uniform circuits of 2poly(N)

size for the Missing-String problem, and relate their existence directly to functions in
ΣkE that have high circuit complexity. Here we give a few more details about the kind of
uniformity we require. These circuit families are “direct connect” uniform (in the sense of
Ruzzo [35, 25]), in that local gate information about the n-th circuit Cn of size 2poly(N) can
be computed in poly(N) time. In particular, there is a language in P of strings of the form
⟨N, g, y⟩ where g and y are bit strings labelling gates in Cn (taking poly(N) bits to describe)
and the output of y is an input to g in Cn, along with strings of the form ⟨N, g, t⟩ where
t is the type of gate g (taking poly(N) bits to describe). This set of triples is often called
the connection language of the underlying circuit. We stipulate that for circuits with 2n

outputs, each output gate has a label of the form x01t where x ∈ {0, 1}n is the label of the
x-th output. This makes it convenient to construct the label of any particular output gate.

Characterizations of NP and ΣkP in general in terms of exponential-size “direct-connect”
uniform circuits of constant depth are well-known [39, 40]. We will use relativized versions
of these results. In our results regarding ΣkE and circuit lower bounds, the inputs to our
uniform circuits for Missing-String will already be of length N = 2n (where n is the
input length to the ΣkE machine). In particular, we only need the following relativized
equivalence between uniform circuits and the exponential hierarchy, which follows readily
from the literature on circuits representing PH [18, 5].

▶ Theorem 13. For all oracles A, the following classes are equivalent:

ΣkEA = ΣkTIMEA[2O(n)].

The class of decision problems computed by poly(2n)-time uniform depth-(k + 1) circuits
with output gate OR, size 2poly(2n), and bottom fan-in poly(2n). The n-th circuit takes as
input an n-bit string x as well as all values of the oracle A up to length poly(2n).

The class of decision problems computed by poly(2n)-time uniform depth-(k + 1) circuits
with output gate OR, size 2poly(2n), bottom fan-in poly(2n), and 2n output gates. The
n-th circuit takes as input all values of the oracle A up to length poly(2n), and outputs
the truth table of the function on all n-bit inputs.

7 Note that such a function must be one-to-one, and therefore strictly increasing: if h(n) = h(m) = z for
some n ̸= m, then h(z) = h(h(n) = 2n and h(z) = h(h(m)) = 2m, a contradiction.

8 We have not yet found a rigorous proof in the literature, but we have no reason to doubt its existence,
given the vast literature on computing half-exponential functions.

N. Vyas and R. Williams 22:9

Relativized Circuit Complexity.

We recall notions of relativized circuit complexity, as originally defined by Wilson [43]. In a
nutshell, relativized circuit complexity studies Boolean logic circuits with the usual AND,
OR, NOT gates, along with extra oracle gates. In particular, for A : {0, 1}⋆ → {0, 1}, an
A-oracle circuit C is a Boolean circuit over the basis of ORs and ANDs of fan-in two, NOTs,
and gates computing Ak : {0, 1}k → {0, 1} where Ak is the k-th slice of A. The size of such a
circuit C is defined to be the sum of all fan-ins over all gates (in other words, we are counting
the number of wires). Note that each copy of Ak contributes k to the circuit size. We define
SIZEA[(S(n))] to be the class of decision problems f : {0, 1}⋆ → {0, 1} such that for every n,
there is an A-oracle circuit Cn of O(S(n)) size that computes the n-th slice of f .

In the following, we consider a binary encoding of A-oracle circuits which is paddable: if
a circuit C has an encoding of length ℓ, then for all ℓ′ > ℓ, C has an encoding of length ℓ′.
In our encoding of an A-oracle circuit, we do not give a full description of Ak if it appears in
the circuit; rather, we assume that the oracle A is known implicitly to the encoder/decoder.
We can define a relativized version of the P-complete Circuit Evaluation problem:

▶ Definition 14. Let A : {0, 1}⋆ → {0, 1} be an oracle. In the CIRC-EVALA problem, we
are given an input 1n0zx, and the task is to return the evaluation of x ∈ {0, 1}n on the
A-oracle circuit encoded by z.

Observe that by standard arguments, CIRC-EVALA ∈ TIMEA[Õ(n)], i.e., A-oracle circuits
can be evaluated in quasi-linear time with an A-oracle.

2.1 A Normal Form for Relativized Circuits
The results of this subsection may be known, but we have not found a reference. We show
that relativized circuit complexity can be radically simplified for the problems we wish to
study. For the oracles A in the literature placing a complexity class CA in SIZEA[s(n)] for
small s(n) (e.g., [43, 16]), the actual circuits used in such simulations is always extremely
simple: they consist of one A-oracle gate with some of its O(s(n)) inputs hard-coded with
zeroes and ones.

It turns out that considering such simple circuits is without loss of generality. We will
show that for the purposes of simulating complexity classes with relativized circuits, we may
freely assume that the A-oracle circuits we consider consist of one A-oracle gate. In the
following, let A : {0, 1}⋆ → {0, 1} be an oracle.

▶ Definition 15. For nice s(n) > n, A[s(n)] is the class of decision problems f : {0, 1}⋆ →
{0, 1} such that there is an infinite sequence of strings {zn} such that for all n, |zn| ≤ s(n),
and for all x ∈ {0, 1}n, f(x) = 1 ⇐⇒ A(znx) = 1.

In other words, A[s(n)] is the class of problems solvable by circuits consisting of exactly
one gate, an A-oracle gate, along with an “advice” string zn plugged into that oracle gate.
Observe that from our definitions we have A[s(n)] ⊆ SIZEA[O(s(n))], as the “fan-in” of the
single A gate is n + s(n).

The following basic lemma shows that for most interesting complexity classes C, if there is
an oracle A relative to which C has O(s(n))-size A-oracle circuits, then there is another oracle
B relative to which C has circuits comprised of exactly one B-oracle gate of O(s(n) log s(n))
fan-in. This “normal form” greatly simplifies the problem of finding an oracle relative to
which a complexity class C has small circuits, and will be very useful in our results relating
circuits for Missing-String to circuit complexity lower bounds (Theorems 6 and 5).

ITCS 2023

22:10 On Oracles and Algorithmic Methods for Proving Lower Bounds

▶ Lemma 16. Let C be a complexity class (defined by machines) such that for all A,
CTIMEA[Õ(n)] ⊂ CA.

There is an oracle A such that CA ⊂ SIZEA[s(n) · poly(log s(n))] if and only if there is an
oracle B such that CB ⊂ B[s(n) · poly(log s(n))].
Similarly, there is an oracle A such that CA ⊂ i.o.-SIZEA[s(n) · poly(log s(n))] if and only
if there is an oracle B such that CB ⊂ i.o.-B[s(n) · poly(log s(n))].

Proof. For both statements, one direction of the equivalence is trivial. In the following,
we prove that an oracle A satisfying CA ⊆ SIZEA[O(s(n))] implies an oracle B satisfying
CB ⊆ B[O(s(n) log s(n))].

The idea is to simply define B to be CIRC-EVALA. Let M be an arbitrary machine
computing a function in C. Since CIRC-EVALA ∈ TIMEA[Õ(n)], using the assumption
that CTIMEA[Õ(n)] ⊆ CA we may infer that MB = MCIRC-EVALA computes some function
f ′ ∈ CA. Let NA be a CA-machine computing f ′, so NA is equivalent to MB. Applying
the assumption CA ⊂ SIZEA[s(n)], there is an A-oracle circuit family {DA

n } of size O(s(n))
simulating NA. Let zn be a description of DA

n , such that |zn| ≤ O(s(n) log s(n)). We have
DA

n (x) = MB(x) on all n-bit inputs x, and DA
n (x) = B(1n0znx), since B = CIRC-EVALA.

Therefore the function computed by MB is in B[O(s(n) log s(n))]. As this containment holds
for every M , we conclude that CB ⊆ B[O(s(n))]. An analogous argument proves the same
result for infinitely-often inclusions. ◀

2.2 Efficient Methods for Finding a Missing String

Multiple linear-time algorithms are known for Missing-String; see Chapter 1 of [13] for one
of them. In fact, Missing-String can be solved very efficiently using a “voting” strategy.
The strategy is well-known in computational learning theory; the first reference we are aware
of that uses the strategy to find a missing string is Lemma 3 of [24] (a paper on circuit
lower bounds), although as a method for mistake-bounded learning (a.k.a. the “Halving
Algorithm”) it was apparently first observed by Barzdins and Freivalds [12].

▶ Theorem 17. The Missing String problem on M strings (each of length N) can be solved
by an algorithm using O(M +N) time, or an algorithm using simultaneously O(M log M +N)
time and O(log(M) + log(N)) space, assuming constant-time random access to the input. In
particular, to compute any bit of the missing string, both algorithms only have to probe at
most 2M distinct bits of the input.

Proof. We generalize the proof of Lemma 3 in [24]. Compute the bit b1 that occurs least
among the first bits of all strings, taking b1 = 0 if both bits occur equally often. Thus the
number of strings with first bit equal to b1 is at most M/2. Among those strings with their
first bit equal to b1, compute the bit b2 that occurs least in the second bit of those strings.
Repeating this process for at most t ≤ ⌈log2(M)⌉ times on the i-th bit, for i = 1, ..., t, we
obtain a prefix b1 · · · bt that is not a prefix of any string in the list. Filling the rest of the
string with zeroes (which takes at most O(N) time), we obtain a missing string.

Let us first analyze the number of probes needed. To compute b1, we have to make M

probes. For i > 1, to compute bi given the bits b1, . . . , bi−1, the aforementioned procedure
only has to make at most M/2i−1 probes into the list. This is because in the previous
iteration, we probed the (i − 1)th bit of ti−1 ≤ M/2i−2 strings, and to compute bi we only
have to probe those i-th bits for which the (i − 1)th bit of those ti−1 strings equals the least
occurring bit bi−1. Hence the total number of probes to compute bt (and any other bits) is

N. Vyas and R. Williams 22:11

at most
t−1∑
i=0

M/2i ≤ 2M.

We can use an O(log M)-bit counter to determine each bit bi. Recalling that incrementing
a counter takes only constant amortized time, the above procedure can be implemented in
O(M) time by maintaining a data structure that is initially filled with all M strings, such
that after the i-th iteration we can remove the strings whose i-bit prefix disagrees with
b1 · · · bi in O(|Si|) time, where |Si| is the cardinality of the list in the i-th iteration. (A
modified linked list suffices.)

To get a space-efficient algorithm, observe that we only need O(log M) extra space to
store a counter and to store the bits b1, . . . , bi. However, in the i-th iteration, to compute
bi given b1, . . . , bi−1, we will apparently need to re-compute all

∑i−1
j=0 M/2j = 2M(1 − 1/2i)

bits probed so far, in order to count the “minority bit” over those strings which have not
yet been eliminated; this makes the running time O(M log M). Note that any extra zeroes
printed at the end of the missing string (to make it have length N) do not count as part of
the space usage; they are part of the output, and they can be handled with an O(log N)-bit
counter that counts up to N − t. ◀

Theorem 17 will be useful in our Missing-String algorithms which use a smaller number
of probes.

3 Local Algorithms for Missing-String and New Non-Uniform
Hierarchies

In this section, we consider algorithms computing Missing-String in a local fashion, probing
very few bits to determine any particular output bit of the missing string. As a consequence,
we will conclude a new non-uniform time hierarchy theorem.

Recall that in Missing-String, we are given a list L of M < 2n strings each of N bits,
and wish to output an N -bit string (a missing string) that is not in L. We say an algorithm
A for Missing-String is b-probe if for all i = 1, . . . , N , A can determine the i-th bit of its
missing string by only probing b bits in the input list L.

In order to have a small value for b, it is required that the list length M is fairly small. As
an example, consider the special case where M ≤ N : the number of strings in L is at most
the string length. The classical diagonal argument immediately gives a 1-probe algorithm for
Missing-String: the i-th bit of our missing string will flip the i-th bit of the i-th string
in L. For integer k ≥ 1, when M ≥ k · N , it is easy to prove that there is no k-probe
Missing-String algorithm at all (we give a proof in Appendix A for completeness). We
provide an algorithm that nearly matches this simple lower bound:

▶ Theorem 18 (Local Algorithm for Missing-String). For all positive t, set k := ⌊(2t −
1)/(2t)⌋. For all positive integers N and M ≥ 2t such that M ≤ kN , there is an algorithm for
Missing-String on all M -size lists of N -bit strings which uses only O((log N)2 + k log2 k)
time and 2(2t − 1) ≤ O(k log k) probes to compute any desired output bit.

Proof. The idea is to reduce the case of M ≤ kN to the case where we have 2t − 1 strings of
length t for small t, by breaking the N -bit strings into substrings.

Let L be a list of M ≤ kN strings of length N , and let i ∈ {1, . . . , n} be the index of the
desired output bit. For simplicity let us assume M is a multiple of 2t − 1 (but the result

ITCS 2023

22:12 On Oracles and Algorithmic Methods for Proving Lower Bounds

does not require it). Our algorithm A conceptually partitions the list of M strings into
ℓ := M/(2t − 1) sublists L1, . . . , Lℓ of at most 2t − 1 strings each.9 (We say “conceptually”,
because the algorithm does not actually have to partition the list in order to determine the
i-th output bit.) We say that the sublist Lj is responsible for the i-th output bit if and only
if

1 + t · (j − 1) ≤ i ≤ t · j.

For example, the sublist L1 is responsible for output bits 1, . . . , t, sublist L2 is responsible
for output bits t + 1, . . . , 2t, and so on. From our assumption that M ≤ kN , it follows that
t · M/(2t − 1) = t · ℓ ≤ N , so it may be that not all output bits are “covered” by some sublist.

Given i, our Missing-String algorithm A first determines the j ∈ {1, . . . , ℓ} such that
Lj is responsible for the i-th output bit, by simply dividing i by t, taking at most O((log N)2)
time. (If there is no such sublist, then A outputs 0 for the i-th output bit.) Next, the
algorithm A considers an instance of Missing String on a set of substrings, defined as
follows: over all q ≤ 2t − 1 strings in Lj , strings y1, . . . , yq ∈ {0, 1}t are defined by taking
each string x ∈ Lj and truncating x to the t-bit substring x[1 + t · (j − 1)] · · · x[t · j]. Then, A

uses the algorithm of Theorem 17 to determine a missing string z ∈ {0, 1}t that is not among
y1, . . . , yq ∈ {0, 1}t, by probing at most 2q ≤ 2(2t − 1) ≤ O(k log k) bits and (conservatively)
using O(t2t) ≤ O(k log2 k) time.10 Finally, A outputs the bit zi⋆ , where i⋆ = i − t(j − 1).

We claim that the string output by A (over all i = 1, . . . , N) avoids every string in L. For
each j = 1, . . . , ℓ, over those t bit positions i that Lj is responsible for, we are constructing a
substring z of length t which avoids all strings in Lj , in the corresponding t bit positions of
the strings in Lj . Since N ≥ t · ℓ, there are enough bit positions so that for all ℓ sublists Lj ,
we can construct a substring z of length t avoiding the strings in Lj , each time using a disjoint
set of t bit positions from all other sublists. The string output by A is a concatenation of all
such z, avoiding all sublists Lj and thus avoiding the entire list L. ◀

What is the minimum number of probes needed to compute bits of a Missing-String,
when M ≤ kN? We leave it as an interesting open problem to close the gap between the
simple lower bound of k probes (Theorem 34) and our upper bound of O(k log k) probes
(Theorem 18).
▶ Remark 19. Instead of measuring the worst-case number of probes needed to compute
one bit of the missing string, suppose we consider the problem of simply constructing a
missing string with the minimum number of total bit probes. In this case, the algorithm of
Theorem 17 is essentially optimal: it constructs a missing string over M ≤ 2N − 1 strings of
length N with at most 2M total probes into the input, and it is easy to see that at least M

total probes are required (each string must be probed in at least one bit position). Therefore,
with respect to this measure of probe complexity, we know the optimal number of probes
within a factor of 2.
▶ Remark 20. For at least one interesting case, we can determine the exact number of probes
required. Suppose we are given exactly 2t − 1 strings of length t, so that the missing string
is unique. In this case, the i-th bit of the missing string can be determined by taking the
XOR of the i-th bits of all strings in the list. (The missing string equals the bit-wise XOR of

9 If M is not a multiple of 2t − 1, then we need to set ℓ := ⌈M/(2t − 1)⌉. To accommodate that increase
in the calculations, we may set k := ⌊(2t − 1)/(2t)⌋.

10 We add a log-factor to the running time here, just to ensure that the time bound of Theorem 17 also
holds for models such as multitape Turing machines.

N. Vyas and R. Williams 22:13

all 2t − 1 other strings.) Thus we can use only 2t − 1 probes for each output bit. In this
scenario, there is an algorithm making M = 2t − 1 probes per output bit, and the number of
probes cannot be made smaller than M .

3.1 Non-Uniform Time Hierarchies
While Theorem 18 is interesting in its own right, we are interested in complexity-theoretic
applications. Let us first prove Theorem 1, which is the most general form we will consider.

▶ Reminder of Theorem 1. For all (time-constructible) α(n) ≥ 0, unbounded β(n), t(n) ≥ n2,
and every oracle A,

TIMEA[t(n) log t(n) · (α(n) + β(n)) · 2α(n)+β(n)] ̸⊂ i.o.-TIMEA[t(n)]/(n + α(n)).

That is, there are functions in time O(t(n) log t(n) · (α(n) + β(n)) · 2α(n)+β(n)) that cannot
be simulated in time t(n) even with n + α(n) non-uniform advice, for all but finitely many
input lengths n.

Proof. Let A be an arbitrary oracle. We will construct a function f that is computable in
time O(t(n) log t(n) · (α(n) + β(n)) · 2α(n)+β(n)) with an A-oracle, which cannot be computed
in O(t(n)) time with an A-oracle, even with n + α(n) bits of non-uniform advice, on all but
finitely many input lengths n.

To compute f , we will (implicitly) define a very large instance of Missing-String, such
that the list L contains the 2n-bit truth tables of all machines we would like to diagonalize
against, and we will define the function fn (f restricted to n-bit inputs) to have our missing
string as its truth table. Each bit of the truth table of fn will be computable in the desired
running time, by applying Theorem 18 appropriately.

Set m := n + α(n) + β(n). Associate all m-bit strings with pairs of the form (y, i), where
y is a possible advice string of length n + α(n), and i is a beta(n)-bit string encoding a
possible Turing machine/algorithm Mi running in t(n) time with an A-oracle. (Since β(n)
is unbounded, eventually every machine is encoded.) Make a list L of M = 2m strings of
length N = 2n, where each string encodes the truth table obtained by running some Mi with
some advice y on all n-bit inputs. Provided we can solve Missing-String for the list L, on
every possible n, this will produce the truth table of a function that cannot be computed on
all but finitely many input lengths n by all such algorithms with n + α(n) advice.

We can use our algorithm from Theorem 18 provided that 2m ≤ k2n, i.e., k ≥ 2α(n)+β(n).
Setting k to be 2α(n)+β(n), we can make a number of probes which is at most

O(k log k) ≤ O((α(n) + β(n)) · 2α(n)+β(n)).

For our particular list L, every probe into L corresponds to simulating some algorithm Mi

on some advice y of length n + α(n) and some input x′ of length n, for O(t(n) log t(n)) time.
(We allow an extra log t(n) factor for a universal simulator.) Thus the running time required
to compute all probes is

O(t(n) log t(n) · (α(n) + β(n)) · 2α(n)+β(n)).

Besides computing all the probes, the additional runtime cost of the local algorithm for
Missing-String is negligible:

O((log N)2 + k log2 k) ≤ O(n2 + t(n) log t(n) · (α(n) + β(n)) · 2α(n)+β(n)).

This completes the proof. ◀

ITCS 2023

22:14 On Oracles and Algorithmic Methods for Proving Lower Bounds

Theorem 1 has several interesting corollaries, illustrating tradeoffs between the running
time and advice.

▶ Corollary 21. 1. For all c ≥ 1, TIME[2n · nc+3] ̸⊂ TIME[2n]/(n + c log n).
2. For all ε > 0, TIME[n3 · 22εn] ̸⊂ TIME[2εn]/((1 + ε)n).
3. For every c, TIME[n2c log3 n] ̸⊂ TIME[nc]/(n + c log n).

Proof. 1. Set t(n) = 2n, β(n) = log n, and α(n) = c log n in Theorem 1.
2. Set α(n) = εn, β(n) = log n, t(n) = 2εn.
3. Set α = c log n, β(n) = log log n, t(n) = nc. ◀

In the above corollaries, note that in all cases the hard function actually does not have
enough time to directly “try all possible advice strings” and run the algorithms it must
diagonalize against. Furthermore, as mentioned earlier, the theorem is essentially tight
for relativizing lower bounds, because there is an oracle B such that TIMEB(o(2cn)) ⊂
TIMEB(O(n))/((c + 1)n). (See Appendix A for a sketch of this result, in terms of Missing-
String.)

4 Circuits for Missing-String And Circuit Lower Bounds

In this section, we prove relations and equivalences between the existence of uniform circuits
for Missing-String and relativizing circuit lower bounds for functions in the exponential
hierarchy. We will focus on the case of Σ2E as it is the most relevant “frontier” class for
exponential-size circuit lower bounds.

▶ Definition 22. We say that an oracle A : {0, 1}⋆ → {0, 1} is supported on m-bit strings if
A(x) = 0 for all x satisfying |x| ̸= m. We will view an A supported on m-bit strings as a
string of length 2m.

In the following, think of f(n) as a very slow-growing function (e.g., f(n) = log(n)).

▶ Definition 23. Fix an n ∈ N. Let U be a Σ2E Turing machine such that |U | ≤ f(n).
Define the function DU,n : {0, 1}2s(n)+n → {0, 1}n such that for every oracle A supported on
(s(n) + n)-bit strings,

DU,n(A) = {UA(x)}x∈{0,1}n .

We define {DU,n} to be the corresponding family of functions.

▶ Definition 24. Let {Gn} be a multi-output circuit family with 2s(n)+n inputs and 2n

outputs. We say that {Gn} is a good circuit family if it is a poly(2n)-time uniform depth-3
family of the form

OR2poly(2n) ◦ AND2poly(2n) ◦ ORpoly(2n),

as defined in Section 2.

▶ Lemma 25. Let {Gn} be a good circuit family. Then there exists a Σ2E Turing machine
U such that for all n and all inputs A ∈ {0, 1}2s(n)+n , Gn(A) = DU,n(A). That is, Gn(A)
outputs the values of UA(x) over all x of length n.

Proof. Follows from Theorem 13. ◀

N. Vyas and R. Williams 22:15

Here we will prove Theorem 6 for the case of k = 2; the case of arbitrary k is straightfor-
ward.

▶ Theorem 26 (Circuits for Missing-String Imply Circuit Lower Bounds, Theorem 6 for Σ2E).
If for infinitely many n, Missing-String can be solved by a good circuit family, on all lists
of length M := 2Õ(s(log N)) with strings of length N = 2n, then Σ2EA ̸⊂ SIZEA(Õ(s(n))) for
all oracles A.

Similarly, if for all n, Missing-String can be solved by a good circuit family, on all lists
of length M := 2Õ(s(log N)) with strings of length N = 2n, then Σ2EA ̸⊂ i.o.-SIZEA(Õ(s(n)))
for all oracles A.

Proof. We will prove the first implication; the modification to the second implication is
straightforward. By Lemma 25, the hypothesis implies that there exists a Σ2E Turing
machine U such that the good circuit family solving Missing-String computes the same
function as {DU,n}. Let V be a Σ2E-machine simulating U , so that whenever U asks a query
to the oracle of length log(M) + n, V uses the actual oracle result, and for all queries of other
lengths V pretends the query answer is 0. Let A be any oracle and let An be its restriction
to (log(M) + n)-bit strings; that is, An(z) = A(z) if |z| = (log(M) + n), and An(z) = 0
otherwise. Observe that An restricted to strings of length (log(M) + n) can be viewed as an
instance of the Missing-String problem with a list of length M and each string of length
N = 2n. From these definitions, we infer that for all x ∈ {0, 1}n, V A(x) = UAn(x) and hence

{V A(x)}x∈{0,1}n = {UAn(x)}x∈{0,1}n = DU,n(An).

As DU,n can solve the Missing-String problem with a list of length M and each string of
length N = 2n for infinitely many n, we have that for infinitely many n, for all A, and for all
z ∈ {0, 1}log(M),

{V A(x)}x∈{0,1}n = DU,n(An) ̸= {An(z, x)}x∈{0,1}n = {A(z, x)}x∈{0,1}n .

In turn, this implies that for infinitely many n, for all A, and for z ∈ {0, 1}log(M),

{V A(x)}x∈{0,1}n ̸= {A(z, x)}x∈{0,1}n .

As this condition holds for infinitely many n, we conclude that for all A, V A does not have
A-oracle circuits consisting of one query of length log(M) to A, i.e., V A ̸∈ A[log(M)].11

For every constant d, assigning M := 2s(log N) logd(s(log N)) implies that for all A, V A ̸∈
A[s(n) logd(s(n)]. Hence, V A ̸∈ A[Õ(s(n))]. Since V A is a Σ2EA machine, this implies
that for all A, Σ2EA ̸⊂ A[Õ(s(n))]. Finally, by Lemma 16, this implies that for all B,
Σ2EB ̸⊂ SIZE[Õ(s(n))]B . ◀

Now, we want to go in the opposite direction: we want to show that if Missing-String
does not have good uniform circuits, then Σ2EA ⊂ i.o.-SIZEA[O(s(n))] for some oracle A.
(Contrapositively, we will show that relativizing circuit lower bounds for Σ2E imply good
uniform circuits for Missing-String.) This direction will take more work. To this end, we
define a property P which will be sufficient to imply Σ2EA ⊂ i.o.-SIZEA[O(s(n))]. Property P

asks for something stronger than a typical lower bound: a single input to the Missing-String
problem on which all uniform circuits (algorithms) fail. We will later see (Lemma 30) how
Missing-String lower bounds can be used to derive property P , by allowing a little loss in
the parameters.

11 See Section 2 for a definition of the A[s(n)] notation.

ITCS 2023

22:16 On Oracles and Algorithmic Methods for Proving Lower Bounds

▶ Definition 27. Let P (s, f, n) be the following property:
There is an oracle Q supported on (s + n)-bit strings such that, for every Σ2TIME[2n]

Turing machine of description length |U | ≤ f , the function DU,n cannot solve the Missing-
String problem on the input Q, with list of length M = 2s and strings of length N = 2n.

Roughly speaking, property P says “there is a bad input Q that breaks every machine U

(of length at most f) trying to solve Missing-String.”

▶ Lemma 28. Let f(n) be unbounded. If there are infinitely many n such that P (s(n), f(n), n)
holds, then there exists a constant µ and an oracle A such that Σ2TIME[2n]A ⊂ i.o.-SIZEA[µs(n)].

Proof. The oracle will be constructed in stages.
Stage 1: Start with the first n for which P (s(n), f(n), n) holds. Then there exists an

oracle B supported on (s(n) + n) bit strings, so that for all Σ2TIME[2n] Turing machines U

where |U | ≤ f(n)/2, there exists a z ∈ {0, 1}s(n) such that that UB(x) = B(z, x) for all x of
length n. That is, UB has a “trivial” B-oracle circuit of size s(n) + n on inputs of length n.
Set A := B. We will view A as a set defined by the inputs on which the oracle A is 1.

Stage i for i > 1: Let us now extend the previous statement for infinitely many n. Let
m upper bound the length of the binary encoding of the set A. Let nj refer to the integer n

chosen in stage j, where 1 ≤ j < i.
In stage i, we choose n such that three properties hold.

1. f(n) > 2 · m

2. P (s(n), f(n), n) holds.
3. n is large enough to satisfy 2ni−1·f(ni−1) < s(n) + n.

We want to add a set Bn of strings of length s(n) + n to our existing oracle A, yielding a
new oracle A := A ∪ Bn. We can argue by induction that all existing entries in the set A

have length at most 2ni−1f(ni−1), hence by Property 3, A ∩ Bn = ∅. Note that any machine
of the form UA∪Bn can be thought of as another machine UBn

2 where in U2 we hard-code
A, where |U2| ≤ |U | + m. By Property 1, if |U | ≤ f(n)/2, then |U2| ≤ f(n). As in stage
1, property P (s(n), f(n), n) implies there exists an oracle Bn supported on (s(n) + n) bit
strings such that for all Σ2TIME[2n] machines U2 satisfying |U2| ≤ f(n), there is a string z

of length s(n) such that UBn
2 (x) = Bn(z, x) for all x ∈ {0, 1}n. That is, UBn

2 has a “trivial”
Bn-oracle circuit on inputs of length n.

Therefore, for all Σ2TIME[2n] machines U satisfying |U | ≤ f(n)/2, there is a string
z′ of length s(n) such that for all n-bit x, UA∪Bn(x) = UBn

2 (x) = Bn(z′, x). Note that
since z′ is of length s(n), and A only contains strings of length less than s(n) + n, we have
Bn(z′, x) = (A ∪ Bn)(z′, x). Therefore UA∪Bn(x) = (A ∪ Bn)(z′, x) for all x. That is, UA∪Bn

also has a “trivial” (A ∪ Bn)-oracle circuit.
Now, we set A to be A ∪ Bn. By Property 3, we chose n to be large enough that all

previous machines considered do not query strings of length s(n) + n. Hence for this new
setting of A, we still have that for all Σ2TIME[2n] Turing machines U with |U | ≤ f(nj)/2, and
for all j < i, there is an zj of length s(nj) such that for all x of length nj , UA(x) = A(zj , x).

Let A denote the final oracle after all stages. For infinitely many n, for all Σ2TIME[2n]
machines U with |U | ≤ f(n)/2, we have a string zn of length s(n) such that for all x,
UA(x) = A(zn, x). As f(n) is unbounded, this is sufficient to imply that Σ2TIME[2n]A ⊆
i.o.-A[s(n)].12 Taking µ to be a constant satisfying A[s(n)] ⊆ SIZEA[µs(n)], we conclude
that Σ2TIME[2n]A ⊂ i.o.-SIZEA[µs(n)]. ◀

12 See Section 2 for a definition of the A[s(n)] notation.

N. Vyas and R. Williams 22:17

We next define a property R, which intuitively corresponds to the existence of lower
bounds for the Missing-String problem.

▶ Definition 29. Let R(s, f, n) denote the following property:
For all functions DU,n (where U is a Σ2TIME[2n] Turing machine, and the description

length |U | ≤ f), there exists an oracle Q supported on (s + n) bit strings such that DU,n

cannot solve the Missing-String problem on lists of length M = 2s and strings of length
N = 2n on input Q.

Roughly speaking, property R says “for all machines U , there is a bad input Q on which
U does not solve Missing-String”, while property P said “there is a single bad input Q

such that no machine U solves Missing-String on Q.” In Lemma 30 we will show how
property R actually implies the stronger property P , with a little loss in the parameters.

Let f(n) < s(n), n < s(n) and let f(n) be poly(n)-time constructible (eventually we will
choose f(n) = log n). Define n′ := n + f(n) and define s′ such that s′(n′) := s(n) − f(n).
Note that s(n) + n = s′(n′) + n′. We now show that property R implies property P , with a
mild loss in the parameters.

▶ Lemma 30. There exists a constant c such that R(s′(n), c, n′) =⇒ P (s(n), f(n), n).
Therefore, if there are infinitely many m such that R(s′(m), c, m) holds, then there are
infinitely many m such that P (s(m), f(m), m) holds.

Proof. We will prove the contrapositive. If P (s(n), f(n), n) is false, then for every possible
input Q of length 2n+f(n) to the Missing-String problem with M = 2s(n) and N = 2n, at
least one function of the form DU,n (where U is a Σ2TIME[2n] machine, |U | ≤ f) correctly
solves Missing-String on Q.

We will now show that there is a single function which solves the Missing-String
problem over all lists of length M = 2s(n)−f(n) and strings of length N = 2n+f(n). Later we
will argue that this function can be computed in Σ2TIME[2n].

Note that M · N = 2n+s(n). We may think of each string T of length 2n+f(n) in the
list as being divided into 2f(n) sub-strings, each of length 2n. Creating a list of all these
sub-strings gives us an instance I of the Missing-String problem with list of length
2s(n)−f(n) · 2f(n) = 2s(n) and strings of length 2n. Similarly we will think of the output of
length 2n+f(n) as being divided into 2f(n) sub-outputs, each of length 2n. Let Uz be the
Σ2TIME[2n] machine with description z, where |z| ≤ f(n). To obtain the zth sub-output,
we evaluate the function DUz,n on I, obtaining a string of length 2n. Note that all the
sub-functions are being run on the same instance of Missing-String with list of length
M = 2s(n) and strings of length N = 2n, generated by treating the sub-strings as strings.
Since P (s(n), f(n), n) is false, some machine Uw solves Missing-String correctly: there
exists a string w of length at most f(n) such that DUw,n is correct on the instance I. This
means that the wth sub-output is distinct from all sub-strings in the input. Hence the entire
output string of length 2n+f(n) must be distinct from all strings in the input. Therefore this
function correctly solves Missing-String on lists of length M = 2s(n)−f(n) and strings of
length N = 2n+f(n).

We observe that this function is of the form DU ′,n′ where U ′ is a Σ2TIME[2n] machine
and |U ′| = O(1). In fact, U ′ is the machine which on input zx (where |z| = f(n), |x| = n,
|zx| = n + f(n) = n′) simply returns the output of the Σ2TIME[2n] machine with description
z on input x. It is now easy to verify that the constructed function is equivalent to DU ′,n′ .
Note that U ′ runs in time O(2n) ≤ O(2n′). As f(n) is polynomial-time constructible, we get
that |U ′| ≤ O(1). Taking c = |U ′|, we see that R(s′(n), c, n′) is false. ◀

ITCS 2023

22:18 On Oracles and Algorithmic Methods for Proving Lower Bounds

▶ Corollary 31. Let f(n) = log(n) and let s′ be a nice function. There exists constants
c, d such that if there are infinitely many n′ such that R(s′(n), c, n′) holds, then there are
infinitely many n such that P (s′(n) logd(s′(n)), f(n), n) holds.

Proof. Choose c to be the constant from Lemma 30. Choose d to be a constant such that
s′(n + log(n)) + log(2n) < s′(n) logd(s′(n)), existence of d is guaranteed because s′ is a nice
function (see Section 2 for a definition). Let R(s′(n), c, n′) be true. Define n, s(n) to be the
solutions of n+f(n) = n′ and s(n) = f(n)+s′(n′). By Lemma 30 we have that P (s(n), f(n), n)
is true. Note that s(n) = f(n) + s′(n′) ≤ f(n′) + s′(n′) = log(n + log(n)) + s′(n + log(n)) ≤
log(2n) + s′(n + log(n)) ≤ s′(n) logd(s′(n)). Hence P (s′(n) logd(s′(n)), f(n), n) holds. ◀

▶ Theorem 32 (Equivalence of Missing-String Lower Bounds and Circuit Upper Bounds,
Theorem 5 for Σ2E). For all nice functions s(n), the following are equivalent:
1. For every oracle A, Σ2EA ̸⊂ i.o.-SIZEA(Õ(s(O(n)))).
2. Missing-String can be solved by a good circuit family on all lists of length M and strings

of length N = 2n where M satisfies M = 2Õ(s(O(log N)))

Proof. By Theorem 26 we have that 2 =⇒ 1.
Let us now prove ¬2 =⇒ ¬1. By Lemma 25, for a good circuit family {Gn} there exists a

Σ2E Turing machine U such that the output of Gn is the same as that of {DU,n}. Hence by ¬2
we have that for all circuit families {DU,n} such that U is a Σ2E machine, there are infinitely
many n such that DU,n cannot solve the Missing-String problem for some M = 2Õ(s(O(n)))

and N = 2n. This implies that for all constants c, there are infinitely many n such that
property R(Õ(s(O(n))), c, n) holds. Taking f(n) = log(n) and applying Corollary 31, it
follows that there are infinitely many n such that P (Õ(s(O(n))), f(n), n) holds. Applying
Lemma 28, there exists an oracle B such that Σ2TIME[2n]B ∈ i.o.-SIZEB[Õ(s(O(n)))]B.
Finally, by padding we conclude that Σ2EB ∈ i.o.-SIZEB [Õ(s(O(n)))], which is equivalent to
¬1. ◀

4.1 A Perspective on Non-Relativizing Lower Bounds
In this section, we observe that non-relativizing lower bounds are equivalent to uniform
circuits for Missing-String on low-complexity inputs.

▶ Reminder of Theorem 8. Let S(n) ≥ n. NE ̸⊂ SIZE(S(n)) if and only if there is a
poly(N)-time uniform depth-two circuit family of size 2poly(N) and poly(N) bottom fan-in
for Missing-String that succeeds for infinitely many N = 2n, when the list L is S(n)-
compressible.

The proof follows easily from the framework given earlier in this section.

Proof. (Sketch) First, assume NE ̸⊂ SIZE(S(n)), and let M be an NE machine without
S(n)-size circuits for infinitely many n. Applying the standard translation between NP and
DC-uniform circuits (see 2) we can define a poly(2n)-uniform depth-two circuit family {Cn}
which takes no inputs, and whose 2n output gates print the truth table of M on n-bit inputs.
For infinitely many n, this family {Cn} is printing a string which is not S(n)-compressible;
therefore it cannot be on any S(n)-compressible list.

For the other direction, suppose there is a poly(N)-time uniform depth-two circuit family
{Cn} of size 2poly(N) for Missing-String that succeeds for infinitely many N = 2n, when
the list L is S(n)-compressible. So there is an infinite set {ni} where for all i, the circuit
Cni

, given the list Lni
of all possible 2ni-bit truth tables of circuit complexity at most

N. Vyas and R. Williams 22:19

S(ni), outputs an 2ni-bit truth table T which does not appear in Lni . This T therefore
has circuit complexity greater than S(n). Note that either there are infinitely many i such
that the depth-two circuit Cni

is an OR of AND (of poly(N) fan-in), or there are infinitely
many i such that it is an AND of OR (of poly(N) fan-in). In the first case, we have an
NE machine computing a function not in SIZE(S(n)); in the second case, we have a coNE
machine computing a function not in SIZE(S(n)) (which implies an NE machine as well;
the class SIZE(S(n)) is closed under complement). In more detail, in the first case, our NE
machine on an input x (of length n) will first check the gate type of the output gate of Cn.
If the type is OR, then the NE machine evaluates Cn on the list Ln, obtaining a truth table
T , and the machine outputs the appropriate bit of T , corresponding to x. (If the type is
AND, the NE machine just reports 0.) ◀

5 Oracles Breaking The Algorithmic Method for Circuit Lower Bounds

Notation.

We will use [s1, s2, . . . , sk] to denote an encoding of a k-tuple of strings s1, s2, . . . , sk from
which s1, s2, . . . , sk can be efficiently recovered. We define the key of the string [s1, s2, . . . , sk]
to be the string s2.

Recall the Circuit Approximation Probability Problem (CAPP): given a circuit C, output
a value v ∈ (0, 1) such that |v − Prx[C(x) = 1]| < 1/10. (Here, the choice of 1/10 is
arbitrary; it just needs to be a small-enough constant greater than 0.) CAPP is a canonical
PromiseBPP-complete problem [19]. Building on oracle constructions of Fortnow [16] and
Wilson [43], we show there is a relativized world in which exponential-time with an NP
oracle has linear-size circuits yet CAPP is in P. (Recall it is known that subexponential-time
algorithms for CAPP imply NEXP ̸⊂ P/poly [21].)

▶ Reminder of Theorem 11. There is an oracle A such that CAPP (for A-oracle circuits)
is in PA but EXPNPA

has polynomial-size A-oracle circuits.

In particular, our proof will show that ENP = TIMENP[2O(n)] has O(n)-size circuits relative
to A; the consequence for EXPNP follows from standard (relativizing) padding arguments.
The idea is to carefully construct an oracle with “keyed” strings that allow us to determine
ENP computations fast, while including enough structure in other parts of the oracle to
make CAPP easy to solve. The first part builds on Wilson’s oracle that places ENP in linear
size [43], while the second part builds on Fortnow’s oracle that puts CAPP in P [16].

Proof. Since ENP = ESAT, it suffices to consider ESAT. Let MA be a ESATA machine deciding
a linear-time complete set for ESATA . It suffices to provide a linear-size circuit family for
MA. Let MA run in TIMENP[2cn] for a sufficiently large constant c ≥ 1.

The construction of A will proceed in stages. All possible queries to A will be partitioned
into fixed queries and unfixed queries. As the construction progresses, we will convert unfixed
queries to fixed queries, and the oracle values of fixed queries will not be changed. In stage 0
we begin with A(x) = 0 for all x, and all queries to A are unfixed. We will inductively prove
that:
1. After stage n, at most 22(c+1)n queries to A of the form [i, . . .] where i > n have been

fixed.
2. After stage n, all queries of length at most n are fixed.
This is clearly true after stage 0.

ITCS 2023

22:20 On Oracles and Algorithmic Methods for Proving Lower Bounds

Stage n:

We start by handling all n-bit inputs x ∈ {0, 1}n to MA, one by one. For each x, the output
of MA(x) can be viewed as a decision tree of depth at most 2cn (capturing the deterministic
decisions made by MA(x) between queries to A), where each node of the decision tree is a
DNF (capturing the SATA queries) of at most 22cn terms, where each term has width at
most 2cn, and the DNF variables correspond to queries of A. We will always simplify DNFs
by substituting the values of oracle A on fixed queries.

First, we show that we can fix a “small” number of queries to A that will determine the
value of MA(x). Starting from the DNF D at the top node of the decision tree, if D evaluates
to a fixed constant, then we follow the relevant child node and repeat the following on its
DNF. Otherwise, if D is non-constant, we set D to be true by taking one term of unfixed
queries, setting the values on those queries appropriately, and fixing those queries. As each
term of D has width at most 2cn, this changes and fixes at most 2cn values of A. From now
on, as long as we restrict ourselves to only changing unfixed queries to A, D will not change
its output. After setting D to be true, we move to the relevant child in the decision tree,
and repeat the procedure, continuing until we reach a leaf of the tree.

As the depth of the decision tree is at most 2cn, the above procedure fixes at most
2cn · 2cn = 22cn queries of A. From now on, as long as we only change unfixed queries
of A, the output of MA(x) will not change. Repeating the procedure over all x, we add
at most 2n · 22cn = 2(2c+1)n queries to the set of fixed queries. Combining this with the
induction hypothesis from stage n − 1, the total number of fixed inputs (of the form [i, . . .]
where i > n − 1) is at most 2(2c+1)n + 22(c+1)(n−1) = 22(c+1)n−2c. Thus there is some string
zn of length 2(c + 1)n such that no string of the form [n, zn, . . .] is fixed. We use zn to
“encode” the behavior of MA: we set A[n, zn] = 1 and fix [n, zn], and for all x ∈ {0, 1}n,
we set A([n, zn, x]) = MA(x) and fix [n, zn, x]. Observe that the outputs of MA(x) remain
unchanged, as we have only modified A on unfixed inputs. Finally, we set all other strings of
length n as fixed, proving the second inductive hypothesis for stage n. The total number of
fixed strings of the form [i, . . .] (where i > n) is 1 + 2n + 2n + 22(c+1)n−2c < 22(c+1)n, proving
the first inductive hypothesis for stage n. In stage n, we will not fix any more inputs of the
form [i, . . .] where i > n.

Now we modify A in other places, to accommodate a CAPP algorithm. Letting C be an
oracle circuit and letting B be an oracle. let CB denote the circuit obtained by replacing all
oracle gates of fan-in f in C with the f -th slice of B.

We go through every oracle circuit C in turn. If CA is satisfiable, then we encode an
input x such that CA(x) = 1, by setting and fixing A([n, zn, C]) = 1 and A([n, zn, C, i]) = xi

for i = 1, . . . , |x|. If CA is unsatisfiable, then let S be the set of keys such that CA queries
some string with that key on at least a 1

2|C| fraction of its possible inputs. We can encode S

by setting and also fixing A([n, zn, C]) = 0 and A([n, zn, C, i]) = binary(S)i where binary(S)
denotes a binary encoding of S. Note that |S| ≤ 2|C|2, so the binary encoding has poly(|C|)
size. This completes stage n. Note that, as we perform the above modifications for every
circuit C, we are in fact fixing an infinite number of queries in stage n. However, none of the
queries we fix here have the form [i, . . .] where i > n, so it does not affect our first inductive
hypothesis.

We will now argue correctness. To compute MA on an n-bit x, we can simply return
A[n, zn, x]. As |zn| = 2(c+1)n, we obtain an O(n)-size A-oracle circuit that computes MA(x)
on all n-bit inputs. Therefore ENPA ⊂ SIZEA[O(n)].

Now we show that the oracle A lets us solve CAPP in polynomial time. We begin
with a weaker problem. In GAP-SAT, we are given a circuit C and are promised that

N. Vyas and R. Williams 22:21

either C is unsatisfiable, or at least half of its possible assignments are satisfying; the
task is to distinguish between these two promise conditions. GAP-SAT is a canonical
PromiseRP-complete problem.

We will show that our oracle A lets us solve GAP-SAT in polynomial time. Let Ak be
the oracle after stage k, and let A be the final oracle constructed after all stages. Suppose
we are given a GAP-SAT instance C. We start by observing that for all x and for every
k > |C|, CA(x) = CAk (x). This follows because (1) C cannot query strings longer than |C|,
and (2) the inductive hypothesis implies that at the end of stage k, all unfixed inputs have
length greater than k, so we only modify inputs of length greater than k after that.

Our GAP-SAT algorithm works as follows (following Fortnow [16]). Begin with k := 1,
and z1 hard-coded in the algorithm. First we check if A([k, zk, C, . . .]) encodes a string x. If
so, then if CA(x) = 1 we are done. If CA(x) = 0 instead, we know that CA(x) = 0 while
CAk (x) = 1. (That is, when we were encoding A in stage k, x was a satisfying assignment to
C, but later x became an unsatisfying assignment.) This means that CAk (x) must query
some string of the form [j, zj , . . .] for j > k. Let {zj} be the set of all keys of such queries in
CAk (x). As we can check if a given string z is equal to zj by checking if A[j, z] = 1, we can
determine zj for some j > k, and restart the entire procedure with k = j. Note that if k is
ever larger than |C|, and a satisfying input x is not encoded by A, then we should reject, as
CA(x) = CAk (x) for all x and CAk is unsatisfiable.

Now suppose A([k, zk, C, . . .]) does not encode a string x. In that case, CAk must have
been unsatisfiable, and A([n, zk, C, . . .]) encodes a set S. We construct the set S with
O((|C|)2) queries to A, and check if there is a z ∈ S and j ∈ [k + 1, |C|] such that A[j, z] = 1.
If such a z is found, we now have zj for some j > k, and we can again restart the procedure
with k = j.

If no z ∈ S has this property, then we claim that CAk and CA differ on less than a
|C| · 1

2|C| = 1
2 fraction of all inputs. To see why this claim is true, first note that CAk (x) and

CA(x) can only differ if CAk (x) makes a query with key zj , where j ∈ [k + 1, |C|]. If zj ̸∈ S,
then on less than a 1

2|C| fraction of inputs, CAk (x) makes a query with key zj . If for every
j ∈ [k + 1, |C|] we have zj ̸∈ S, then CAk (x) ̸= CA(x) on at most a (|C| − k + 1) · 1

2|C| < 1
2

fraction of the inputs. Recalling that CAk is unsatisfiable, it follows that CA accepts less
than a 1

2 of the inputs and so does not satisfy the promise condition. (We can output any
answer at this point.) This concludes the description of the GAP-SAT algorithm.

Finally, we observe that a polynomial-time GAP-SAT algorithm is sufficient for a CAPP
algorithm. In particular, Lautemann’s proof that BPP ⊆ Σ2P [30] implies PromiseBPP ⊆
PromiseRPPromiseRP (as observed by [14]), and the proof relativizes. Since CAPP on A-oracle
circuits is solvable in polynomial time with our oracle A, and CAPP is PromiseRP-complete,
the above containment implies that PromiseBPP problems are solvable in polynomial time
relative to our oracle. Fortnow [16] shows this condition is sufficient for solving CAPP in
polynomial time (and his proof relativizes). ◀

▶ Reminder of Theorem 12. There is an oracle A and a function H such that TIMEA[2n] ⊂
SIZEA[O(n)], SATA can be solved in poly(H(poly(n))) time with an A-oracle, H(H(n)) ≤ 2n

and H is monotone increasing.

In the following, we let h denote a half-exponential function, i.e., a strictly monotone
increasing h : N → N where h(h(n)) = 2n.

Proof. Let NA(x) be a nondeterministic machine accepting a linear-time complete language
for the class NTIMEA[O(n)]. In particular, let NA run in time ≤ µn. For a sufficiently large

ITCS 2023

22:22 On Oracles and Algorithmic Methods for Proving Lower Bounds

constant c ≥ 1, setting s(n) := h(n)c, we will construct an oracle A such that for all n and
for all x ∈ {0, 1}n, NA(x) = A(1s(n)0x). Then the language L(NA) can be decided in time
poly(h(n)) with the oracle A, by simply constructing s(n) ones, and querying A on 1s(n)0x.
By padding, it follows that SAT will be computable in poly(h(poly(n))) relative to the oracle
A.

All queries to A will have one of three types: fixed, unfixed, and derived. Initially all
queries of the form 1s(n)0x where x ∈ {0, 1}n are derived. Throughout the construction of
the oracle, we will never set the value of A on derived queries; rather, we will assume that
on derived queries the oracle satisfies A(1s(n)0x) := NA(x) for all x ∈ {0, 1}n. This means
that whenever the oracle A is changed, we assume that the value of A on derived queries
is also changed to satisfy A(1s(n)0x) := NA(x). This can always be done, since 1s(n)0x is
too long to be queried directly by NA(x). Over the course of the oracle construction, some
unfixed and derived queries will become fixed queries. Whenever a derived query of the form
1s(n)0x with |x| = n into a fixed query, we will ensure that the output of NA(x) does not
change after that. This will ensure that the condition NA(x) = A(1s(n)0x) is maintained.

Let MA be a EA machine which accepts a linear-time complete set for EA. We wish to
construct A so that MA has small A-oracle circuits. Let MA run in time at most 2cn for a
large enough constant c. (Note that this fixes s(n) = h(n)c).

We will proceed in stages. In stage 0, we begin with A(y) = 0 for all y, and all queries
other than derived queries to A are unfixed. We will inductively prove that after stage n:

1. At most 2c(n+1) queries of A have been fixed.
2. All derived queries have length at least s(n + 1).
These properties are clearly true after stage 0.

Stage n:

Our aim is to modify A such that there is a string zn of length O(n) such that MA(x) = A(znx)
for all x ∈ {0, 1}n. As MA is a EA machine, we may view its computation on n-bit input as
a decision tree of depth at most 2cn where each node of the tree queries A on some input.
We can simplify the tree by substituting the values of all fixed queries to A. We are left
with two kinds of queries: derived and unfixed. Note that the oracle value of each derived
query A(1s(|y|)0y) is the same as NA(y). Because NA runs in nondeterministic µn time,
each query A(1s(|y|)0y) can in turn be replaced with a DNF Dy of at most 2µ|y| terms, of
width at most µ|y| (each term has at most µ|y| literals). By substituting the values for the
fixed queries, Dy can be simplified so that each literal of Dy corresponds to the value of A

on an unfixed or derived query. We next prove that, because we took s(|y|) to be sufficiently
large, the following stronger condition holds: every literal in every DNF Dy must correspond
to an unfixed query, i.e., not a derived query.

▷ Claim 33. For every derived query A(1s(|y|)0y) by MA on any input x of length n,
|y| < h(n).
Each literal of the DNF Dy corresponds to an unfixed (not derived) query to the oracle
A.

Proof. Let 1s(|y|)y be a derived query of MA(x). As MA(x) runs in at most 2cn time, we have
that s(|y|) < 2cn. Since s(|y|) = h(|y|)c, this implies that h(|y|) < 2n. Since h(h(n)) = 2n

and h is monotone increasing, we must have |y| < h(n). Furthermore,

|y| < h(n) = s(n)1/c < s(n)/µ,

N. Vyas and R. Williams 22:23

where the last inequality holds for all large enough n. As NA(y) runs in time at most µ|y|, it
follows that all queries by NA(y) are of length at most µ|y| < s(n). The literals of the DNF
Dy correspond to the oracle queries of NA(y), therefore hence all literals in Dy correspond to
queries to A of length less than s(n). As our induction hypothesis says that derived queries
are of length greater than s(n), each literal of Dy corresponds to an unfixed query. ◀

Given the claim, our EA machine MA can be viewed as a decision tree where each node
of the tree is labelled by a DNF over the unfixed queries to A. We have now reached the
same situation that arose in Theorem 11, which also arises in Wilson’s [43] construction of
an oracle B such that ENPB ⊂ SIZE[O(n)]B . We will use the same proof technique to embed
MA in SIZEA[O(n)].

We will handle each x ∈ {0, 1}n one by one. For each x, the output of MA(x) can be
viewed as a decision tree of depth 2cn where each node of the decision tree is a DNF with
at most 2µh(n) < 22n terms and each term has width at most µh(n) < 2n. Each literal in
each DNF corresponds to an unfixed (but not derived) value of A. We start from the DNF
corresponding to the top node of the decision tree. We just set an arbitrary term of this DNF
to true by setting values of A on unfixed queries and fixing them. As each term has width at
most 2n, this fixes at most 2n values of A. As long as we only change unfixed queries, the
DNF will not change its output. Next, we move to the next active node in the decision tree
and repeat the procedure, until we reach a leaf node of the tree. Since the tree has depth at
most 2cn, the number of queries to A that were fixed is at most 2cn · 2n = 2(c+1)n. As long as
we change only unfixed queries from now on, MA(x) will not change its output. Repeating
the above for all n-bit x, in total we fix at most 2(c+1)n · 2n = 2(c+2)n queries of A. Finally,
we convert all inputs of the form 1s(n)0x from derived to fixed, proving the second inductive
hypothesis for stage n. Combining this with the induction hypothesis from stage n − 1, the
total number of fixed inputs is 2cn + 2(c+2)n + 2n < 2(c+4)n for a large enough constant c.
Hence there exists a string zn of length O(n) such that no string of the form zn . . . is fixed.
We set A[znx] := MA(x) for all x ∈ {0, 1}n, and declare znx to be fixed. This is a valid
assignment, as doing so does not change the values of MA(x) (we have only changed the
value of A on unfixed inputs). This completes stage n.

Note that the total number of queries that are fixed is at most 2(c+4)n + 2n ≤ 2c(n+1) for
a large enough constant c. This proves the first inductive hypothesis for stage n.

Finally, we note that MA has low circuit complexity. For all x of length n, we have
MA(x) = A(znx). Since |zn| ≤ O(n), the query to A can be implemented as a linear sized
circuit on n-bit inputs. Since MA recognizes a linear time complete set for EA, we also
have ENPA ⊂ SIZEA[O(n)]. We also showed that for all x ∈ {0, 1}n, NA(x) = A(1s(n)0x),
hence the language L(NA) is in TIME[O(s(n)]. It follows that SAT is computable in time
s(nc) ≤ h(nc)c for a constant c ≥ 1. (Indeed, all of NP is in TIME[h(nO(1))O(1)].) ◀

References
1 Scott Aaronson. “Closed-form” functions with half-exponential growth. Math Overflow,

https://web.archive.org/web/20210514235809/https://mathoverflow.net/questions/
45477/closed-form-functions-with-half-exponential-growth, 2010.

2 Scott Aaronson. G. phi. fo. fum. Shtetl-Optimized, URL: https://web.archive.org/web/
20220221023022/https://scottaaronson.blog/?p=2521, 2015.

3 Scott Aaronson, Baris Aydinlioglu, Harry Buhrman, John M. Hitchcock, and Dieter van
Melkebeek. A note on exponential circuit lower bounds from derandomizing arthur-merlin
games. Electron. Colloquium Comput. Complex., page 174, 2010. URL: https://eccc.
weizmann.ac.il/report/2010/174.

ITCS 2023

https://web.archive.org/web/20210514235809/https://mathoverflow.net/questions/45477/closed-form-functions-with-half-exponential-growth
https://web.archive.org/web/20210514235809/https://mathoverflow.net/questions/45477/closed-form-functions-with-half-exponential-growth
https://web.archive.org/web/20220221023022/https://scottaaronson.blog/?p=2521
https://web.archive.org/web/20220221023022/https://scottaaronson.blog/?p=2521
https://eccc.weizmann.ac.il/report/2010/174
https://eccc.weizmann.ac.il/report/2010/174

22:24 On Oracles and Algorithmic Methods for Proving Lower Bounds

4 Scott Aaronson and Avi Wigderson. Algebrization: A new barrier in complexity theory. ACM
TOCT, 1, 2009.

5 Dana Angluin. On counting problems and the polynomial-time hierarchy. Theor. Comput.
Sci., 12:161–173, 1980. doi:10.1016/0304-3975(80)90027-4.

6 Sanjeev Arora and Boaz Barak. Computational Complexity - A Modern Approach. 2009. URL:
http://www.cambridge.org/catalogue/catalogue.asp?isbn=9780521424264.

7 Srinivasan Arunachalam, Alex B. Grilo, Tom Gur, Igor Carboni Oliveira, and Aarthi Sundaram.
Quantum learning algorithms imply circuit lower bounds. In 62nd IEEE Annual Symposium
on Foundations of Computer Science, FOCS 2021, Denver, CO, USA, February 7-10, 2022,
pages 562–573, 2021.

8 Baris Aydinlioglu and Eric Bach. Affine relativization: Unifying the algebrization and
relativization barriers. ACM Trans. Comput. Theory, 10(1):1:1–1:67, 2018. doi:10.1145/
3170704.

9 Baris Aydinlioglu, Dan Gutfreund, John M. Hitchcock, and Akinori Kawachi. Derandomizing
arthur-merlin games and approximate counting implies exponential-size lower bounds. Comput.
Complex., 20(2):329–366, 2011. doi:10.1007/s00037-011-0010-8.

10 Baris Aydinlioglu and Dieter van Melkebeek. Nondeterministic circuit lower bounds from
mildly derandomizing arthur-merlin games. Comput. Complex., 26(1):79–118, 2017. doi:
10.1007/s00037-014-0095-y.

11 Theodore Baker, John Gill, and Robert Solovay. Relativizations of the P =? NP question.
SIAM J. Comput., 4(4):431–442, 1975.

12 J. M. Barzdin, š and R. V. Freivalds. On the prediction of general recursive functions (in
russian). Doklady Akademii Nauk, 206(3):521–524, 1972.

13 Richard Bird. Pearls of Functional Algorithm Design. 2010. URL: http://www.cambridge.
org/gb/knowledge/isbn/item5600469.

14 Harry Buhrman and Lance Fortnow. One-sided versus two-sided error in probabilistic compu-
tation. In STACS 99, 16th Annual Symposium on Theoretical Aspects of Computer Science,
Trier, Germany, March 4-6, 1999, Proceedings, volume 1563 of Lecture Notes in Computer
Science, pages 100–109, 1999. doi:10.1007/3-540-49116-3_9.

15 Harry Buhrman, Lance Fortnow, and Thomas Thierauf. Nonrelativizing separations. In
Proceedings of the 13th Annual IEEE Conference on Computational Complexity, Buffalo, New
York, USA, June 15-18, 1998, pages 8–12, 1998. doi:10.1109/CCC.1998.694585.

16 Lance Fortnow. Comparing notions of full derandomization. In Proceedings of the 16th Annual
IEEE Conference on Computational Complexity, Chicago, Illinois, USA, June 18-21, 2001,
pages 28–34, 2001. doi:10.1109/CCC.2001.933869.

17 Lance Fortnow and Rahul Santhanam. Time hierarchies: A survey. Electron. Colloquium
Comput. Complex., (004), 2007.

18 Merrick L. Furst, James B. Saxe, and Michael Sipser. Parity, circuits, and the polynomial-time
hierarchy. Mathematical Systems Theory, 17(1):13–27, 1984.

19 Oded Goldreich. On promise problems: A survey. In Theoretical Computer Science, Essays in
Memory of Shimon Even, volume 3895 of Lecture Notes in Computer Science, pages 254–290,
2006. doi:10.1007/11685654_12.

20 Russell Impagliazzo, Valentine Kabanets, and Antonina Kolokolova. An axiomatic approach
to algebrization. In STOC, pages 695–704, 2009. doi:10.1145/1536414.1536509.

21 Russell Impagliazzo, Valentine Kabanets, and Avi Wigderson. In search of an easy witness:
exponential time vs. probabilistic polynomial time. J. Comput. Syst. Sci., 65(4):672–694, 2002.
doi:10.1016/S0022-0000(02)00024-7.

22 Russell Impagliazzo and Avi Wigderson. P = BPP if E requires exponential circuits: Deran-
domizing the XOR lemma. In STOC, pages 220–229, 1997.

23 Valentine Kabanets and Russell Impagliazzo. Derandomizing polynomial identity tests means
proving circuit lower bounds. Computational Complexity, 13(1-2):1–46, 2004. doi:10.1007/
s00037-004-0182-6.

https://doi.org/10.1016/0304-3975(80)90027-4
http://www.cambridge.org/catalogue/catalogue.asp?isbn=9780521424264
https://doi.org/10.1145/3170704
https://doi.org/10.1145/3170704
https://doi.org/10.1007/s00037-011-0010-8
https://doi.org/10.1007/s00037-014-0095-y
https://doi.org/10.1007/s00037-014-0095-y
http://www.cambridge.org/gb/knowledge/isbn/item5600469
http://www.cambridge.org/gb/knowledge/isbn/item5600469
https://doi.org/10.1007/3-540-49116-3_9
https://doi.org/10.1109/CCC.1998.694585
https://doi.org/10.1109/CCC.2001.933869
https://doi.org/10.1007/11685654_12
https://doi.org/10.1145/1536414.1536509
https://doi.org/10.1016/S0022-0000(02)00024-7
https://doi.org/10.1007/s00037-004-0182-6
https://doi.org/10.1007/s00037-004-0182-6

N. Vyas and R. Williams 22:25

24 Ravi Kannan. Circuit-size lower bounds and non-reducibility to sparse sets. Inf. Control.,
55(1-3):40–56, 1982. Preliminary version in FOCS’81. doi:10.1016/S0019-9958(82)90382-5.

25 Ravi Kannan, H. Venkateswaran, V. Vinay, and Andrew Chi-Chih Yao. A circuit-based proof
of Toda’s theorem. Inf. Comput., 104(2):271–276, 1993. doi:10.1006/inco.1993.1033.

26 Richard Karp and Richard Lipton. Turing machines that take advice. L’Enseignement
Mathématique, 28(2):191–209, 1982.

27 Robert Kleinberg, Oliver Korten, Daniel Mitropolsky, and Christos H. Papadimitriou. Total
functions in the polynomial hierarchy. In 12th Innovations in Theoretical Computer Science
Conference, ITCS, volume 185 of LIPIcs, pages 44:1–44:18, 2021. doi:10.4230/LIPIcs.ITCS.
2021.44.

28 Adam Klivans and Dieter van Melkebeek. Graph nonisomorphism has subexponential size
proofs unless the polynomial hierarchy collapses. SIAM J. Comput., 31(5):1501–1526, 2002.

29 Oliver Korten. The hardest explicit construction. In 62nd IEEE Annual Symposium on
Foundations of Computer Science, FOCS 2021, Denver, CO, USA, February 7-10, 2022, pages
433–444, 2021. doi:10.1109/FOCS52979.2021.00051.

30 Clemens Lautemann. BPP and the polynomial hierarchy. Inf. Process. Lett., 17(4):215–217,
1983. doi:10.1016/0020-0190(83)90044-3.

31 Peter Bro Miltersen, N. V. Vinodchandran, and Osamu Watanabe. Super-polynomial versus
half-exponential circuit size in the exponential hierarchy. In Computing and Combinatorics, 5th
Annual International Conference, COCOON ’99, Tokyo, Japan, July 26-28, 1999, Proceedings,
volume 1627 of Lecture Notes in Computer Science, pages 210–220, 1999. doi:10.1007/
3-540-48686-0_21.

32 Noam Nisan and Avi Wigderson. Hardness vs randomness. J. Comput. Syst. Sci., 49(2):149–167,
1994.

33 Alexander Razborov and Steven Rudich. Natural proofs. J. Comput. Syst. Sci., 55(1):24–35,
1997.

34 Hanlin Ren, Rahul Santhanam, and Zhikun Wang. On the Range Avoidance problem for
circuits. In 63rd IEEE Annual Symposium on Foundations of Computer Science, FOCS 2022
(to appear), 2022.

35 Walter L. Ruzzo. On uniform circuit complexity. J. Comput. Syst. Sci., 22(3):365–383, 1981.
doi:10.1016/0022-0000(81)90038-6.

36 Larry J. Stockmeyer and Albert R. Meyer. Cosmological lower bound on the circuit complexity
of a small problem in logic. J. ACM, 49(6):753–784, 2002.

37 Larry Joseph Stockmeyer. The complexity of decision problems in automata theory and logic.
PhD thesis, Massachusetts Institute of Technology, Department of Electrical Engineering,
https://dspace.mit.edu/handle/1721.1/15540, 1974.

38 Iannis Tourlakis. Time-space tradeoffs for SAT on nonuniform machines. J. Comput. Syst.
Sci., 63(2):268–287, 2001.

39 H. Venkateswaran. Circuit definitions of nondeterministic complexity classes. SIAM J. Comput.,
21(4):655–670, 1992. doi:10.1137/0221040.

40 V. Vinay, H. Venkateswaran, and C. E. Veni Madhavan. Circuits, pebbling and expressibility.
In Proceedings: Fifth Annual Structure in Complexity Theory Conference, pages 223–230, 1990.
doi:10.1109/SCT.1990.113970.

41 Ryan Williams. Improving exhaustive search implies superpolynomial lower bounds. SIAM
Journal on Computing, 42(3):1218–1244, 2013.

42 Ryan Williams. Nonuniform ACC circuit lower bounds. J. ACM, 61(1):2:1–2:32, 2014.
doi:10.1145/2559903.

43 Christopher B. Wilson. Relativized circuit complexity. J. Comput. Syst. Sci., 31(2):169–181,
1985. doi:10.1016/0022-0000(85)90040-6.

ITCS 2023

https://doi.org/10.1016/S0019-9958(82)90382-5
https://doi.org/10.1006/inco.1993.1033
https://doi.org/10.4230/LIPIcs.ITCS.2021.44
https://doi.org/10.4230/LIPIcs.ITCS.2021.44
https://doi.org/10.1109/FOCS52979.2021.00051
https://doi.org/10.1016/0020-0190(83)90044-3
https://doi.org/10.1007/3-540-48686-0_21
https://doi.org/10.1007/3-540-48686-0_21
https://doi.org/10.1016/0022-0000(81)90038-6
https://dspace.mit.edu/handle/1721.1/15540
https://doi.org/10.1137/0221040
https://doi.org/10.1109/SCT.1990.113970
https://doi.org/10.1145/2559903
https://doi.org/10.1016/0022-0000(85)90040-6

22:26 On Oracles and Algorithmic Methods for Proving Lower Bounds

A Simple Lower Bound for Local Algorithms Solving Missing-String

Recall M is the number of bit strings in our input list to Missing-String, and N is the
length of the bit strings. Recall that an algorithm is k-probe if for all i = 1, . . . , N , the i-th
output bit of the missing string can be determined by only probing k bits of the input list.

▶ Theorem 34. Every k-probe algorithm for Missing-String can only be correct when
M ≤ kN .

Proof. First, we prove that any procedure for Missing-String must make at least M probes
overall into the list. In particular, the procedure must probe each of the M strings in at least
one bit. Otherwise, the procedure did not probe some string x at all; then, given whatever
string y the procedure produces, the string x could be set equal to y, contradicting the
assumption that the procedure computes Missing-String.

Therefore, since any k-probe Missing-String algorithm makes kN overall probes into
the list, we must have M ≤ kN , i.e. k ≥ M/N . ◀

The above simple theorem can be applied to show that our (relativizing) time hierarchy
with advice (Theorem 1) is extremely close to optimal for some parameters. For example, by
setting α(n) = cn, β(n) = log n, t(n) = 10n in Theorem 1, we have for all c > 0:

TIME[(n3 log n) · 2cn] ̸⊂ i.o.-TIME[O(n)]/(cn + n).

Using the simple lower bound of Theorem 34, one can argue that there is an oracle A

such that for all c > 0, and all unbounded functions α(n),

TIMEA[2cn/α(n)] ⊂ TIMEA[O(n)]/(cn + n),

showing that the generic argument of Theorem 1 cannot be improved significantly.
Let us sketch the idea of how this works, from the perspective of the Missing-String

problem. We build up the oracle A in stages, starting from n = 1 and increasing n after each
stage. On a given input length n, consider a list L of all M = O(2(c+1)n) truth tables of
length N = O(2n), one truth table for every possible query to the A oracle of type (i, x, y),
where i is the index of a machine MA

i (a string of length at most log(α(n))/2), x is an input
string of length at most n, and y is of length at most (c + 1)n − log(α(n))/2. (Some of
the values of the bits in L have been determined in previous stages, but some have not.)
Consider an algorithm B that on input (i, x′) attempts to simulate an algorithm MA

i on x′

of length n, making k ≤ 2cn/α(n) queries to the list L to determine its output. If a probe
into L is a value of the oracle A that was already determined in previous stages, we answer
consistently; otherwise, we output that the value of A on the new query is 0.

Following the proof of Theorem 34, for every fixed choice of i, the total number of
queries into the list L (across all inputs of length up to n) is at most Θ(2n · 2cn/α(n)) <

2(c+1)n−log(α(n)/2 = M/
√

α(n). Therefore there is always at least one truth table corres-
ponding to strings of the form (i, ·, y) in L that was not queried by Mi over the n-bit strings,
even in previous stages. The oracle A can therefore be assigned such that this completely-
unqueried truth table equals the truth table of Mi on n-bit inputs. Thus the algorithm B

(and Mi for all i) on n-bit inputs can always be simulated by an A-oracle circuit of one gate
of the form A(i, x, y), where y has length (c + 1)n − log(α(n))/2, and x is an input of length
n. Thus B can be simulated in O(n) time with oracle A and (c + 1)n advice.

N. Vyas and R. Williams 22:27

B Fast-enough SAT Implies EXP Lower Bounds

Here we recall a proposition showing that if SAT is solvable in “sub-half-exponential” time,
then circuit lower bounds for EXP follow. The proof relativizes.

▶ Proposition 35 ([41]). If SAT is in O(H(n)) time then EXP ̸⊂ P/poly, for any function
H(n) satisfying H(H(nk)2) ≤ 2n for all k.

Proof. Recall EXP ⊂ P/poly implies EXP = Σ2P [26], and recall that Σ2P = ∃ · ∀ · P,
where the ∃ and ∀ denote existential and universal alternations over nO(1) bits. Assuming
SAT is in O(H(n)) time, we have Σ2P ⊆ ∃ · TIME[H(nO(1))]. Then, an ∃ · TIME[H(nO(1))]
computation can be expressed as a SAT instance of length at most H(nO(1))2. Applying the
SAT algorithm once again implies

EXP = Σ2P ⊆ TIME[H(H(nO(1))2)] ⊆ TIME[2n · nO(1)],

contradicting the time hierarchy theorem. ◀

ITCS 2023

	1 Introduction
	1.1 Local Algorithms for Missing-String and New Time Hierarchies
	1.2 Non-Relativizing Aspects of the Algorithmic Method

	2 Preliminaries
	2.1 A Normal Form for Relativized Circuits
	2.2 Efficient Methods for Finding a Missing String

	3 Local Algorithms for Missing-String and New Non-Uniform Hierarchies
	3.1 Non-Uniform Time Hierarchies

	4 Circuits for Missing-String And Circuit Lower Bounds
	4.1 A Perspective on Non-Relativizing Lower Bounds

	5 Oracles Breaking The Algorithmic Method for Circuit Lower Bounds
	A Simple Lower Bound for Local Algorithms Solving Missing-String
	B Fast-enough SAT Implies EXP Lower Bounds

