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Introduction

Matrix-Vector Multiplication: Fundamental Operation in Scientific Computing

How fast can n X n matrix-vector multiplication be?
©(n?) steps just to read the matrix!

Main Result: If we allow O(n2+8) preprocessing, then matrix-vector

multiplication over any finite semiring can be done in O(n?/(elogn)?).

1-c



Better Algorithms for Matrix Multiplication

Three of the major developments:



Better Algorithms for Matrix Multiplication

Three of the major developments:

e Arlazarov et al., a.k.a. “Four Russians” (1960's): O(n”/log n) operations
Uses table lookups

Good for hardware with short vector operations as primitives

2-a



Better Algorithms for Matrix Multiplication

Three of the major developments:

e Arlazarov et al., a.k.a. “Four Russians” (1960's): O(n”/log n) operations
Uses table lookups

Good for hardware with short vector operations as primitives

el 2.81 -
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Better Algorithms for Matrix Multiplication

Three of the major developments:

e Arlazarov et al., a.k.a. “Four Russians” (1960's): O(n”/log n) operations
Uses table lookups

Good for hardware with short vector operations as primitives

el 2.81 -
e Strassen (1969): n=2 = O(n>°") operations

Asymptotically fast, but overhead in the big-O

Experiments in practice are inconclusive about Strassen vs. Four

Russians for Boolean matrix multiplication (Bard, 2006)

e Coppersmith and Winograd (1990): O (n**"%) operations

Not yet practical
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Focus: Combinatorial Matrix Multiplication Algorithms

e Also called non-algebraic; let’s call them non-subtractive

E.g. Four-Russians is combinatorial, Strassen isn’t
More Non-Subtractive Boolean Matrix Mult. Algorithms:
e Atkinson and Santoro: O(n?/log®? n) on a (log n)-word RAM
e Rytter and Basch-Khanna-Motwani: O(n?/log® n) on a RAM

e Chan: Four Russians can be implemented on O(n?/log” n) on a pointer

machine
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Main Result

The O(n3/ log® n) matrix multiplication algorithm can be “de-amortized”

More precisely, we can:
Preprocess an i X m matrix A over a finite semiring in O(n?*"¢)

Such that vector multiplications with A can be done in O(n?/(glogn)?)

Allows for “non-subtractive” matrix multiplication to be done on-line
Can be implemented on a pointer machine

This Talk: The Boolean case
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Preprocessing Phase: The Boolean Case

Partition the input matrix A into blocks of [ logn| x [elogn| size:
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Preprocessing Phase: The Boolean Case
Build a graph G with parts P, ..., P, /c1ogn)s @15 - - s @n/(clogn)
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Preprocessing Phase: The Boolean Case

Edges of (G: Each vertex v in each P; has exactly one edge into each ()
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Preprocessing Phase: The Boolean Case

Edges of (G: Each vertex v in each P; has exactly one edge into each ()

. logn logn .
PZ ¢ log ¢ log Q]

Aj,z'v

®
i
®

Time to build the graph:

elc?gn ' elc?gn . 2€logn ' <€ log n)Q — O(n2+8)

I |

number number number matrix-vector mult
of Q; of P; of nodes of 4;; and v
in P@
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How to Do Fast Vector Multiplications

Let v be a column vector. Want: A - .

(1) Break up v into € log n sized chunks:

. elogn _
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How to Do Fast Vector Multiplications

(2) Foreach: = 1,...,n/(clogn), look up v; in P;.
Pl 2510gn Qslogn Ql

® ®
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® ®
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P2 2510gn 2510gn QQ
V2| @ o
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Un/(elogn)
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How to Do Fast Vector Multiplications

(2) Foreach: = 1,...,n/(clogn), look up v; in P;.
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How to Do Fast Vector Multiplications

(3) Look up the neighbors of v;, mark each neighbor found.
Pl 2€logn 2510gn Ql
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How to Do Fast Vector Multiplications

(3) Look up the neighbors of v;, mark each neighbor found.
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How to Do Fast Vector Multiplications

(3) Look up the neighbors of v;, mark each neighbor found.
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How to Do Fast Vector Multiplications

(4) For each (), define v; as the OR of all marked vectors in ()
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How to Do Fast Vector Multiplications

(4) For each (), define v; as the OR of all marked vectors in ()
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® ®

U1l @ ® /

—
o o V=
® @
P2 2510gn 2€logn QQ

U2 @ [
® [ /
° ° @ = U9
® ®

P n 9e logn 9 logn Q n
elogn

Un/(elogn)

ecee
TXX
<
Y
S
3\
~—
o
2
Go

Takes O(n'**) time
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How to Do Fast Vector Multiplications

v
,U/
(5) Output v’ := _2 . Claim:v"=A- .

U_n

- elogn -
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How to Do Fast Vector Multiplications
v
U,
(5) Output v := _2 . Clam:v' = A - .

v

- elogn -

Proof: By definition, v’ = \/;f;/fbg”)Aj,i L ;.
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(5) Output v :=

Proof: By definition, v/, = \/

Av =

How to Do Fast Vector Multiplications

U

/
Uy
Uy
: /
Claim: v/ = A - .
/
elogn 4
n/(elogn)
i—1 Aj,z' - U;.
Al,n/(e logn) U1
11171//(5:h3§§71)77l//(8:h)g;7l) - - 1145122571 -
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How to Do Fast Vector Multiplications

U1
Uy
(5) Output v’ := _ . Claim: v = A -w.
v w
- elogn 4
Proof: By definition, v/, = \/1/ ™A, ;- v,
A1,1 e Al,n/(slogn) U1
AfU _ . . . .
| Anjerogn)r 0 Anjelogn)in/(clogn) | | Vo

— (\/z':/gelogn)Al,i " Uqy e a\/?:/(ldogn)Al,n/(elogn) ' Ui) =,
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Some Applications
Can quickly compute the neighbors of arbitrary vertex subsets

Let A be the adjacency matrix of G = (V, I).

Let vg be the indicator vector fora S C V.
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Some Applications
Can quickly compute the neighbors of arbitrary vertex subsets

Let A be the adjacency matrix of G = (V, I).

Let vg be the indicator vector fora S C V.
Proposition: A - vg is the indicator vector for N (.5'), the neighborhood of .S’

Corollary: After O(n2+€) preprocessing, can determine the neighborhood of

any vertex subset in O(n?/(elogn)?) time.

(One level of BFS in o(n?) time)
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Graph Queries

Corollary: After O(n2+€) preprocessing, can determine if a given vertex

subset is an independent set, a vertex cover, or a dominating set, all in
O(n?*/(clogn)?) time.
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Graph Queries

Corollary: After O(n2+€) preprocessing, can determine if a given vertex

subset is an independent set, a vertex cover, or a dominating set, all in
O(n?*/(clogn)?) time.

Proof: Let S C V.
S'is dominating <—= SUN(S)=V.
S'isindependent <— SN N(S)= 2.

S'is avertex cover <= V — Sisindependent.

Each can be quickly determined from knowing .S and N (.S).
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Problem: Triangle Detection
Given: Graph (G and vertex 1.

Question: Does 7 participate in a 3-cycle, a.k.a. triangle?
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Triangle Detection

Problem: Triangle Detection
Given: Graph (G and vertex 1.

Question: Does 7 participate in a 3-cycle, a.k.a. triangle?
Worst Case: Can take @(n2) time to check all pairs of neighbors of ¢

Corollary: After O(n2+5) preprocessing on (7, can solve triangle detection

for arbitrary vertices in O(n?/(¢logn)?) time.

Proof: Given vertex i, let S be its set of neighbors (gotten in O(n) time).

S is not independent <= 1 participates in a triangle.
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Conclusion

A preprocessing/multiplication algorithm for matrix-vector multiplication that

builds on lookup table techniques

e |s there a preprocessing/multiplication algorithm for sparse matrices? Can
we do multiplication in e.g. O(m/poly(logn) + n),

where m = number of nonzeroes?

e Can the algebraic matrix multiplication algorithms (Strassen, etc.) be

applied to this problem?

e Can our ideas be extended to achieve non-subtractive Boolean matrix

multiplication in o(n?/ log” n)?
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Thank you!
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