
Some Estimated Likelihoods
For Computational Complexity

R. Ryan Williams

MIT CSAIL & EECS, Cambridge MA 02139, USA

Abstract. The editors of this LNCS volume asked me to speculate on
open problems: out of the prominent conjectures in computational com-
plexity, which of them might be true, and why?
I hope the reader is entertained.

1 Introduction

Computational complexity is considered to be a notoriously difficult subject.
To its practitioners, there is a clear sense of annoying difficulty in complexity.
Complexity theorists generally have many intuitions about what is “obviously”
true. Everywhere we look, for every new complexity class that turns up, there’s
another conjectured lower bound separation, another evidently intractable prob-
lem, another apparent hardness with which we must learn to cope. We are sur-
rounded by spectacular consequences of all these obviously true things, a sharp
coherent world-view with a wonderfully broad theory of hardness and cryptogra-
phy available to us, but — gosh, it’s so annoying! — we don’t have a clue about
how we might prove any of these obviously true things. But we try anyway.

Much of the present cluelessness can be blamed on well-known “barriers”
in complexity theory, such as relativization [BGS75], natural properties [RR97],
and algebrization [AW09]. Informally, these are collections of theorems which
demonstrate strongly how the popular and intuitive ways that many theorems
were proved in the past are fundamentally too weak to prove the lower bounds
of the future.

– Relativization and algebrization show that proof methods in complexity
theory which are “invariant” under certain high-level modifications to the
computational model (access to arbitrary oracles, or low-degree extensions
thereof) are not “fine-grained enough” to distinguish (even) pairs of classes
that seem to be obviously different, such as NEXP and BPP.

– Natural properties also show how the generality of many circuit complexity
lower bound proofs can limit their scope: if a method of proving circuit
complexity lower bounds applies equally well to proving lower bounds against
random functions, then it had better not be a highly constructive argument,
where one can feasibly discern the circuit complexity of a simple function.
Otherwise, our method for proving circuit lower bounds also proves an upper



bound, showing that pseudorandom functions cannot be implemented in the
circuit class.

In any case, these barriers show that many known proof methods have so much
slack in their arguments that, when it comes to questions like P versus NP,
the method will simply hang itself. To make further progress on complexity
class separations and prove these obviously-true theorems, we need to dig into
computation deeper, and find less superficial methods of argument which speak
about computation on a finer level.

I think it is highly probable that a decent level of cluelessness is due to simply
being wrong about some of these obviously true things. I’m certainly not the first
to proclaim such an opinion; Lipton and Regan’s blog and books [Lip10,LR13]
have spoken at length about how everyone was wrong about X for all sorts of
X, and other “contrarian” opinions about complexity can be found in Gasarch’s
polls on P vs NP [Gas02,Gas12]. The idea that complexity theorists can be
very wrong is certainly not in doubt.1 The fact that it happens at a non-trivial
frequency is enough that (I think) folks should periodically reconsider the con-
jectured complexity separations they have pondered over the years, and update
their thoughts on them as new information arises. Regardless of one’s opinions
about how wrong we may or may not be, I think it is an important exercise to
review the major problems in one’s field once a year, and seriously check if you
got any smarter about them over the previous year.

Moreover, I claim that complexity theorists are more often wrong about
their lower bound conjectures than their upper bound conjectures. (Two recent
occurrences are the non-rigidity of Hadamard/Sylvester matrices [AW17] which
had been conjectured for decades to be rigid, along with the construction of good
linear codes that are also not rigid [Dvi17].) This observation is quite probably
due to the extremely useful and natural (conservative) heuristic that:

If a bunch of smart people could not figure out how to do it, then it
probably cannot be done.

So, when no good upper bound (i.e., algorithm) is attained for a problem,
even after a bunch of smart people have thought about it, the inclination is to
conclude that the upper bound does not exist (i.e., a lower bound). Hence it
is natural that beliefs about lower bounds tend to be refuted more often than
those about upper bounds: we rarely assert that interesting upper bounds exist,
unless we already know how to attain them. (An interesting exception is that of
matrix multiplication over a field; researchers in that area tend to believe that
nearly-optimal running time is possible for the problem.) There seems to be an
additional belief in the justification of the above heuristic:

As the bunch of smart people who cannot find a good algorithm in-
creases over time, we get closer to a universal quantifier over all good
algorithms.

1 Just ask my students!



For example, our collective inability to find an efficient SAT algorithm, even
over decades of thought about the problem, even though all the other thousands
of NP-complete problems are really only SAT in disguise, suggests to many that
P 6= NP.

Unfortunately, I do not believe that the “bunch of smart people” living in
the present time covers this sort of quantifier well, and I am not sure how we will
raise the next generation of smart people to cover it more thoroughly (other than
teaching them to be skeptical, and providing them a vastly-thicker literature of
algorithms and complexity than what we had). For this reason, I am probably
less dogmatic than a “typical” complexity theorist regarding questions such as
P versus NP.

1.1 Some Estimated Likelihoods for Some Major Open Problems

I decided to present my perspective on some well-known open problems in com-
plexity theory with a table of my personal “estimated likelihood” values for each
one. Here is the table:

Proposition RW’s Estimated Likelihood

TRUE 100%

EXPNP 6= BPP 99%

NEXP 6⊂ P/poly 97%

L 6= NP 95%

NP 6⊂ SIZE(nk) 93%

BPP ⊆ SUBEXP 90%

P 6= PSPACE 90%

P 6= NP 80%

ETH 70%

NC1 6= TC0 50%

NEXP 6= EXP 45%

SETH 25%

NEXP 6= coNEXP 20%

NSETH 15%

L 6= RL 5%

FALSE 0%
Table 1. What you receive, when you ask for my opinions on some open problems in
complexity theory.

The numerical values of my “estimated likelihoods” are (obviously) nothing
too rigorous. What is more important is the relative measure between problems.
I did want the measures to be “consistent” in some simple senses. For example,
if we know that A implies B, then B should not be (much) less likely to be true
than A. I will give some explanations for my likelihoods in the next section.



There are many other open problems for which I could have put a likelihood,
but I wanted to focus on problems where I thought I had something interesting
to say along with my measure of likelihood. I deliberately refrained from putting
a measure on conjectures which I do not feel that I am very knowledgeable on the
state-of-the-art, such as the famous Unique Games Conjecture of Khot [Kho02].
For the record, the present state of knowledge suggests to me that Unique Games
(as usually stated) is probably intractable, but perhaps not NP-hard. But what
do I know? A very recent line of work [KMS17,KMS18] claims to settle the 2-to-2
conjecture, a close relative of Unique Games.

2 Thoughts on Various Separations

I will discuss the separations mentioned in Table 1.1, starting with those that I
think are most likely to be true.

2.1 EXP with an NP oracle versus BPP

Recall that BPP is the class of problems solvable in randomized polynomial
time (with two-sided error), and EXPNP is the class of problems solvable in
(deterministic) exponential time with access to an oracle for the SAT problem
(note that exponentially-long SAT instances can be solved in one step with such
a model). I put 99% on the likelihood of EXPNP 6= BPP, for several reasons.
One reason is that everything we know indicates that randomized computation
is far, far weaker than deterministic exponential time, and exponential time
with an NP oracle should be only more powerful. Another reason is that the
open problem becomes trivially closed (separating the two classes) if one makes
various small changes in the problem statement. Change the “two-sided error”
to “one-sided error” (the class RP) and it is easy to separate them. Change the
EXP to ZPEXP (randomized exponential time with “zero-error”) and it is again
easy to separate them. For a third reason, EXPNP 6= BPP is implied by very weak
circuit lower bounds (such as NEXP 6⊂ P/poly) that I am also very confident are
true (they will be discussed later).

It appears to me that EXPNP 6= BPP is primarily still open because there
are oracles making them equal [Hel86], so one will need to use the right sort of
non-relativizing argument to get the job done. I do not view the existence of
oracles as a significant barrier, but rather a caution sign that we will need to
dig into the guts of Turing machines (or equivalent formalizations) in order to
separate the classes. Some potential approaches to (weak) lower bounds against
BPP are outlined in an earlier article of mine [Wil13b].

2.2 NEXP vs P/poly

Recall that NEXP is the class of problems solvable in nondeterministic exponen-
tial time: a huge complexity class. The class P/poly is a special kind of class: it



consists of those problems over {0, 1}? which can be solved by an infinite family
of polynomial-size circuits {Cn}. Intuitively, this is a computational model with
an infinitely-long description (a so-called non-uniform model), but for any par-
ticular input length n, the description of the computer solving the problem on all
inputs of length n (and the running time of this computer) is a fixed polynomial
of n. I put 97% likelihood on NEXP 6⊂ P/poly. Note that this lower bound would
imply EXPNP 6= BPP.

I can think of two major reasons why this separation is almost certainly true.

2.2.1 Why Would Non-Uniformity Help Here? I can see no reason why
the non-uniform circuit model should let us significantly speed-up the solution
to every NEXP problem (or to every EXP problem, for that matter). Having a
distinct algorithm for each input length does not intuitively seem to be very
helpful: how could it be that every input length n allows for some special hyper-
optimization on that particular n, yielding an exponentially faster solution to
an NEXP problem? And how could this happen to be true for every individual
length n? In this light, it feels remarkable to me that this separation problem is
still open at all.

Note that there are still oracles relative to which NEXP is contained in P/poly,
even in the algebrization sense [AW09]. It is known that there are undecidable
problems in P/poly, but this is because we can concoct undecidable problems
out of unary (or more generally, sparse) languages.

I am willing to entertain the possibility that there are infinitely many input
lengths for which NEXP problems are easy: perhaps NEXP is contained infinitely
often in P/poly. For example, the “good” input lengths could have the form
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, or something more bizarre. This would be an amazing result, but because
we only require infinitely many input lengths to work, perhaps some hyper-
optimization of certain strange input lengths is possible in this setting. There
are oracles relative to which NEXP is contained infinitely often in NP [For15],
which shows that infinitely-often simulations can be very tricky to rule out. Still,
this also seems unlikely.

2.2.2 Extremely Weak Derandomization If the first reason was not already
enough, the second reason for believing NEXP 6⊂ P/poly is that extremely weak
derandomization results would already imply the result. More precisely, it is
generally believed that P = BPP. A productive way to think about P = BPP is
to study a particular approximation problem, often called CAPP:

Circuit Approximation Probability Problem (CAPP)
Input: A Boolean circuit C with n inputs
Output: The quantity Prx∈{0,1}n [C(x) = 1], to within ± 1/10.



(Note the choice of 1/10 is arbitrary, and could be any constant in (0, 1/2).)
It is known that a deterministic polynomial time algorithm for CAPP would
imply P = BPP. From the work of Impagliazzo and Wigderson [IW97] on pseu-
dorandom generators, such an algorithm follows from assuming that TIME[2O(n)]
does not (infinitely often) have 2δn-size circuits, for some δ > 0. It was shown by
Impagliazzo, Kabanets, and Wigderson [IKW02] that a deterministic 2n

ε

-time
algorithm for CAPP, for every ε > 0 would already imply NEXP 6⊂ P/poly.2

So, sub-exponential time deterministic algorithms for CAPP imply the NEXP
circuit lower bound.

But in fact something even stronger can be said. For a circuit C with n
inputs and size s, the brute-force algorithm for deciding CAPP takes no more
than 2n · poly(s) time. I showed [Wil10] that deciding CAPP in deterministic
time

O(2n · poly(s)/α(n)),

for any super-polynomial function α(n), would already imply NEXP 6⊂ P/poly.
That is, any significant improvement over exhaustive search for CAPP would
imply the lower bound we seek.3 I strongly believe that such an algorithm ex-
ists, but it may be tough to find. Several circuit lower bounds against NEXP
have indeed been proved by giving non-trivial SAT algorithms for various cir-
cuit classes [Wil11,Wil14,Tam16,ACW16,COS17].

2.3 LOGSPACE vs NP

I also believe that L 6= NP is extremely likely: that (for example) the Vertex
Cover problem on m-edge graphs cannot be solved by any algorithm that uses
only mk time (for some constant k) and O(logm) additional space (beyond the
O(m log(n)) bits of input that lists the edges of the graph). This is far from a
controversial position; O(logm) space is not enough to even store a subset of
nodes from the graph (a candidate vertex cover), and it is widely believed that
this tiny space requirement is a severe restriction on computational power. In
particular it is also widely believed that L 6= P (which I would put less likelihood
on, but not much less).

I mainly want to highlight L 6= NP because (unlike the situation of P 6= NP,
which is murkier) I believe that substantial progress has already been made
on the problem. Significant combinatorial approaches to space lower bounds
(such as [BJS98,Ajt99,BSSV00,BV02]) have yielded model-independent super-
linear time lower bounds on decision problems in P, when the space usage is
n1−ε or less. (In fact, these results hold in a non-uniform version of time-space

2 In fact, a “nondeterministic” algorithm for CAPP of this form would be enough. I
will refrain here from defining what such an algorithm means, and refer the reader
to the paper [IKW02].

3 Again, a “nondeterministic” CAPP algorithm with this property would already be
enough.



bounded computation.) Approaches based on diagonalization/simulation meth-
ods, aimed at proving lower bounds on NP-hard decision problems such as SAT,
include [For00,FLvMV05,Wil08a,Wil13a,BW12] and show that problems such
as SAT, Vertex Cover, and Independent Set require n2 cos(π/7) time to be solved
when the space usage of the algorithm is no(1). Unfortunately, 2 cos(π/7) < 1.81,
and in fact the last reference above shows that current techniques cannot im-
prove this curious exponent. So in a quantitative sense, we have a long way to
go before L 6= NP.

After studying these methods for years now, I am more-or-less convinced of
L 6= NP and that it will be proved, possibly long before P vs NP is resolved.
In fact I believe that only a few new ideas will be required to yield enough
“bootstrapping” to separate L and NP. The catch is that I am afraid the missing
ideas will need to be extraordinarily clever, unlike anything seen before (at least
a Gödel-incompleteness-level of cleverness, relative to the age in which he proved
those famous theorems). In the meantime, we do what we can.

2.4 NP Does Not Have Fixed Polynomial-Size Circuits

Recall that SIZE(nk) is the class of problems solvable with Boolean circuits (of
fan-in two) with O(nk) gates. Here we are investigating the likelihood of the
proposition

∀k ∈ N,NP 6⊂ SIZE(nk).

That is, for every k, there is some problem in NP that doesn’t have O(nk)-size
circuits.

First, I put a bit less likelihood (93%) on NP 6⊂ SIZE(nk) for some constant
k, because it implies NEXP 6⊂ P/poly (and they don’t seem to be equivalent),
so it is stronger than the other circuit lower bound problems that have been
mentioned so far.

There is a considerable history of results in this direction. Kannan [Kan82]
proved “fixed polynomial” circuit lower bounds for the class NPNP (a.k.a. Σ2P):
for every constant k ≥ 1, there is a problem in NPNP that does not have nk

size Boolean circuits (over any gate basis that you like). Over time, his fixed-
polynomial lower bound has been improved several times, from NPNP to seem-
ingly smaller complexity classes such as ZPPNP [KW98]. It is known that MA/1
(Merlin-Arthur with one bit of advice) is not in SIZE(nk) for each k [San07], and
due to our beliefs about circuit lower bounds [IW97] it is believed that MA = NP
(i.e., it is believed that randomness doesn’t help much with non-interactive ver-
ification of proofs). This looks like strong evidence in favor of NP 6⊂ SIZE(nk),
besides the intuition that NP problems that require n100000k nondeterministic
time probably can’t be “compressed” to nk-size circuits.

The problems of proving that classes such as P, NP, and PNP have fixed
polynomial-size circuits are discussed in [Lip94,FSW09,GM15,Din15], and many
absurd-looking consequences have been derived from propositions such as NP ⊂
SIZE(nk) (of course, none of these have been proved to be actually contradictory).



Here’s an example from [FSW09]. PNP ⊂ SIZE(nk) implies that for every
NP verifier V , and every yes-instance x for the verifier V , there is a witness yx
that is extremely compressible: it can be represented by a circuit of only O(|x|k)
size. To see this, note that the problem

Given an x and an integer i, print the ith bit of the lexicographically first
y such that V (x, y) accepts (or print 0 if no such y exists)

is in PNP, and therefore has O(nk)-size circuits under the hypothesis. Thus
the witnesses printed by these circuits have low circuit complexity, for every x.

2.5 BPP is in Sub-Exponential Time

Recall SUBEXP = ∩k∈NTIME(2n
1/k

), i.e., it is the class of problems solvable in
O(2n

ε

) time, for any ε > 0 as close to zero as you like.

The main reason for putting a high likelihood on BPP ⊆ SUBEXP is that
it is implied by EXP 6⊂ io-P/poly [NW94,BFNW93], which I also believe to be
true, although perhaps not quite as strongly as NEXP 6⊂ P/poly. (The “io” part
stands for “infinitely often” and it means that there is a function EXP which, for
almost every input length n, fails to have circuits of size poly(n).) The intuition
for why EXP 6⊂ io-P/poly is similar to the intuition for why NEXP 6⊂ P/poly.

As a starting point, one can easily prove results like EXP 6⊂ io-TIME[2n
k

] for
every constant k, by diagonalization. It would be very surprising, even magical,

if one could take a problem that cannot be solved infinitely-often in 2n
k

time and
solve it infinitely-often in polynomial time, simply because one got a separate
algorithm and received polynomially-long extra advice for each input length.
Intuitively, to solve the hardest problems in EXP, the only advice that could
truly help you solve the problem quickly (on all inputs of length n) would be the
entire 2n-bit truth table for length n, and for such problems it is not clear why
some input lengths would ever be easier than others. (Aside: it is interesting to
note that P = NP implies circuit lower bounds such as EXP 6⊂ io-P/poly.)

For what it’s worth, I would put about 87% likelihood on P = BPP: a bit
lower than the 90% BPP in sub-exponential time (for good reason), but not
significantly less. These two likelihoods aren’t substantially different for me,
because I tend to believe that non-trivial derandomizations of BPP are likely
to imply much more efficient derandomizations, along the lines of Theorems 1.4
and 1.5 in [Wil10].

2.6 P vs PSPACE

I have put a little less likelihood (90%) on P 6= PSPACE than the previous lower
bounds mentioned such as L 6= NP. I feel that less intellectual progress has been
made on separating P from PSPACE, and so the extent to which we should believe



P 6= PSPACE is less understood. For example, we don’t know an n1.0001 time
lower bound against any PSPACE-hard problem solvable in linear space, such
as quantified Boolean formula satisfiability (but we do know a few non-trivial-
but-not-so-great lower bounds [HPV77,Wil08b,LW13]). The reminder that such
a time lower bound is still open should signal a call-to-arms for complexity
theorists:

If PSPACE is so large, why can’t we prove an n1.0001 time lower bound
against solving QBF? What are the obstacles? Can we articulate some
interesting tools that would suffice to prove the lower bound, if we had
them?

Nevertheless, P = PSPACE does look extremely unlikely : the idea that PSPACE
corresponds to computing winning strategies in two-player games makes it clear
that our world would be extremely weird and wonderful if P = PSPACE and we
discovered a fast algorithm for solving quantified Boolean formulas.

2.7 P vs NP

I do not have much to say about P versus NP beyond what has already been
said, over many decades, by many researchers (a notable example is Aaronson’s
astounding recent survey [Aar16]). But I do only give 80% likelihood of P 6= NP
being true. Why only 80%? Because the more I think about P versus NP, the less
I understand about it, so why should I be so confident in its answer? Because
ETH is less likely to be true than P 6= NP, and I feel like the truth of ETH is not
so far from a coin toss. Because it is not hard, when you squint, to view incredible
achievements like the PCP theorem [AS98,ALM+98] as progress towards P = NP
(one only has to satisfy 7/8+ε of the clauses in a MAX-3-SAT instance! [H̊as01])
instead of hardness for approximately solving NP problems.

Yes, intuitively and obviously P 6= NP — but only intuitively and obviously.
(Incidentally, I put about the same likelihood on the existence of one-way func-
tions; I tend to believe in strong worst-case to average-case reductions.)

2.8 ETH: The Exponential Time Hypothesis

Recall that ETH asserts that

3SAT on n variables cannot be solved in 2εn time, for some ε > 0.

I put only 70% likelihood on ETH. My chief reason (which will also appear later
when I discuss NEXP and EXP) is that we simply do not yet have a somewhat-
comprehensive understanding of what can be solved via sub-exponential time
algorithms. That is not for a lack of trying: it is a very active subject (see
for example [FK10]). Our understanding of polynomial-time algorithms is fairly



deep, but even there we have very few lower bounds: we know a lot less about
what cannot be done.

Although I give it only 70% likelihood, I do not think it is necessarily pre-
sumptuous to base a research program on ETH being true, but I do think re-
searchers should be a little more skeptical of ETH, and periodically think seri-
ously about how it might be refuted. (As Russell Impagliazzo often reminds me:
“It’s not a Conjecture, it’s a Hypothesis! We chose that word for a reason.”)
More points along these lines will be given when SETH (the Stronger ETH) is
discussed.

2.9 NC1 versus TC0

Recall that NC1 (“Nick’s Class 1”) is the class of problems solvable with O(log n)-
depth circuits of polynomial size and constant fan-in for each gate. The class TC0

contains problems solvable with O(1)-depth fan-in circuits of polynomial size
with unbounded fan-in MAJORITY gates along with inverters. (The T stands
for “Threshold” — without loss of generality, the gates could be arbitrary linear
threshold functions.) It is well-known that TC0 ⊆ NC1, and NC1 6= TC0 is
sometimes used as a working hypothesis.

Upon reflection, I have possibly put significantly less weight on NC1 6= TC0

(only 50% likelihood) than one might expect. (I know of at least one complexity
theorist who has worked for years to prove that NC1 = TC0. No, it’s not me.)
One not-terribly-serious reason for doubting NC1 6= TC0 is that TC0 is (as far
as we know) the class of circuits most closely resembling the human brain, and
we are all familiar with how unexpectedly powerful that sort of computational
device can be.

A more serious reason for doubting NC1 6= TC0 is that NC1 has proven to be
surprisingly easier than expected, and TC0 has been surprisingly powerful (in
a formal sense). Barrington’s amazing theorem [Bar89] shows that NC1 corre-
sponds to only “O(1)-space computation” in a computational model that has
random access to the input. One corollary is that the word problem over the
group S5 (given a sequence of group elements, is its product the identity?) is
already NC1-complete: solving it in TC0 would prove NC1 = TC0.

The circuit complexity literature shows that many problems known to be
in NC1 were systematically placed later in TC0; a nice example is integer divi-
sion [BCH86,RT92] but many other interesting numerical and algebraic tasks
also turn out to be in TC0 (such as the pseudorandom function constructions of
Naor and Reingold [NR04]). For many different types of groups (but not S5, as
far as we know) their word problems are known to be in TC0 (see [MVW17] for
very recent work, with references). In fact, every natural problem that I know in
NC1 is either already NC1-complete under TC0 reductions, or is already in TC0

(there are no good candidate problems which are neither). So perhaps we are
one smart threshold circuit away from making the two classes equal.



An argument leaning towards NC1 6= TC0 may be found in Allender and
Koucky [AK10] who show that if NC1 = TC0, then there are n1+ε-size O(1/ε)-
depth TC0 circuits for certain NC1-complete problems, for every ε > 0. Another
point is that, if NC1 = TC0, then (by a padding argument) the class PSPACE lies
in the so-called “polynomial-time counting hierarchy” which intuitively seems
smaller. Maybe multiple layers of oracle calls to counting solutions are powerful,
and such circuits exist? To me, it’s a coin flip.

2.10 EXP vs NEXP

Many may wonder why I put only 45% likelihood on EXP 6= NEXP. (I suspect
the others will, instead of wondering, just assume that I’m out of my mind.)
Well, for one, we do have that EXP 6= NEXP implies P 6= NP, and the other
direction (at least from a provability standpoint) does not seem to hold, so it is
natural to consider EXP 6= NEXP to be not as likely as P 6= NP.

To make the percentage dip below 50%, there are other reasons. For one, if
we think we’re ignorant about what is impossible in P, then we are total idiots
about what is impossible in EXP. The scope of what can be done in exponen-
tial time has been barely scratched, I believe, and many improved exponential
time algorithms in the literature are mainly applications of known polynomial-
time strategies to exponential-sized instances. That is, we generally don’t know
how to construct algorithms that take advantage of the additional structure
provided by succinctly-represented inputs — which are the defining feature of
many NEXP-complete problems [PY86,GW83]) — and I am inclined to believe
that non-trivial algorithms for solving problems on succinct inputs should exist.
Arora, Steurer, and Wigderson [ASW09] study exponentially-large graphs whose
edge relations are defined by small weak circuits such as AC0, and give several
interesting algorithms for solving problems on such graphs. They also show how
the usual NP-complete problems cannot be solved on graphs defined by AC0

circuits unless NEXP = EXP.

Let me give a concrete example of the knife edge that NEXP versus EXP sits
upon. Let f : {0, 1}2n → {0, 1} be a Boolean function, and define the graph of f
to be the 2n-node graph with vertex set {0, 1}n and edge set {(u, v) | f(uv) = 1}.
Define the Max-Clique-CNF problem to be:

Given a CNF F on 2n variables and m clauses, and an integer k ∈ [2n],
is there a clique in the graph of F of size at least k?

One can define the Max-Clique-DNF problem in an analogous way. In unpublished
work, Josh Alman and I noticed that Max-Clique-CNF is solvable in 2O(m+n) time,
but Max-Clique-DNF is already NEXP-complete, even for constant-width DNFs
of n variables and poly(n) terms! Das, Scharpfenecker, and Torán [DST17] make
similar observations for the CNF and DNF versions of other NP-hard problems.

I would be very surprised if the hardest cases of the Max-Clique problem (or
even the somewhat-hardest cases) can be generated by tiny DNF formulas of



constant width. I predict that problems solvable in 2O(n) nondeterministic time

can be solved faster than the naive 22
O(n)

deterministic running time; perhaps

even in 2O(nk) time for some large constant k.

2.11 SETH: The Strong Exponential Time Hypothesis

Recall that SETH asserts that

For all δ < 1, there is k such that k-SAT on n variables is not in 2δn time.

So SETH says there is no universal δ < 1 and algorithm solving constant-width
CNF SAT instances in 2δn time. I am generally considered to be a skeptic of
SETH (due to work such as [Wil16]), but I am not completely convinced that
SETH is false: I put 25% likelihood.

The main reason for skepticism is that the area of exponential-time algo-
rithms has produced many results where the naive running time of cn for an
NP-complete problem was reduced to O((c− δ)n) for some δ > 0 (see the text-
book of Fomin and Kratsch for examples [FK10]). I do not see a good reason for
believing that k-SAT is immune to such improvements. But people have tried
hard to solve the problem, especially over the last 10 years, so there is some rea-
son to believe SETH. Personally, I have benefited from believing it is false: trying
to solve SAT faster has led me down several fruit-bearing paths that I would
have never explored otherwise. I believe that contentious conjectures/hypotheses
like SETH need to exist, to keep a research area vibrant and active.

I should stress that a large chunk of recent work of the form SETH implies
X (such as [AVW14,BI15,ABV15,Bri14,BM16,BI16]) does not actually require
SETH to be true. In fact, their hardness rests on the following basic Orthogonal
Vectors (or Disjoint Sets) problem.

Orthogonal Vectors: Given n Boolean vectors in c log(n) dimensions (for
some constant parameter c), are there two which are orthogonal?

The Orthogonal Vectors Conjecture (OVC) is that for every ε > 0, there is a
(potentially large) c ≥ 1 such that no algorithm solves Orthogonal Vectors in
n2−ε time. It is known that SETH implies OVC [Wil04,WY14], and many SETH-
hardness results are actually OVC-hard. It looks very plausible to me that OVC
is true but SETH is false.

It is useful to think of the Orthogonal Vectors problem as an interesting
detection version of rectangular matrix multiplication: given a “skinny” Boolean
matrix A, does A · AT contain a zero entry? Note that detecting if there is a
non-zero can be done in randomized linear time, by Freivalds’ checker for matrix
multiplication [Fre77]. So the OVC asks whether matrix multiplication checking
in the Boolean domain can be extended to checking for a zero entry, without
(essentially) multiplying the two matrices.



2.12 NEXP vs coNEXP

According to Table 1.1, I am putting 80% likelihood on NEXP = coNEXP. Why
would a self-respecting complexity theorist do that? Here are a few reasons:

1. It is true with small advice. First, it is known that coNEXP is already
contained in NEXP with O(n) bits of advice, as reported by Buhrman, Fort-
now, and Santhanam [BFS09]. Given a language L ∈ coNEXP, for inputs
of length n, the advice encodes the number of strings of length n which
are in L. Then in nondeterministic exponential time, one can guess the in-
puts that are not in L, guess witnesses for each of them, and verify all
of this information. Thus in order to put coNEXP in NEXP without ad-
vice, it would suffice to be able to count (in NEXP) the number of accepted
strings of length n for an NEXP machine. Note how the power of exponen-
tial time is being used: coNP ⊂ NP/poly seems very unlikely in comparison.
This proof looks to be inspired by the inductive counting technique in the
proof of NSPACE[S(n)] = coNSPACE[S(n)], due to Immerman [Imm88] and
Szelepcsényi [Sze88].

2. The Spectrum Problem. A stronger result than NEXP = coNEXP would
be implied by an expected resolution of the spectrum problem. In finite model
theory, the spectrum of a first-order sentence φ is the set of all finite car-
dinalities of models of φ. For example, if φ is a sentence that defines the
axioms of a field, then its spectrum is the set of all prime powers. In the
1950s, Asser (see [DJMM12] for a comprehensive survey) asked whether the
complement of a spectrum is always a spectrum itself: i.e.,

The Spectrum Problem: Given a first-order sentence φ, is there an-
other sentence ψ whose spectrum is the complement of φ’s spectrum?

This question has a long rich history, and some working in finite model the-
ory believe the answer to be yes. Jones and Selman [JS74] showed that
the spectrum problem has a yes answer if and only if NTIME[2O(n)] =
coNTIME[2O(n)], since in fact the class of all spectra (where the numbers
are encoded in some finite alphabet) equals NTIME[2O(n)]. There are several
interesting conjectures regarding spectra, any of which would imply a yes-
answer [Ash94,CM06], and the conclusion would be stronger than proving

NEXP = coNEXP. (For instance, one could have nondeterministic 2O(n9)-
time algorithms for deciding the complements of nondeterministic O(2n)-
time problems, and this would still imply NEXP = coNEXP, but not neces-
sarily the spectrum conjecture.)

3. Max-Clique-DNF. From the section on EXP vs NEXP (Section 2.10), the
following would imply NEXP = coNEXP: Given a DNF formula F of constant
width, 2n variables, and poly(n) terms, there is a nondeterministic algorithm
running in 2poly(n) time which accepts F if and only if the graph of F does not
have a clique of a certain desired size. (Recall we said that the corresponding
problem for CNF is solvable exactly in 2poly(n) time.)



4. Why not? I don’t know of any truly counter-intuitive consequences of
NEXP = coNEXP. Because one can enumerate over all inputs of length n
in exponential time, and in nondeterministic exponential time one can even
guess witnesses of exponential length for each input of length n, I think
these classes will behave differently than our intuition about lower complex-
ity classes.

2.13 NSETH: Nondeterministic SETH

The NSETH, introduced by Carmosino et al. [CGI+16] recently, states:

For all δ < 1, there is a k such that k-UNSAT on n variables is not in
nondeterministic in 2δn time.

So NSETH proposes that there is no proof system which can refute unsatisfiable
ω(1)-width CNFs in 2δn steps, for any δ < 1.

I put 15% likelihood on NSETH being true. The most obvious reason for
skepticism is that the mild extension to Merlin-Arthur proof systems is very
false: Formula-UNSAT for 2o(n)-size formulas can be proved with a probabilistic
verifier in only 2n/2+o(n) time [Wil16].

Since it is generally believed that MA = NP, one might think the story is
essentially over, and that I should have a much lower likelihood for NSETH. That
is not quite the case: while MA may well equal NP, it is not clear how a 2n/2-
time MA algorithm could be simulated in 1.999n nondeterministic time. It’s not
even clear that the (one-round) Arthur-Merlin version of SETH is false, because
the inclusion of MA in AM takes quadratic overhead. Refuting the one-round
Arthur-Merlin SETH (where Arthur tosses coins, then Merlin sends a message
based on the coins, then an accept/reject decision is made, and we want Merlin
to prove that a given formula is UNSAT in 1.999n time) would probably imply
that a non-uniform variant of NSETH is false.

2.14 L vs RL

I put 95% likelihood on L = RL, that is, the problems solvable in random-
ized logarithmic space equals the problems solvable in (deterministic) logspace.
At this moment in time, it feels like this problem has “almost” been solved.
Intuitively, there are two factors in favor of L = RL: (1) we already believe
that randomness generally does not help solve problems much more efficiently
than deterministic algorithms, and (2) space-bounded computation appears to
be fairly robust under modifications to the acceptance conditions of the model
(think of NL ⊆ SPACE[log2 n] [Sav70] and NL = coNL [Imm88,Sze88]).

As far as I know, the main problem that was thought to be a potential
separator of RL and L was undirected s-t connectivity [AKL+79]. However this



problem was shown to be in L by a remarkable algorithm of Reingold [Rei08]. In
follow-up work, Reingold, Trevisan, and Vadhan [RTV06] showed how to solve s-t
connectivity in Eulerian directed graphs in L, and show that a logspace algorithm
for a seemingly slight generalization of their problem would imply L = RL. My
personal interpretation of these results is that L = RL is true, and is only one
really good idea away from being resolved.

Acknowledgment. I appreciate Gerhard Woeginger’s considerable patience with
me during the writing of this article, and Scott Aaronson, Josh Alman, Boaz
Barak, Greg Bodwin, Sam Buss, Lance Fortnow, Richard Lipton, Kenneth Re-
gan, Omer Reingold, Gregory Rosenthal, Rahul Santhanam, and Madhu Sudan
for helpful comments on a draft, some of which led me to adjust my likelihoods
by a few percentage points.

References

Aar16. Scott Aaronson. P ?= NP. In Open Problems in Mathematics, pages
1–122. Springer International Publishing, 2016.

ABV15. Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. Tight
hardness results for LCS and other sequence similarity measures. In FOCS,
pages 59–78, 2015.

ACW16. Josh Alman, Timothy M. Chan, and R. Ryan Williams. Polynomial repre-
sentations of threshold functions and algorithmic applications. In FOCS,
pages 467–476, 2016.

Ajt99. Miklós Ajtai. A non-linear time lower bound for Boolean branching pro-
grams. Theory of Computing, 1(1):149–176, 2005. Preliminary version in
FOCS’99.

AK10. Eric Allender and Michal Koucký. Amplifying lower bounds by means of
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