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ABSTRACT
The technique of k-anonymization has been proposed in the
literature as an alternative way to release public informa-
tion, while ensuring both data privacy and data integrity.
We prove that two general versions of optimal k-anonymization
of relations are NP -hard, including the suppression version
which amounts to choosing a minimum number of entries to
delete from the relation. We also present a polynomial time
algorithm for optimal k-anonymity that achieves an approx-
imation ratio independent of the size of the database, when
k is constant. In particular, it is a O(k log k)-approximation
where the constant in the big-O is no more than 4. How-
ever, the runtime of the algorithm is exponential in k. A
slightly more clever algorithm removes this condition, but is
a O(k log m)-approximation, where m is the degree of the re-
lation. We believe this algorithm could potentially be quite
fast in practice.

1. INTRODUCTION
Data privacy and data mining are quite naturally at odds

with each other. In certain scenarios such as tracking epi-
demics and product marketing, a data miner requires access
to large volumes of (possibly) personal information, in order
to spot interesting trends or correlations. However, the di-
rect release and study of such data may violate the privacy of
individuals. Ideally, one strives for the best of both worlds:
to somehow infer overall trends in data without inferring
much information about particulars. Many approaches to
this fundamental data mining problem have been suggested,
implemented, and theoretically studied (e.g. [1, 2, 3, 5, 7,
4]). In general, most proposals for privacy-protecting data
mining involve perturbing individual data values or perturb-
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ing the results of queries, but this is undesirable if one wants
to ensure complete data integrity. (One can imagine cases
arising where it is vital to be capable of rigorously proving
to a judge that a certain trend is indeed occurring; with
perturbations in data, only “probably true” inferences may
be drawn.)

An alternative approach is to restrict the release of in-
formation in some way. We shall focus on the strategy of
k-anonymization, first proposed by Samarati and Sweeney
[9, 10]. To our knowledge, no theoretical results were known
concerning the problem prior to this paper. Let k > 1 be a
fixed integer. Suppose we want to release a table of private
data to the public, and we have the capability to suppress
or “generalize” various entries in the table. If this suppres-
sion/generalization is done in such a way that every record
becomes textually indistinguishable (entry for entry) from
k − 1 other records in the table, we say that the new mod-
ified table is k-anonymized. For a quick example, take the
following short relation, given as a possible response to the
query “Who had an X-ray at this hospital yesterday?”

first last age race
Harry Stone 34 Afr-Am
John Reyser 36 Cauc

Beatrice Stone 47 Afr-Am
John Ramos 22 Hisp

Suppose our task is to 2-anonymize this data before its
release. If the database has been augmented to permit the
proper values for attributes, then one possible 2-anonymization
of the table would be the following.

first last age race
* Stone 30-50 Afr-Am

John R* 20-40 *

* Stone 30-50 Afr-Am
John R* 20-40 *

(Note the specification of “20-40”, “R*”, etc. as admissi-
ble generalizations must be given prior to the input. In this
paper, we will only consider the special case of suppressions,
i.e. each entry is either included in the output, or omitted
entirely, with a * character taking its place.)

We will see that k-anonymity admits a very clean formal-
ization; it is simple to propose, and has a concrete privacy
parameter k within its definition. In this work, we will con-
sider the complexity of rendering relations of private records
k-anonymous, while minimizing the amount of information
that is not released. That is, we want to simultaneously en-
sure the anonymity of individuals up to a group of size k, and



withhold a minimum amount of information to achieve this
privacy level. We will show that this optimization problem
is NP -hard in general. Moreover, we prove that a further
restriction of the problem where attributes are suppressed
instead of individual entries is also NP -hard. On the posi-
tive side, we will present a greedy O(k log k)-approximation
algorithm for optimal k-anonymity via suppression of entries
(note the hidden constant in the big-O is no more than 4;
see Section 4 for more details). This approximation ratio
is fairly nice, since the value for k used in practice is no
more than 5 or 6 [9]. We remark that for the special case
m ∈ O(log n) (where m is the degree of the relation and
n is the number of tuples), an polynomial time exact algo-
rithm has been recently proposed by Sweeney [8]. Hence
our algorithm will probably be best applied in cases with
high-dimensional records.

2. NOTATION
We will consider degree-m tuples in the database to be m-

dimensional vectors vi drawn from Σm, where Σ is a (finite)
alphabet of possible values for attributes. (In general, Σ
could vary for each attribute.) Thus the databases under
consideration are formally represented as subsets V ⊆ Σm.
Let ∗ be a fresh symbol not in Σ.

Definition 2.1. Let t be a map from V to (Σ ∪ {∗})m.
We say t is a suppressor on V if for all v ∈ V and j =
1, . . . , m it is the case that t(v)[j] ∈ {v[j], ∗}.

Intuitively speaking, a suppressor defines some kind of
anonymization: every vector v ∈ V has a corresponding
anonymized vector t(v) = v′ in an anonymized set V ′ ⊆ (Σ∪
{∗})m. The coordinates of v′ are identical to the coordinates
of v, except some coordinates may be suppressed by the new
“anonymous” character ∗.

We can extend a suppressor t to act on a set of vectors V
in a straightforward way (so that t(V ) makes sense). We will
regard t(V ) as a multiset when two or more vectors in v map
to the same suppressed vector, i.e. v 6= v′ ∈ V but t(v) =
t(v′). We can now define the notion of k-anonymization
precisely.

Definition 2.2. Let t be a suppressor on the set V =
{v1, . . . , vn} ⊆ Σm. Then t(V ) is k-anonymous iff for all
vi ∈ V , there exist k − 1 indices i1, i2, . . . , ik−1 ∈ {1, . . . , n}
(all pairwise distinct and distinct from i) such that t(vi1) =
t(vi2) = ... = t(vik−1

) = t(vi). Alternatively, we call t a
k-anonymizer on V .

In other words, when a suppressor on a database makes
the database k-anonymous, it means that every anonymized
vector is a member of a multiset of (at least) k identical
anonymized vectors. Thoughout, we will call such a set
of vectors a k-group. Note that k-groups need not have
cardinality exactly k, though they must have at least k.

3. HARDNESS OF K-ANONYMITY
The k-anonymity decision problem may be formally de-

fined as follows.
k-ANONYMITY: Given V ⊆ Σm, l ∈ N, is there a suppressor
t such that t(V ) is k-anonymous, and the total number of
vector coordinates suppressed in t(V ) is at most l?

Our first result is that if there is no restriction on the
alphabet size, then optimal k-anonymization is hard for all
k ≥ 3.

Theorem 3.1. k-ANONYMITY is NP-hard for k ≥ 3, if
|Σ| ≥ |V | is allowed.

Proof. The reduction is from k-DIMENSIONAL PER-

FECT MATCHING: Given a k-hypergraph H = (U, E) with
n = |U | and m = |E|, is there a subset S ⊆ E of n/k hyper-
edges such that each vertex of U is contained in exactly one
hyperedge of S?

Assume (without loss of generality) that H is simple,
i.e. it has no repeated edges in its description. Let U =
{u1, . . . , un} and E = {e1, . . . , em} denote the nodes and
edges of a k-dimensional hypergraph H , and let the alphabet
Σ = {0, 1, . . . , n}. We will construct a database V as follows.
For each ui, define an m-dimensional vector vi ∈ Σm:

vi[j] :=

{

0 if ui ∈ ej ,

i otherwise.

Set V := {v1, . . . , vn}. Assume t suppresses the minimum
number of vector coordinates and maintains k-anonymity.
We claim that the total number of coordinates suppressed
by t is at most n(m−1) if and only if there is a k-dimensional
perfect matching in H .

We prove the claim for k = 3; a straightforward gener-
alization of our argument proves it for all larger k. First,
suppose there is a perfect 3-dimensional matching M in H .
For i = 1, . . . , n, let j(i) be such that ej(i) is the unique hy-
peredge from M that contains node ui. Define a suppressor
t by

t(vi)[j
′] :=

{

0 if j′ = j(i),

∗ otherwise.

Since ui is on hyperedge ej(i), it follows by definition that
vi[j(i)] = 0, and all other coordinates are ∗. Therefore t is
a suppressor on V .

Now consider any t(vi). There are three nodes ui, ui′ ,
ui′′ on the hyperedge ej(i), and each node has identical
anonymized vectors, i.e. t(vi) = t(vi′) = t(vi′′). Hence there
are three vectors in t(V ) which are identical to t(vi) (in-
cluding t(vi) itself). This shows that t(V ) is 3-anonymous.
Since every t(v) ∈ t(V ) has exactly one non-∗ coordinate,
the value of our solution is exactly n(m− 1). Therefore the
optimum 3-anonymized solution will have at most this many
∗’s in its vectors.

For the converse, consider a 3-anonymous suppressor t for
V , and assume it suppressed at most n(m− 1) coordinates.
We claim that every vector t(v) in t(V ) has at most one
non-∗ coordinate. Suppose not, and consider a counterex-
ample t(vi). Since t(V ) is 3-anonymous, there must exist
two other identical vectors, say t(vi′) and t(vi′′). Since the
non-∗ coordinates have the same values as in the original vi

vectors, it follows that vi, vi′ , and vi′′ are identical in two
distinct coordinates; call them j and j′. By construction,
any two vi vectors can match only in coordinates that are
0, and vi[j] = 0 only if node ui is on edge ej . Hence vi,
vi′ , and vi′′ are all on two distinct edges, ej and ej′ . But
this implies that two edges of H are identical, contradicting
our assumption that H is simple. Thus every vector v has
at most one non-∗ coordinate in its 3-anonymous form t(v).
Hence at least n(m− 1) coordinates in t(V ) are suppressed.

Therefore, if we obtain a t(V ) with at most n(m − 1)
suppressed coordinates, it must be that every vector in t(V )
has exactly one non-∗ coordinate. Given this fact, we can
extract a perfect matching M for the original hypergraph H .



For each i = 1, . . . , n, consider the non-∗ coordinate in t(vi).
This coordinate must have value 0 (otherwise there can be no
identical vectors). If this is coordinate j, we add hyperedge
ej to a matching M . Clearly we produce a set of hyperedges
such that each node is on at least one hyperedge. Since there
are 3 identical vectors for every vector v, it follows that
there are at most n

3
edges in M . Since we need n

3
edges

at minimum to cover every node, there must be exactly n
3

edges, the set of which is a perfect matching.

3.1 Anonymizing attributes is hard
Another version of k-anonymity, where we choose whether

or not to suppress various attributes from the database, is
also hard. Say that attribute j is suppressed by t if for all
v ∈ V , v[j] = ∗. Define k-ATTRIBUTE-ANONYMITY to be
the problem of k-anonymizing a V in a way that minimizes
the number of attributes suppressed.

Theorem 3.2. For k > 2, k-ANONYMITY ON ATTRIBUTES

is NP -hard, for any Σ such that |Σ| ≥ 2.

Proof. We will just give a proof sketch, as it is quite
similar to the proof in the previous section, except we do
not need a large alphabet. Let H be a k-hypergraph with
vertices u1, . . . , un and edges e1, . . . , em. We will build a
database of n vectors v1, . . . , vn ∈ Σm where each vi repre-
sents a vertex in H , and there exists a suppressor that k-
anonymizes the database (suppressing m − n/k attributes)
if and only if H has a perfect matching.

Since |Σ| ≥ 2, there are two symbols b0 6= b1 in Σ. We
set vi[j] = b1 if ui ∈ ej , otherwise vi[j] = b0. Thus the
suppression of an attribute is equivalent to the removal of a
hyperedge in H . Observing that for every j there are exactly
k vectors vl such that vl[j] = b1, it follows that if attribute
j is not suppressed in a k-anonymization, then one k-group
consists exactly of these k vectors with vl[j] = b1. Two at-
tributes i and j are not suppressed in a k-anonymization
if and only if ei ∩ ej = ∅ (similar to the previous theo-
rem). This implies at least m−n/k attributes must be sup-
pressed in any k-anonymization, otherwise two edges share
a vertex. If exactly m − n/k attributes are suppressed in
a k-anonymization, then n/k attributes remain, each rep-
resenting a hyperedge disjoint from the others that remain,
i.e. H has a perfect matching. If H has a perfect matching,
then by suppressing those m − n/k attributes not in this
matching, each remaining attribute j has k vectors (with
*’s) that share exactly the same components (they have a
b1 exactly in component j, and b0 or ∗ elsewhere). This is a
k-anonymization.

4. APPROXIMATING K-ANONYMITY
We have seen that producing an optimal anonymization of

a database is difficult to achieve in general. We will now de-
scribe an approximation algorithm for k-anonymizing, which
runs in polynomial time and never suppresses more than
O(k log k) times the minimum number of entries that must
be suppressed in order to achieve k-anonymity. Considering
that it generally suffices in practice [9] for k to be a small
constant (around 5 or 6), this is a quite positive result. The
algorithm is a greedy strategy whose proof is somewhat in-
volved, requiring several steps. We begin with a definition.
Over the following sections, let Σ, V , and t be given.

Definition 4.1. Let S ⊆ Σm, and u, v ∈ Σm. The dis-
tance between u and v is d(u, v) := |{j : u[j] 6= v[j]}|. The

diameter of S is

d(S) := max
u,v∈S

d(u, v).

Intuitively, the diameter of S is the maximum number of
coordinates in which two vectors of S differ. It is useful to
note that this function is a metric.

Example. Let V = {1010, 1110, 0110} and t(b1b2b3b4) =
∗ ∗ b3b4 (each bi ∈ {0, 1}). Then there is one resulting 3-
group g = {∗ ∗ 10, ∗ ∗ 10, ∗ ∗ 10}, and the diameter of g is 2
(1010 and 0110 differ in two coordinates).

4.1 Minimum diameters and k-anonymity
In what follows, we will demonstrate a close relationship

(with respect to approximation) between an optimization
problem on set diameters and k-anonymity.

Let k1, k2 ∈ N with k1 ≤ k2. Define a (k1, k2)-cover of
V to be a collection {S1, . . . , Sl} of subsets of V such that
k1 ≤ |Si| ≤ k2 for i = 1, . . . l, and for every v ∈ V there is
an Si such that v ∈ Si. Define a (k1, k2)-partition of V to
be a (k1, k2)-cover where all the Si are disjoint.

Observe that any k-anonymizer t on V naturally defines
a (k, |V | − k) partition Π(t, V ), given by the different sets
of vectors made identical under t. Moreover, we may as-
sume without loss of generality that a k-anonymizer defines
a (k, 2k − 1) partition: if some set Si has cardinality 2k or
greater, then by splitting Si arbitrarily into two disjoint sets
S′

i and S′′
i (both of cardinality at least k), this new partition

requires no more ∗’s to k-anonymize it than the former one.
Let OPT (V ) be the value of an optimal solution (the min-

imum number of ∗’s that must be inserted in the vectors
of V to achieve a k-anonymization, over all k-anonymizers
t). For S ⊆ V , let ANON(S) be the total number of
coordinates of vectors in S that must be replaced with a
∗ in order for all vectors in S to be identical. Observe
OPT (V ) = minΠ

(
∑

S∈Π ANON(S)
)

, where the minimum
is taken over all partitions Π of V into sets whose cardinal-
ities are at least k. Finally, let Π∗ be an optimal partition
for k-anonymity, i.e.

∑

S∈Π∗ ANON(S) = OPT (V ).

Lemma 4.1. For all V ⊆ Σm,

k · min
Π

d(Π) ≤ k · d(Π∗) ≤ OPT (V ) ≤ 3k2 · d(Π∗),

where the minimum is taken over all partitions Π of V into
sets whose cardinalities are in the range [k, 2k − 1].

Proof. For any S ⊆ V , we have that |S|·d(S) ≤ ANON(S),
since by definition of diameter, at least d(S) coordinates in
each vector must be suppressed in order for all vectors of
S to become identical. Summing over all S ∈ Π∗, we have
∑

S∈Π∗ |S|d(S) ≤
∑

S∈Π∗ ANON(S), implying

k · min
Π

d(Π) ≤ k · d(Π∗) ≤ OPT (V ).

On the other hand, for some S ∈ Π∗, every pair {u, v} ⊆ S
has distance at most d(S) from each other. That is, we only
need to suppress d(S) coordinates in u and v to make them
identical. Suppressing at most d(S) coordinates (in every
vector of S) over all pairs of vectors in S, it follows that

ANON(S) ≤
(

|S|
2

)

d(S). Hence by summing over Π∗, and
using the fact that |S| ≤ 2k − 1 for all S ∈ Π∗,

OPT (V ) ≤

(

2k − 1

2

)

d(Π∗) < 3k2 · d(Π∗).



A natural optimization problem arises from the statement
of the lemma: finding a (k, 2k − 1)-partition Π of V such
that d(Π) is minimized. Let us name this the k-minimum
diameter sum problem. The close relationship between k-
anonymity and this problem can be articulated with a simple
corollary.

Corollary 4.1. Let α ≥ 1, and Π be a (k, 2k − 1)-
partition with diameter sum at most α times the optimal k-
minimum diameter sum. Then the algorithm that anonymizes
each S ∈ Π by (over all pairs {u, v} ⊆ S and all j such that
u[j] 6= v[j]) assigning w[j] := ∗ to every w ∈ S is a 3αk-
approximation algorithm to optimal k-anonymity.

Proof. Suppose Π̂ achieves the optimal k-minimum di-
ameter sum. From the proof of the previous lemma, the
total number of stars inserted into the vectors of V by the
described algorithm on Π is

α
∑

S∈Π̂

(

|S|

2

)

d(S) ≤ α

(

2k − 1

2

)

d(Π̂) ≤ α

(

2k − 1

2

)

d(Π∗)

≤ α

(

2k−1
2

)

k
OPT (V ) < 3αkOPT (V ).

Therefore, a 3k(1 + ln 2k) approximation to optimal k-
anonymity will follow if there is a (1+ ln 2k)-approximation
to the k-minimum diameter sum problem.1 We will now
discuss the construction of such an approximation.

4.2 Approximating k-minimum diameter sum
At a high level, the approximation algorithm for k-minimum

diameter sum runs in two phases:
Phase 1: Produce a (k, 2k− 1)-cover whose diameter sum

is at most (1+ln 2k) times the optimal k-minimum diameter
sum (for partitions).

Phase 2: Convert the cover into a (k, 2k − 1)-partition,
with no increase in the diameter sum.

4.2.1 Producing a cover
Let C denote the collection of all subsets of V with cardi-

nality in the range [k, 2k−1]. We will execute the well-known
greedy algorithm for approximating the usual set cover prob-
lem [6] on the collection C.

Cover(V ,C):
Build C as defined above.
Initially, Π := ∅, D = ∅.
While (D 6= V ),

For each S ∈ C, measure the ratio

r(S) =
d(S)

|S ∩ (V − D)|
.

Choose an S such that r(S) is minimum.
D := D ∪ S.
Π := Π ∪ {S}.

End while.
Return Π.

1Note ln x denotes the natural logarithm of x.
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Figure 1: S is the union of Si and Sj with non-empty

intersection. The diameter of S is bounded from above

by d(Si) + d(Sj), by the triangle inequality on diameters.

In each iteration, D contains the vectors in V that have
been covered so far by Π. Also, any chosen S always contains
an element of V − D, so the above takes at most O(|V |)
iterations. Therefore the algorithm returns a (k, 2k − 1)-
cover, i.e. the S are all of cardinality between k and 2k− 1,
and for all v ∈ V , there is an S ∈ Π that contains v.

Invoking the analysis of the greedy algorithm for set cover
on subsets of cardinality at most 2k, the collection Π is a
(1 + ln 2k)-approximation to the k-minimum diameter sum
problem, when Π is not restricted to be a (k, 2k−1)-partition
but merely a (k, 2k − 1)-cover of V . Clearly, the minimum
over this larger space is at most the minimum over (k, 2k−1)-
partitions.

4.2.2 Converting the cover into a partition
Of course, Π is not necessarily a (k, 2k−1)-partition of V ;

some sets of Π may have non-empty intersection with each
other. If so, apply the following reduction:

Reduce(Π):
1. Look for Si, Sj ∈ Π and v ∈ V such that v ∈ Si∩Sj .
2. If found, do one of the following:
• If either |Si| or |Sj | is greater than k, remove v from
the larger set. (Removing an element from a set can
only decrease its diameter.)
• Otherwise, |Si| = |Sj | = k. Replace Si and Sj in Π
with Si ∪ Sj . (Note |Si ∪ Sj | ≤ 2k − 1 since v is in
both, and d(Si∪Sj) ≤ d(Si)+d(Sj) so again d(Π) can
only decrease; cf. Figure 1.)
3. Return the new Π.

It is easy to see that repeating Reduce until it no longer
applies to Π will eventually produce a (k, 2k − 1)-partition
with diameter sum at most the original diameter sum (and
could be smaller). Furthermore, at most |V |2 repetitions
are required, since each application of the reduction removes
some v from some set in Π (by either removing v, or remov-
ing some Si that contains it). This completes the approxi-
mation algorithm.

4.2.3 Runtime analysis
The number of steps over the two phases is roughly O

(

(

|V |
2k−1

)

|V |
)

=

O(|V |2k). In the first phase, there are O(
(

|V |
2k−1

)

) sets in the

collection C, and we must choose at most |V | sets from C,

with each set choice requiring O(
(

|V |
2k−1

)

) time to determine.

In the second phase, the runtime is simply O(|V |3), so the
overall time is dominated by Phase 1.



4.2.4 Summary
The below summarizes the algorithm.

Approximation for optimal k-anonymity:
Let V ⊆ Σm.
1. Set Π := Cover(V, C). (Section 4.2.1).
2. Repeat Π := Reduce(Π) until Π = Reduce(Π)
(Section 4.2.2).
3. For each S ∈ Π, insert the minimum number of ∗’s
in vectors of S such that all vectors of S are identical.
Return Π.

Steps 1 and 2 produce an (1 + ln 2k)-approximation to k-
minimum diameter sum. Lemma 4.1 and Corollary 4.1 show
that Step 3 results in a 3k(1+ ln 2k)-approximation to opti-
mal k-anonymity. Let us record this fact before proceeding
further.

Theorem 4.1. k-ANONYMITY has a 3k(1+ln 2k)-approximation
that runs in O(|V |2k) time.

4.3 A strongly polynomial approximation
Due to Phase 1, the above algorithm suffers from a run-

time that is exponential in k. We will outline a modification
to Phase 1 which makes the algorithm “strongly polynomial”
(i.e. polynomial in n and k), but the approximation ratio
becomes O(k log m). We will restrict the greedy algorithm
to find a set cover over a much smaller family of subsets.
Define, for all c ∈ V and i ∈ {1, . . . , m}, the set

Sc,i := {v ∈ V : d(c, v) ≤ i}.

That is, Sc,i is defined by a fixed center c and radius i, so
there are m|V | possible sets. (Alternatively, we could define
for all c, c′ ∈ V , Sc,c′ := {v ∈ V : d(c, v) ≤ d(c, c′)}.
This would yield a total of |V |2 sets instead; we naturally
advise to substitute whichever collection is smaller in what
follows.) The following is straightforward, and follows from
the triangle inequality on d.

Lemma 4.2. d(Sc,i) ≤ 2i.

Let D denote the collection of these Sc,i with cardinality
at least k.

Say that S ⊆ V has a center c ∈ S if for all v ∈ S we
have d(c, v) ≤ ⌈d(S)/2⌉. Consider the optimal value D∗ for
the k-minimum diameter sum problem on a set of vectors
V . If we further insist that each group in a feasible solution
has a center, we claim that the value of an optimal solution
satisfying this restriction is at most 2D∗. To this end, we
prove a lemma for any V ⊆ Σm.

Lemma 4.3.

min
Π′

d(Π′) ≤ 2min
Π

d(Π),

where Π ranges over all (k, 2k−1)-covers of V , and Π′ ranges
over covers of V by sets from D.

Proof. Let Π̂ be a (k, 2k − 1)-cover such that d(Π̂) =

minΠ d(Π). For each set T ∈ Π̂, let cT ∈ T be arbitrarily

chosen. Define Ω := {ScT ,d(T ) : T ∈ Π̂}.
Observe that T ⊆ ScT ,d(T ); it follows that |Sc,d(T )| ≥ k,

Ω ⊆ D, and that Ω is a cover of V .
Finally, by the previous lemma we have
d(Ω) =

∑

T∈Π̂ d(ScT ,d(T )) ≤
∑

T∈Π̂ 2d(T ) = 2d(Π̂).

Now, the new Phase 1 will execute Cover on the (sig-
nificantly smaller) collection D of Sc,i over all c ∈ V and
i ∈ {1, . . . , m}. This modification runs in O(m · |V |2) time
(or, using the alternative formulation, O(|V |3) time), but
since the cardinality of the sets in D can be up to m, the
approximation ratio for diameter sum over this collection via
the greedy algorithm is (1+ln m). This implies a 2(1+ln m)-
approximation to k-minimum diameter sum when every set
in the partition has a center, and we arrive at a much more
favorable result.

Theorem 4.2. k-ANONYMITY has a 6k(1+ln m)-approximation
that runs in O(m|V |2 + |V |3) time.

We are confident that this time bound can be significantly
improved using appropriate data structures and a more so-
phisticated analysis, but this is beyond the scope of our
work. Essentially the most computationally intensive part
is computing the measures r(S) for each set S and taking
the minimum, which might be well-approximated by some
other method.

5. CONCLUSIONS
We have formally defined the problem of k-anonymizing a

database via suppressing tuple components, and determined
the computational complexity of k-anonymization when one
wishes to withhold a minimum number of entries yet achieve
a privacy level k. In general, the problem is NP -hard. How-
ever, our proof for the general case uses an alphabet Σ of
large size, so it is possible that the problem is still tractable
for small (constant-sized) alphabets. On the other hand, we
also analyzed the complexity of the problem variant where
instead of choosing individual entries to suppress, we choose
entire attributes to suppress, and found it to be NP -hard
even for Boolean attributes– this may suggest there is not
much hope in finding tractable subcases of the general prob-
lem.

Finally, we presented two efficient greedy approximation
algorithms for the problem. Can an approximation algo-
rithm be found whose performance ratio is independent of
k? We suspect that Ω(log k) might be a lower bound on the
possible approximability of the problem (within polynomial
time), given that such a lower bound exists for k-set cover.
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