Matrix-Vector Multiplication in Sub-Quadratic Time
(Some Preprocessing Required)

Ryan Williams

Carnegie Mellon University

0-0

Introduction

Matrix-Vector Multiplication: Fundamental Operation in Scientific Computing

Introduction

Matrix-Vector Multiplication: Fundamental Operation in Scientific Computing

How fast can n X n matrix-vector multiplication be?

l-a

Introduction

Matrix-Vector Multiplication: Fundamental Operation in Scientific Computing

How fast can n X n matrix-vector multiplication be?

©(n?) steps just to read the matrix!

1-b

Introduction

Matrix-Vector Multiplication: Fundamental Operation in Scientific Computing

How fast can n X n matrix-vector multiplication be?
©(n?) steps just to read the matrix!

Main Result: If we allow O(n2+8) preprocessing, then matrix-vector

multiplication over any finite semiring can be done in O(n?/(elogn)?).

1-c

Better Algorithms for Matrix Multiplication

Three of the major developments:

Better Algorithms for Matrix Multiplication

Three of the major developments:

e Arlazarov et al., a.k.a. “Four Russians” (1960's): O(n”/log n) operations
Uses table lookups

Good for hardware with short vector operations as primitives

2-a

Better Algorithms for Matrix Multiplication

Three of the major developments:

e Arlazarov et al., a.k.a. “Four Russians” (1960's): O(n”/log n) operations
Uses table lookups

Good for hardware with short vector operations as primitives

el 2.81 -
e Strassen (1969): n=2 = O(n>°") operations

Asymptotically fast, but overhead in the big-O

Experiments in practice are inconclusive about Strassen vs. Four

Russians for Boolean matrix multiplication (Bard, 2006)

2-b

Better Algorithms for Matrix Multiplication

Three of the major developments:

e Arlazarov et al., a.k.a. “Four Russians” (1960's): O(n”/log n) operations
Uses table lookups

Good for hardware with short vector operations as primitives

el 2.81 -
e Strassen (1969): n=2 = O(n>°") operations

Asymptotically fast, but overhead in the big-O

Experiments in practice are inconclusive about Strassen vs. Four

Russians for Boolean matrix multiplication (Bard, 2006)

e Coppersmith and Winograd (1990): O (n**"%) operations

Not yet practical

2-C

Focus: Combinatorial Matrix Multiplication Algorithms

Focus: Combinatorial Matrix Multiplication Algorithms

e Also called non-algebraic; let's call them non-subtractive

E.g. Four-Russians is combinatorial, Strassen isn’t

3-a

Focus: Combinatorial Matrix Multiplication Algorithms

e Also called non-algebraic; let’s call them non-subtractive

E.g. Four-Russians is combinatorial, Strassen isn’t
More Non-Subtractive Boolean Matrix Mult. Algorithms:
e Atkinson and Santoro: O(n?/log®? n) on a (log n)-word RAM
e Rytter and Basch-Khanna-Motwani: O(n?/log® n) on a RAM

e Chan: Four Russians can be implemented on O(n?/log” n) on a pointer

machine

3-b

Main Result

The O(n?/ log® n) matrix multiplication algorithm can be “de-amortized”

Main Result

The O(n3/ log® n) matrix multiplication algorithm can be “de-amortized”

More precisely, we can:
Preprocess an n. X m matrix A over a finite semiring in O (n**°)

Such that vector multiplications with A can be done in O(n?/(glogn)?)

4-a

Main Result

The O(n3/ log® n) matrix multiplication algorithm can be “de-amortized”

More precisely, we can:
Preprocess an i X m matrix A over a finite semiring in O(n?*"¢)

Such that vector multiplications with A can be done in O(n?/(glogn)?)

Allows for “non-subtractive” matrix multiplication to be done on-line

4-b

Main Result

The O(n3/ log® n) matrix multiplication algorithm can be “de-amortized”

More precisely, we can:
Preprocess an i X m matrix A over a finite semiring in O(n?*"¢)

Such that vector multiplications with A can be done in O(n?/(glogn)?)

Allows for “non-subtractive” matrix multiplication to be done on-line

Can be implemented on a pointer machine

4-c

Main Result

The O(n3/ log® n) matrix multiplication algorithm can be “de-amortized”

More precisely, we can:
Preprocess an i X m matrix A over a finite semiring in O(n?*"¢)

Such that vector multiplications with A can be done in O(n?/(glogn)?)

Allows for “non-subtractive” matrix multiplication to be done on-line
Can be implemented on a pointer machine

This Talk: The Boolean case

4-d

Preprocessing Phase: The Boolean Case

Partition the input matrix A into blocks of [logn| x [elogn| size:

Al,l A1,2 e Al n
relogn
elogn
A Ao T :
elogn Az',j
AEIOTLgTL’l Asl:gn’slc?gn

Preprocessing Phase: The Boolean Case
Build a graph G with parts P, ..., P, /c1ogn)s @15 - - s @n/(clogn)

P]_ 2€logn 2€logn Q]_

Each part has 2°ls”
vertices, one for each
possible € logn vector

®
®
o
o
P2 = logn
®
o
o
®

o
o
o
o
26logn QQ
o
®
o
®

P n 25logn 25logn Q n
elogn e logn

Preprocessing Phase: The Boolean Case

Edges of (G: Each vertex v in each P; has exactly one edge into each ()

. logn logn .
PZ e log e log Q]

Aj,z'v

®
T
®

Preprocessing Phase: The Boolean Case

Edges of (G: Each vertex v in each P; has exactly one edge into each ()

. logn logn .
PZ ¢ log ¢ log Q]

Aj,z'v

®
i
®

Time to build the graph:

elc?gn ' elc?gn . 2€logn ' <€ log n)Q — O(n2+8)

I |

number number number matrix-vector mult
of Q; of P; of nodes of 4;; and v
in P@

7-a

How to Do Fast Vector Multiplications

Let v be a column vector. Want: A - .

How to Do Fast Vector Multiplications

Let v be a column vector. Want: A - .

(1) Break up v into € log n sized chunks:

. elogn _

8-a

How to Do Fast Vector Multiplications

(2) Foreachi =1,...,n/(clogn), look up v; in P;.

How to Do Fast Vector Multiplications

(2) Foreach: = 1,...,n/(clogn), look up v; in P;.
Pl 2510gn Qslogn Ql

® ®
U1 @ ®
® ®
® ®
P2 2510gn 2510gn QQ
V2| @ o
® ®
® ®
® ®

P n Qslogn Qelogn Q n
elogn e logn

Un/(elogn)

9-a

How to Do Fast Vector Multiplications

(2) Foreach: = 1,...,n/(clogn), look up v; in P;.

Pl 9 logn

U1

elogn

Un/(elogn)

P
00

4
& eeoe
3

Qslogn Ql

10

Takes O(n) time.

How to Do Fast Vector Multiplications

(3) Look up the neighbors of v;, mark each neighbor found.

11

How to Do Fast Vector Multiplications

(3) Look up the neighbors of v;, mark each neighbor found.
Pl 2€logn 2510gn Ql

o ®
U1 ®
\.
® ® Ai1-v
P elogn’ 2510gn
> 2 Q2
U] @ o
‘e |4
® ® AU
o ®
® ®
P n 25logn 2elogn n
e logn ® P elogn
o \.
Un/(clogn) @ [Agﬁgnl'vl
o ®

11-a

How to Do Fast Vector Multiplications

(3) Look up the neighbors of v;, mark each neighbor found.
Pl 2€logn 2510gn Ql

® ®

U1 @ o
® /,. Aio -9
@ @

P n 9elogn 9elogn Q n

elogn ® \: e logn
o Aelc?gn’Q V2
Un/(clogn) @ ([
@ o

12

How to Do Fast Vector Multiplications

(3) Look up the neighbors of v;, mark each neighbor found.

Pl 2510gn 2510gn Q]_
® o
vl @ ALz Unj(elogn)
o @
o @
P2 25logn 26logn Q2
02| @ ®
o ®
® Ag 1 Unj(clogn)
o ®
P n 25logn 25logn n
elogn Z P e logn
) ®
Un/(elogn) ®
o e At Unloen

13

Takes O ((

n
elogn

))

How to Do Fast Vector Multiplications

(4) For each (), define v; as the OR of all marked vectors in ()
Pl Qslogn 2€logn Ql

® ®

U1l @ ® /

—
o o V=
® @
P2 2510gn 2510gn QQ

Vo] @ o
® [/
° ° @ = U9
o o

P n 9e logn 9 logn Q n
elogn

Un/(elogn)

ecee
TXX
<
Y
S
3\
~—
o
2
Go

14

How to Do Fast Vector Multiplications

(4) For each (), define v; as the OR of all marked vectors in ()
Pl leogn Zalogn Ql

® ®

U1l @ ® /

—
o o V=
® @
P2 2510gn 2€logn QQ

U2 @ [
® [/
° ° @ = U9
® ®

P n 9e logn 9 logn Q n
elogn

Un/(elogn)

ecee
TXX
<
Y
S
3\
~—
o
2
Go

Takes O(n'**) time
15

How to Do Fast Vector Multiplications

v
,U/
(5) Output v’ := _2 . Claim:v"=A- .

U_n

- elogn -

16

How to Do Fast Vector Multiplications
v
U,
(5) Output v := _2 . Clam:v' = A - .

v

- elogn -

Proof: By definition, v’ = \/;f;/fbg”)Aj,i L ;.

16-a

(5) Output v :=

Proof: By definition, v/, = \/

Av =

How to Do Fast Vector Multiplications

U

/
Uy
Uy
: /
Claim: v/ = A - .
/
elogn 4
n/(elogn)
i—1 Aj,z' - U;.
Al,n/(e logn) U1
11171//(5:h3§§71)77l//(8:h)g;7l) - - 1145122571 -

16-b

How to Do Fast Vector Multiplications

U1
Uy
(5) Output v’ := _ . Claim: v = A -w.
v w
- elogn 4
Proof: By definition, v/, = \/1/ ™A, ;- v,
A1,1 e Al,n/(slogn) U1
AfU _
| Anjerogn)r 0 Anjelogn)in/(clogn) | | Vo

— (\/z':/gelogn)Al,i " Uqy e a\/?:/(ldogn)Al,n/(elogn) ' Ui) =,

16-c

Some Applications
Can quickly compute the neighbors of arbitrary vertex subsets

Let A be the adjacency matrix of G = (V, I).

Let vg be the indicator vector fora S C V.

17

Some Applications
Can quickly compute the neighbors of arbitrary vertex subsets

Let A be the adjacency matrix of G = (V, I).

Let vg be the indicator vector fora S C V.

Proposition: A - vg is the indicator vector for N (.5'), the neighborhood of .S’

17-a

Some Applications
Can quickly compute the neighbors of arbitrary vertex subsets

Let A be the adjacency matrix of G = (V, I).

Let vg be the indicator vector fora S C V.
Proposition: A - vg is the indicator vector for N (.5'), the neighborhood of .S’

Corollary: After O(n2+€) preprocessing, can determine the neighborhood of

any vertex subset in O(n?/(elogn)?) time.

(One level of BFS in o(n?) time)

17-b

Graph Queries

Corollary: After O(n2+€) preprocessing, can determine if a given vertex

subset is an independent set, a vertex cover, or a dominating set, all in
O(n?*/(clogn)?) time.

18

Graph Queries

Corollary: After O(n2+€) preprocessing, can determine if a given vertex

subset is an independent set, a vertex cover, or a dominating set, all in
O(n?*/(clogn)?) time.

Proof: Let S C V.

18-a

Graph Queries

Corollary: After O(n2+€) preprocessing, can determine if a given vertex

subset is an independent set, a vertex cover, or a dominating set, all in
O(n?*/(clogn)?) time.

Proof: Let S C V.

S'is dominating <—= SUN(S)=V.

18-b

Graph Queries

Corollary: After O(n2+€) preprocessing, can determine if a given vertex

subset is an independent set, a vertex cover, or a dominating set, all in
O(n?*/(clogn)?) time.

Proof: Let S C V.
S'is dominating <—= SUN(S)=V.
S'isindependent <— SN N(S)= 2.

18-c

Graph Queries

Corollary: After O(n2+€) preprocessing, can determine if a given vertex

subset is an independent set, a vertex cover, or a dominating set, all in
O(n?*/(clogn)?) time.

Proof: Let S C V.
S'is dominating <—= SUN(S)=V.
S'isindependent <— SN N(S)= 2.

S'is avertex cover <= V — Sisindependent.

18-d

Graph Queries

Corollary: After O(n2+€) preprocessing, can determine if a given vertex

subset is an independent set, a vertex cover, or a dominating set, all in
O(n?*/(clogn)?) time.

Proof: Let S C V.
S'is dominating <—= SUN(S)=V.
S'isindependent <— SN N(S)= 2.

S'is avertex cover <= V — Sisindependent.

Each can be quickly determined from knowing .S and N (.S).

18-e

Triangle Detection

19

Triangle Detection

Problem: Triangle Detection
Given: Graph (G and vertex 1.

Question: Does 7 participate in a 3-cycle, a.k.a. triangle?

19-a

Triangle Detection

Problem: Triangle Detection
Given: Graph (G and vertex 1.

Question: Does 7 participate in a 3-cycle, a.k.a. triangle?

Worst Case: Can take @(n2) time to check all pairs of neighbors of ¢

19-b

Triangle Detection

Problem: Triangle Detection
Given: Graph (G and vertex 1.

Question: Does 7 participate in a 3-cycle, a.k.a. triangle?
Worst Case: Can take @(n2) time to check all pairs of neighbors of ¢

Corollary: After O(n2+5) preprocessing on (7, can solve triangle detection

for arbitrary vertices in O(n?/(¢logn)?) time.

19-c

Triangle Detection

Problem: Triangle Detection
Given: Graph (G and vertex 1.

Question: Does 7 participate in a 3-cycle, a.k.a. triangle?
Worst Case: Can take @(n2) time to check all pairs of neighbors of ¢

Corollary: After O(n2+5) preprocessing on (7, can solve triangle detection

for arbitrary vertices in O(n?/(¢logn)?) time.

Proof: Given vertex i, let S be its set of neighbors (gotten in O(n) time).

S is not independent <= 1 participates in a triangle.

19-d

Conclusion

A preprocessing/multiplication algorithm for matrix-vector multiplication that

builds on lookup table techniques

20

Conclusion

A preprocessing/multiplication algorithm for matrix-vector multiplication that

builds on lookup table techniques

e |s there a preprocessing/multiplication algorithm for sparse matrices? Can
we do multiplication in e.g. O(m/poly(logn) + n),

where m = number of nonzeroes?

20-a

Conclusion

A preprocessing/multiplication algorithm for matrix-vector multiplication that

builds on lookup table techniques

e |s there a preprocessing/multiplication algorithm for sparse matrices? Can
we do multiplication in e.g. O(m/poly(logn) + n),
where m = number of nonzeroes?

e Can the algebraic matrix multiplication algorithms (Strassen, etc.) be

applied to this problem?

20-b

Conclusion

A preprocessing/multiplication algorithm for matrix-vector multiplication that

builds on lookup table techniques

e |s there a preprocessing/multiplication algorithm for sparse matrices? Can
we do multiplication in e.g. O(m/poly(logn) + n),

where m = number of nonzeroes?

e Can the algebraic matrix multiplication algorithms (Strassen, etc.) be

applied to this problem?

e Can our ideas be extended to achieve non-subtractive Boolean matrix

multiplication in o(n?/ log” n)?

20-c

Thank you!

21

