
Matrix-Vector Multiplication in Sub-Quadratic Time

(Some Preprocessing Required)

Ryan Williams

Carnegie Mellon University

0-0



Introduction

Matrix-Vector Multiplication: Fundamental Operation in Scientific Computing

1



Introduction

Matrix-Vector Multiplication: Fundamental Operation in Scientific Computing

How fast can n × n matrix-vector multiplication be?

1-a



Introduction

Matrix-Vector Multiplication: Fundamental Operation in Scientific Computing

How fast can n × n matrix-vector multiplication be?

Θ(n2) steps just to read the matrix!

1-b



Introduction

Matrix-Vector Multiplication: Fundamental Operation in Scientific Computing

How fast can n × n matrix-vector multiplication be?

Θ(n2) steps just to read the matrix!

Main Result: If we allow O(n2+ε) preprocessing, then matrix-vector

multiplication over any finite semiring can be done in O(n2/(ε log n)2).

1-c



Better Algorithms for Matrix Multiplication

Three of the major developments:

2



Better Algorithms for Matrix Multiplication

Three of the major developments:

• Arlazarov et al., a.k.a. “Four Russians” (1960’s): O(n3/ log n) operations

Uses table lookups

Good for hardware with short vector operations as primitives

2-a



Better Algorithms for Matrix Multiplication

Three of the major developments:

• Arlazarov et al., a.k.a. “Four Russians” (1960’s): O(n3/ log n) operations

Uses table lookups

Good for hardware with short vector operations as primitives

• Strassen (1969): n
log 7

log 2 = O(n2.81) operations

Asymptotically fast, but overhead in the big-O

Experiments in practice are inconclusive about Strassen vs. Four

Russians for Boolean matrix multiplication (Bard, 2006)

2-b



Better Algorithms for Matrix Multiplication

Three of the major developments:

• Arlazarov et al., a.k.a. “Four Russians” (1960’s): O(n3/ log n) operations

Uses table lookups

Good for hardware with short vector operations as primitives

• Strassen (1969): n
log 7

log 2 = O(n2.81) operations

Asymptotically fast, but overhead in the big-O

Experiments in practice are inconclusive about Strassen vs. Four

Russians for Boolean matrix multiplication (Bard, 2006)

• Coppersmith and Winograd (1990): O(n2.376) operations

Not yet practical

2-c



Focus: Combinatorial Matrix Multiplication Algorithms

3



Focus: Combinatorial Matrix Multiplication Algorithms

• Also called non-algebraic; let’s call them non-subtractive

E.g. Four-Russians is combinatorial, Strassen isn’t

3-a



Focus: Combinatorial Matrix Multiplication Algorithms

• Also called non-algebraic; let’s call them non-subtractive

E.g. Four-Russians is combinatorial, Strassen isn’t

More Non-Subtractive Boolean Matrix Mult. Algorithms:

• Atkinson and Santoro: O(n3/ log3/2 n) on a (log n)-word RAM

• Rytter and Basch-Khanna-Motwani: O(n3/ log2 n) on a RAM

• Chan: Four Russians can be implemented on O(n3/ log2 n) on a pointer

machine

3-b



Main Result

The O(n3/ log2 n) matrix multiplication algorithm can be “de-amortized”

4



Main Result

The O(n3/ log2 n) matrix multiplication algorithm can be “de-amortized”

More precisely, we can:

Preprocess an n × n matrix A over a finite semiring in O(n2+ε)

Such that vector multiplications with A can be done in O(n2/(ε log n)2)

4-a



Main Result

The O(n3/ log2 n) matrix multiplication algorithm can be “de-amortized”

More precisely, we can:

Preprocess an n × n matrix A over a finite semiring in O(n2+ε)

Such that vector multiplications with A can be done in O(n2/(ε log n)2)

Allows for “non-subtractive” matrix multiplication to be done on-line

4-b



Main Result

The O(n3/ log2 n) matrix multiplication algorithm can be “de-amortized”

More precisely, we can:

Preprocess an n × n matrix A over a finite semiring in O(n2+ε)

Such that vector multiplications with A can be done in O(n2/(ε log n)2)

Allows for “non-subtractive” matrix multiplication to be done on-line

Can be implemented on a pointer machine

4-c



Main Result

The O(n3/ log2 n) matrix multiplication algorithm can be “de-amortized”

More precisely, we can:

Preprocess an n × n matrix A over a finite semiring in O(n2+ε)

Such that vector multiplications with A can be done in O(n2/(ε log n)2)

Allows for “non-subtractive” matrix multiplication to be done on-line

Can be implemented on a pointer machine

This Talk: The Boolean case

4-d



Preprocessing Phase: The Boolean Case

Partition the input matrix A into blocks of ⌈ε log n⌉ × ⌈ε log n⌉ size:

A1,1

A2,1

A n

ε log n
,1

A1,2 A1, n

ε log n

A n

ε log n
,

n

ε log n

· · ·

...

· · · · · ·

...

...

Ai,j

ε log n

ε log n

A =

5



Preprocessing Phase: The Boolean Case

Build a graph G with parts P1, . . . , Pn/(ε log n), Q1, . . . , Qn/(ε log n)

2ε log n

P2

...

...

...

...

P n
ε log n

P1 2ε log n

2ε log n2ε log n

2ε log n 2ε log n

Q1

Q2

Q n
ε log n

Each part has 2ε log n

vertices, one for each

possible ε log n vector

6



Preprocessing Phase: The Boolean Case

Edges of G: Each vertex v in each Pi has exactly one edge into each Qj

2
ε log nPi 2

ε log n Qj

v

Aj,iv

7



Preprocessing Phase: The Boolean Case

Edges of G: Each vertex v in each Pi has exactly one edge into each Qj

2
ε log nPi 2

ε log n Qj

v

Aj,iv

Time to build the graph:

n

ε log n
·

n

ε log n
· 2ε log n

· (ε log n)2 = O(n2+ε)

number

of Qj

number

of Pi

number

of nodes

in Pi

matrix-vector mult

of Aj,i and v

7-a



How to Do Fast Vector Multiplications

Let v be a column vector. Want: A · v.

8



How to Do Fast Vector Multiplications

Let v be a column vector. Want: A · v.

(1) Break up v into ε log n sized chunks:

v =















v1

v2

...

v n

ε log n















8-a



How to Do Fast Vector Multiplications

(2) For each i = 1, . . . , n/(ε log n), look up vi in Pi.

9



How to Do Fast Vector Multiplications

(2) For each i = 1, . . . , n/(ε log n), look up vi in Pi.

2ε log n

P2

...

...

...

...

P n
ε log n

P1 2ε log n

2ε log n2ε log n

2ε log n 2ε log n

Q1

Q2

Q n
ε log n

v1

v2

vn/(ε log n)

Takes Õ(n) time.
9-a



How to Do Fast Vector Multiplications

(2) For each i = 1, . . . , n/(ε log n), look up vi in Pi.

2ε log n

P2

...

...

...

...

P n
ε log n

P1 2ε log n

2ε log n2ε log n

2ε log n 2ε log n

Q1

Q2

Q n
ε log n

v1

v2

vn/(ε log n)

Takes Õ(n) time.
10



How to Do Fast Vector Multiplications

(3) Look up the neighbors of vi, mark each neighbor found.

11



How to Do Fast Vector Multiplications

(3) Look up the neighbors of vi, mark each neighbor found.

2ε log n

P2

...

...

...

...

P n
ε log n

P1 2ε log n

2ε log n2ε log n

2ε log n 2ε log n

Q1

Q2

Q n
ε log n

v1

v2

vn/(ε log n)

A1,1 · v1

A2,1 · v1

A n
ε log n ,1 · v1

11-a



How to Do Fast Vector Multiplications

(3) Look up the neighbors of vi, mark each neighbor found.

2ε log n

P2

...

...

...

...

P n
ε log n

P1 2ε log n

2ε log n2ε log n

2ε log n 2ε log n

Q1

Q2

Q n
ε log n

v1

v2

vn/(ε log n)

A1,2 · v2

A2,2 · v2

A n
ε log n ,2 · v2

12



How to Do Fast Vector Multiplications

(3) Look up the neighbors of vi, mark each neighbor found.

2ε log n

P2

...

...

...

...

P n
ε log n

P1 2ε log n

2ε log n2ε log n

2ε log n 2ε log n

Q1

Q2

Q n
ε log n

v1

v2

vn/(ε log n)

A1, n
ε log n

· vn/(ε log n)

A2, n
ε log n

· vn/(ε log n)

A n
ε log n , n

ε log n
· vn/(ε log n)

Takes O

(

(

n
ε log n

)2
)

13



How to Do Fast Vector Multiplications

(4) For each Qj , define v′

j as the OR of all marked vectors in Qj

2ε log n

P2

...

...

...

...

P n
ε log n

P1 2ε log n

2ε log n2ε log n

2ε log n 2ε log n

Q1

Q2

Q n
ε log n

v1

v2

vn/(ε log n)

⇒

⇒

⇒

v′1

v′2

v′n/(ε log n)

∨

∨

∨

Takes Õ(n1+ε) time
14



How to Do Fast Vector Multiplications

(4) For each Qj , define v′

j as the OR of all marked vectors in Qj

2ε log n

P2

...

...

...

...

P n
ε log n

P1 2ε log n

2ε log n2ε log n

2ε log n 2ε log n

Q1

Q2

Q n
ε log n

v1

v2

vn/(ε log n)

⇒

⇒

⇒

v′1

v′2

v′n/(ε log n)

∨

∨

∨

Takes Õ(n1+ε) time
15



How to Do Fast Vector Multiplications

(5) Output v′ :=















v′

1

v′

2

...

v′
n

ε log n















. Claim: v′ = A · v.

16



How to Do Fast Vector Multiplications

(5) Output v′ :=















v′

1

v′

2

...

v′
n

ε log n















. Claim: v′ = A · v.

Proof: By definition, v′

j =
∨n/(ε log n)

i=1 Aj,i · vi.

16-a



How to Do Fast Vector Multiplications

(5) Output v′ :=















v′

1

v′

2

...

v′
n

ε log n















. Claim: v′ = A · v.

Proof: By definition, v′

j =
∨n/(ε log n)

i=1 Aj,i · vi.

Av =









A1,1 · · · A1,n/(ε log n)

...
. . .

...

An/(ε log n),1 · · · An/(ε log n),n/(ε log n)

















v1

...

v n

ε log n









16-b



How to Do Fast Vector Multiplications

(5) Output v′ :=















v′

1

v′

2

...

v′
n

ε log n















. Claim: v′ = A · v.

Proof: By definition, v′

j =
∨n/(ε log n)

i=1 Aj,i · vi.

Av =









A1,1 · · · A1,n/(ε log n)

...
. . .

...

An/(ε log n),1 · · · An/(ε log n),n/(ε log n)

















v1

...

v n

ε log n









= (
∨n/(ε log n)

i=1 A1,i · vi, . . . ,
∨n/(ε log n)

i=1 A1,n/(ε log n) · vi) = v′.

16-c



Some Applications

Can quickly compute the neighbors of arbitrary vertex subsets

Let A be the adjacency matrix of G = (V,E).

Let vS be the indicator vector for a S ⊆ V .

17



Some Applications

Can quickly compute the neighbors of arbitrary vertex subsets

Let A be the adjacency matrix of G = (V,E).

Let vS be the indicator vector for a S ⊆ V .

Proposition: A · vS is the indicator vector for N(S), the neighborhood of S.

17-a



Some Applications

Can quickly compute the neighbors of arbitrary vertex subsets

Let A be the adjacency matrix of G = (V,E).

Let vS be the indicator vector for a S ⊆ V .

Proposition: A · vS is the indicator vector for N(S), the neighborhood of S.

Corollary: After O(n2+ε) preprocessing, can determine the neighborhood of

any vertex subset in O(n2/(ε log n)2) time.

(One level of BFS in o(n2) time)

17-b



Graph Queries

Corollary: After O(n2+ε) preprocessing, can determine if a given vertex

subset is an independent set, a vertex cover, or a dominating set, all in

O(n2/(ε log n)2) time.

18



Graph Queries

Corollary: After O(n2+ε) preprocessing, can determine if a given vertex

subset is an independent set, a vertex cover, or a dominating set, all in

O(n2/(ε log n)2) time.

Proof: Let S ⊆ V .

18-a



Graph Queries

Corollary: After O(n2+ε) preprocessing, can determine if a given vertex

subset is an independent set, a vertex cover, or a dominating set, all in

O(n2/(ε log n)2) time.

Proof: Let S ⊆ V .

S is dominating ⇐⇒ S ∪ N(S) = V .

18-b



Graph Queries

Corollary: After O(n2+ε) preprocessing, can determine if a given vertex

subset is an independent set, a vertex cover, or a dominating set, all in

O(n2/(ε log n)2) time.

Proof: Let S ⊆ V .

S is dominating ⇐⇒ S ∪ N(S) = V .

S is independent ⇐⇒ S ∩ N(S) = ∅.

18-c



Graph Queries

Corollary: After O(n2+ε) preprocessing, can determine if a given vertex

subset is an independent set, a vertex cover, or a dominating set, all in

O(n2/(ε log n)2) time.

Proof: Let S ⊆ V .

S is dominating ⇐⇒ S ∪ N(S) = V .

S is independent ⇐⇒ S ∩ N(S) = ∅.

S is a vertex cover ⇐⇒ V − S is independent.

18-d



Graph Queries

Corollary: After O(n2+ε) preprocessing, can determine if a given vertex

subset is an independent set, a vertex cover, or a dominating set, all in

O(n2/(ε log n)2) time.

Proof: Let S ⊆ V .

S is dominating ⇐⇒ S ∪ N(S) = V .

S is independent ⇐⇒ S ∩ N(S) = ∅.

S is a vertex cover ⇐⇒ V − S is independent.

Each can be quickly determined from knowing S and N(S).

18-e



Triangle Detection

19



Triangle Detection

Problem: Triangle Detection

Given: Graph G and vertex i.

Question: Does i participate in a 3-cycle, a.k.a. triangle?

19-a



Triangle Detection

Problem: Triangle Detection

Given: Graph G and vertex i.

Question: Does i participate in a 3-cycle, a.k.a. triangle?

Worst Case: Can take Θ(n2) time to check all pairs of neighbors of i

19-b



Triangle Detection

Problem: Triangle Detection

Given: Graph G and vertex i.

Question: Does i participate in a 3-cycle, a.k.a. triangle?

Worst Case: Can take Θ(n2) time to check all pairs of neighbors of i

Corollary: After O(n2+ε) preprocessing on G, can solve triangle detection

for arbitrary vertices in O(n2/(ε log n)2) time.

19-c



Triangle Detection

Problem: Triangle Detection

Given: Graph G and vertex i.

Question: Does i participate in a 3-cycle, a.k.a. triangle?

Worst Case: Can take Θ(n2) time to check all pairs of neighbors of i

Corollary: After O(n2+ε) preprocessing on G, can solve triangle detection

for arbitrary vertices in O(n2/(ε log n)2) time.

Proof: Given vertex i, let S be its set of neighbors (gotten in O(n) time).

S is not independent ⇐⇒ i participates in a triangle.

19-d



Conclusion

A preprocessing/multiplication algorithm for matrix-vector multiplication that

builds on lookup table techniques

20



Conclusion

A preprocessing/multiplication algorithm for matrix-vector multiplication that

builds on lookup table techniques

• Is there a preprocessing/multiplication algorithm for sparse matrices? Can

we do multiplication in e.g. O(m/poly(log n) + n),

where m = number of nonzeroes?

20-a



Conclusion

A preprocessing/multiplication algorithm for matrix-vector multiplication that

builds on lookup table techniques

• Is there a preprocessing/multiplication algorithm for sparse matrices? Can

we do multiplication in e.g. O(m/poly(log n) + n),

where m = number of nonzeroes?

• Can the algebraic matrix multiplication algorithms (Strassen, etc.) be

applied to this problem?

20-b



Conclusion

A preprocessing/multiplication algorithm for matrix-vector multiplication that

builds on lookup table techniques

• Is there a preprocessing/multiplication algorithm for sparse matrices? Can

we do multiplication in e.g. O(m/poly(log n) + n),

where m = number of nonzeroes?

• Can the algebraic matrix multiplication algorithms (Strassen, etc.) be

applied to this problem?

• Can our ideas be extended to achieve non-subtractive Boolean matrix

multiplication in o(n3/ log2 n)?

20-c



Thank you!

21


