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Abstract

We show that any n × n matrix A over any finite semiring can be preprocessed in O(n2+ε)
time, such that all subsequent vector multiplications with A can be performed in O(n2/(ε log n)2)
time, for all ε > 0. The approach is combinatorial and can be implemented on a pointer machine
or a (log n)-word RAM. Some applications are described.

1 Introduction

Matrix-vector multiplication is an absolutely fundamental operation, with countless applications

in computer science and scientific computing. Efficient algorithms for matrix-vector multiplication

are of paramount importance. However, the sheer size of the matrix can be an issue: if the matrix

is dense, then Ω(n2) time is certainly required for an n × n matrix.

Suppose one allows for a slightly superquadratic (n2+ε, for arbitrarily small ε > 0) preprocessing

of the matrix. How quickly can matrix-vector multiplication be done then? This question has been

studied since the beginning of scientific computing, but with an almost exclusive focus on special,

structured matrices (such work is briefly surveyed in the next section). To our knowledge, the

general case of matrix-vector multiplication has not received attention.

We first show how to matrix-vector multiply over the Boolean semiring in sub-quadratic time

with preprocessing, for arbitrary matrices. More precisely, the following theorem is proved.

Theorem 1.1 For all ε ∈ (0, 1/2), every n × n Boolean matrix A can be preprocessed in O(n2+ε)

time such that every subsequent multiplication of A with an arbitrary Boolean n-vector x can be

performed in O(n2/(ε log n)2) time, on a pointer machine or a (log n)-word RAM.

Both the preprocessing and matrix-vector multiplication algorithm are of the combinatorial/“non-

algebraic” variety. At a high level, the preprocessing algorithm encodes O(n2/(ε log n)2) lookup

tables for the matrix in a directed graph that “correlates” the tables; the multiplication algorithm

looks at one entry from each of the tables, using the graph to merge results.

An immediate corollary of the theorem is a new combinatorial O(n3/(log n)2) Boolean matrix

multiplication algorithm, obtained by performing a matrix-vector multiplication for n times. In fact,

the theorem implies that Boolean matrix multiplication can be computed on-line in O(n3/(log n)2)

∗Computer Science Dept., Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh PA 15213. Email:
ryanw@cs.cmu.edu. Partially supported by NSF CCR-0122581 and CCR-0085982 (ALADDIN), and by a grant
from Google, Inc.

1



time, in the following sense: given an n× n matrix A, and supposing that the columns of an n× n

matrix B are revealed one at a time, one can maintain the product of A with the currently known

B in O(n2/(log n)2) time per column. Another application of our algorithm is that graphs can be

preprocessed so that certain queries can be answered faster. For example, one can determine if a

given vertex subset is a dominating set in O(n2/(log n)2) time.

Building on our results in the Boolean setting, we generalize our algorithms to show that

matrix-vector multiplication over any finite semiring can be sped up with preprocessing.

Theorem 1.2 Let (R, +,×) be a semiring on K elements. For all ε ∈ (0, 1), every n×n matrix A

over R can be preprocessed in O(n2+ε log2 K) time such that every subsequent matrix-vector multi-

plication can be performed in O(n2/(ε log n)2) steps on a pointer machine or a (log n)-word RAM,

assuming operations in R take constant time.

2 Preliminaries and Related Work

It would be infeasible to properly summarize all of the prior work on matrix preprocessing here; we

shall settle for mentioning a few relevant (theory-based) references. For more information on this

topic, the reader is referred to Pan [P01].

As mentioned earlier, the major theoretical work in matrix preprocessing has focused on struc-

tured matrices. For example, consider the case of Vandermonde matrices. In 1955, Motzkin [M55]

introduced the idea of preprocessing a polynomial such that subsequent evaluations of the poly-

nomial can be done more efficiently. Note that, after verifying a given matrix is Vandermode,

computing a matrix-vector product with that matrix is equivalent to evaluating a univariate

degree-n polynomial at n points. Hence Motzkin’s ideas applied to preprocessing for Vander-

monde matrix-vector multiplication. Later work on polynomial evaluation used ideas similar to the

Fast Fourier Transform, obtaining algorithms for Vandermonde matrix-vector multiplication that

run in O(n · poly(log n)) time after preprocessing (cf. [MB72, F72, BM75]).

In more recent work, Gohberg and Olshevsky [GO94] have generalized previous results, showing

that several classes of structured matrices (including Vandermonde) admit matrix-vector multipli-

cation in O(n log2 n) time, after preprocessing. Substantial works continuing in this direction have

discovered fast matrix-vector multiplication algorithms for a large variety of structured matrices

(e.g. Olshevsky and Shokrollai [OS00] and Pan [P00, P01]).

Besides the work on structured matrices, another related result is that of Savage [S74] who

showed thirty years ago that n×n matrix-vector multiplication over semirings with s elements can

be performed in O(n2/ logs n) arithmetic operations, without preprocessing(!). The key phrase here

is “arithmetic operations”: while only o(n2) additions and multiplications are indeed performed,

all n2 entries of the matrix must obviously be read1. Thus Savage’s algorithm is not sub-quadratic

when one counts its steps on a typical machine model. (In interesting contrast, Winograd [W70]

showed that in general, the number of arithmetic operations necessary to multiply an n×n matrix A

with an n-vector x is the optimal Ω(n2) bound. The catch is that his proof requires the underlying

algebra to have an unbounded number of elements.)

1Very briefly, Savage’s approach is to generate a table of all O(log n)-vectors over the semiring in a Gray-code
ordering, and compute the dot product of each vector on the list with various components of the input vector. The
Gray code ensures that each dot product takes O(1) additions and multiplications, amortized.

2



Let us briefly review some past combinatorial (non-algebraic) approaches to matrix multiplica-

tion. The “Four Russians” algorithm of Arlazarov et al. [ADKF70] performs Boolean n×n matrix

multiplication in O(n3/ log n) time. (For a reference in English, cf. Aho, Hopcroft, and Ullman’s

book [AHU74].) Savage [S74] and Santoro [S80] observed that this time bound extends to a wide

range of algebraic structures, assuming constant time arithmetic. This was eventually improved

slightly to O(n3/ log3/2 n) time by Atkinson and Santoro [AS88]. Rytter [R85] (and independently

Basch, Khanna, and Motwani [BKM95]) gave an O(n3/ log2 n) algorithm for Boolean matrix mul-

tiplication on the (log n)-word RAM. Chan [C06] has recently suggested (see the Discussion in the

citation) that the original Arlazarov et al. algorithm may be modified to run in O(n3/ log2 n) on a

pointer machine, although the (allegedly messy) details are not provided.

Why Our Approach is Different. To our knowledge, none of the above algorithms can be

modified to solve the matrix-vector multiplication problem in O(n2/ log2 n) time. We shall attempt

to give some brief intuition as to why this is the case. All above algorithms partition both input

matrices into small blocks, where multiplications for the blocks are preprocessed and solved in

advance. For example, the log2 n speedup in matrix multiplication comes from a product of two log n

speedups, one from each input matrix. In our problem, as only one matrix is being preprocessed, a

log2 n speedup of matrix-vector multiplication is not possible in the same manner2. Therefore we

believe our approach to be a truly different method, in this regard.

A Note on Word Tricks. It is sometimes the case that logarithmic speedups come from “word

tricks” that exploit the word parallelism of a RAM. We do not explicitly use word tricks in our

algorithms; however, we do need a form of table lookup. The only “suspicious” operation required

is that a list of pointers to the neighbors of a node v in a graph can be obtained in O(deg(v))

time, where deg(v) is the degree of v. In the literature, this is known as a neighborhood query

and can be implemented on a pointer machine or (log n)-word RAM using a simple adjacency list

representation. Our algorithm uses this operation to encode multiple lookup tables in a common

graph. If one assumes that a neighborhood query requires Θ(deg(v) · α(n)) time for some function

α, our algorithm still takes only O(n2α(n)/ log2 n) to perform a matrix-vector multiplication.

Semirings. We recall the definition of a semiring. A semiring is a triple (R, +,×) such that R

is a set with distinguished elements 0 and 1, and + and × are binary operations over R, satisfying

the axioms:

• (R, +) is a commutative monoid with identity 0,

• x × 0 = 0 × x = 0

• (R,×) is a monoid with identity 1,

• × distributes over +.

More succinctly, a semiring is essentially a ring that is not required to have additive inverses. (Thus

every ring is also a semiring.) For brevity we often refer to the semiring (R, +,×) as just “R” when

there is no chance of confusion.

2Avrim Blum has pointed out to us that a Θ(log n)-speedup of matrix-vector multiplication is indeed possible
using a “Four Russians” approach. We invite the reader to verify this.
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3 Fast Boolean matrix-vector multiplication

We begin by considering matrix-vector multiplication in the Boolean semiring (where R = {0, 1},

+ is OR, and × is AND). The main ideas introduced here carry over to the general case. In the

following, let n be a positive integer, A be an n× n Boolean matrix, x be a Boolean n-vector, and

V = {1, . . . , n}.

Definition 3.1 For S ⊆ V , the neighborhood of S in directed graph (V, E) is the set

N(S) := {j ∈ V | (∃k ∈ S)[(k, j) ∈ E]}.

Recall there is a simple correspondence between Boolean matrix-vector multiplication and neigh-

borhood computations in a directed graph.

Lemma 3.1 Let GA = (V, E) be the directed graph corresponding to A, and let x be an indicator

vector for a subset S ⊆ V . Then AT x is the indicator vector for N(S).

Proof. Let j ∈ V . Then

(AT x)[j] = 1 ⇐⇒
∨n

k=1(A
T [j, k] ∧ x[k]) = 1

⇐⇒
∨n

k=1(A[k, j] ∧ x[k]) = 1

⇐⇒ (∃k ∈ S)[(k, j) ∈ E and k ∈ S]

⇐⇒ j ∈ N(S).

¤

Therefore a Boolean matrix-vector multiplication is equivalent to computing the neighborhood

of a given node subset. From here on, we focus on the problem of preprocessing a graph such that

neighborhood queries for a given node subset can be done in O(n2/(log n)2) time.

3.1 Neighborhood Queries for Node Subsets

In this section, we establish Theorem 1.1 from the Introduction. Given a graph G, the prepro-

cessing phase constructs a new graph H on O(n1+ε/(ε log n)) nodes and O(n2+ε/(ε log n)2) edges.

Neighborhood subset queries shall be handled by performing local operations on portions of H. Intu-

itively, the graph H encodes O(n2/(ε log n)2) different lookup tables, one for each (ε log n)×(ε log n)

block of the adjacency matrix of G.

Without loss of generality, assume that dε log ne divides n. For i = 1, . . . , n/dε log ne, define

Pi = {(i − 1) · dε log ne + 1, . . . , i · dε log ne},

and define Π to be the partition {P1, . . . , Pn/dε log ne} of [n].

The graph H has two layers of nodes, both having O(n1+ε/(ε log n)) nodes. In particular both

layers have n/dε log ne “groups”, of O(nε) nodes each3. Each group corresponds to a part Pi of Π,

and each of the O(nε) nodes in a group of H represents one of the possible subsets of Pi. Therefore

the number of nodes is O(n1+ε/(ε log n)).

Our query algorithm uses the simple fact that a subset of nodes of G can be represented as a

set of n/(ε log n) nodes in a layer of H.

3In the following, we omit the ceilings for notational convenience.
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Definition 3.2 Let x be a Boolean n-vector, and let ` ∈ {1, 2}. The `th layer node represen-

tation of x is the unique list of vertices v1, . . . , vn/(ε log n) in H such that

• for all i, vi is in the ith group of layer `, and

• the indicator vector for the subset corresponding to vi is equal to x[(i−1)dε log ne+1, . . . , idε log ne],

i.e. bits (i − 1)dε log ne + 1 through idε log ne of x.

That is, each vi corresponds to a distinct set of ε log n bits of x.

Definition 3.3 Let S be a set of n/(ε log n) nodes, from either the first or second layer of H, such

that each node is from a different group. The vector representation of S is the indicator vector

for the set obtained by taking the union of all node sets corresponding to the nodes in S.

We remark that on a computational model with Θ(poly(log n)) cost per random access, the two

representations above can be computed in O(n · poly(log n)) time. In one matrix-vector multipli-

cation, both of these representations are computed only once.

We now specify where the edges of H are placed.

First Layer Edges of H. Let v be a node in the first layer. Recall v corresponds to a subset Sv

of V , of size at most ε log n. Note that N(Sv) can easily be determined in O(n · ε log n) time4. Let

x1, . . . , xn/(ε log n) be the second-layer node representation of N(Sv). Then the edges out of v are

defined to be (v, x1), . . ., (v, xn/(ε log n)). The number of outgoing edges from nodes in the first layer

is O(n1+ε/(ε log n) · n/(ε log n)) = O(n2+ε/(ε log n)2). As there are O(n1+ε/(ε log n)) nodes in the

first layer, the above edges can be determined in O(n1+ε/(ε log n) · n · ε log n) = O(n2+ε) time.

Second Layer Edges of H. In the second layer, there is an edge (u, v) between u and v in

the same group if and only if, when construed as subsets of V , u is a subset of v. Therefore, the

second layer consists of n/(ε log n) disjoint copies of the same nε-node DAG. (In particular, this

DAG is the transitive closure of the directed hypercube on 2ε log n nodes.) Thus the number of

edges between nodes in the second layer is O(n/(ε log n) · n2ε) = O(n1+2ε/(ε log n)).

The figure below gives a bird’s eye view of H.

Processing Neighborhood Subset Queries. Neighborhood queries for a node subset are per-

formed on H as follows.

1. Given a node subset S as a Boolean n-vector, determine the first-layer node representation

of S. Let T be the set of n/(ε log n) nodes in this representation.

2. Put a mark on every node of the set N(T ) in H. Recall that the degree of each node in the

first layer is n/(ε log n). Assuming the neighbors of a node v can be marked in O(deg(v))

time, the nodes of N(T ) can be marked in O(|T | · n
(ε log n)) = O(n2/(ε log n)2) time. (Note

this stage is the bottleneck in the algorithm’s runtime.)

4With possibly a log n factor extra in computational models with limited random access.
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Figure 1: The graph H. Both layers have n1+ε/(ε log n) nodes, divided into n/(ε log n) groups. Each node
in H corresponds to a subset of nodes in G, with cardinality at most ε log n. In the example above, the
vertices labelled 00 · · · 00 represent empty sets, and the vertices labelled 11 · · · 11 represent the set of all
ε log n nodes in that respective part. Since the empty set node in the first layer has no neighbors, its edges
point to the empty sets of the nodes in the second layer.

3. Fix a topological order on nodes to be used for all groups (recall that each group in the second

layer is a copy of a certain DAG). Each group of nε nodes in the second layer is processed

separately as follows. Specially mark the first node u in the topological order such that all

marked nodes in the group have an edge to u. To do this, obtain a count t of the total number

of marked nodes in the group, then for each node in order, count its marked predecessors and

compare that count with t. This needs at most O(n2ε log n) time per group, as each edge is

accessed at most once. The total runtime for this stage is O
(

n
ε log n · n2ε log n

)

= O(n1+2ε).

For ε < 1/2, this is less than O(n2/(ε log n)2).

4. Observe that each group has exactly one specially marked node. Compute the vector repre-

sentation of the set of specially marked nodes, and finally, erase all node markings.

This concludes the description of the neighborhood query algorithm. Observe that the runtime

of the query algorithm is dominated by the second step. The next lemma proves correctness.

Lemma 3.2 The vector representation of the set of specially marked nodes is N(S).

Proof. For j = 1, . . . , n/(ε log n), let Sj denote the subset of S restricted to part Pj . For each

i = 1, . . . , n/(ε log n), consider the ith group of nodes in the second layer of H, representing a

subset of nodes of G in part Pi. When a node v in the ith group is marked, then there is a j such

that the node representing Sj in the first layer has an edge to v. By construction of H, the nodes

of G in the subset corresponding to v are exactly the neighbors of Sj that lie in Pi.

It follows that the collection of all marked nodes in the ith group corresponds to all neighbors

of S that lie in the part Pi. More precisely, the union of the node sets in G corresponding to the
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marked nodes in group i of H gives bits (i − 1) · dε log ne + 1 through i · dε log ne of the indicator

vector for N(S). Over all n/(ε log n) groups, these unions give all the bits in the indicator vector

for N(S).

We claim that the third step in the algorithm accomplishes exactly this, in that for each group,

the algorithm specially marks the node corresponding to the union of the sets represented by marked

nodes in that group. By finding a node u in a group such that all marked nodes in that group have

edges to it, this implies that the node subset in G corresponding to u is a superset of all node sets

in G corresponding to the marked nodes. By finding the first node in the topological ordering with

this property, the node u is the smallest cardinality node subset in G that is a superset of all sets in

G corresponding to the marked nodes. That is, u corresponds to the union of the sets represented

by marked nodes in the current group. ¤

3.2 Application: Faster Graph Subset Queries

Beyond on-line matrix multiplication, another application of faster Boolean matrix-vector multipli-

cation is that certain types of graph queries can be answered more rapidly than one might initially

believe is possible. Here we give a few examples of such queries.

Recall that a subset S of vertices is dominating if and only if every node in the graph is either

in S or has a neighbor in S, S is independent if and only if there is no edge between any two nodes

in S, and S is a vertex cover if every edge has an endpoint in S. Note S is independent if and only

if V − S is a vertex cover. The following proposition is straightforward.

Proposition 1 S ⊆ V is a dominating set if and only if N(S) ∪ S = V . S ⊆ V is independent if

and only if N(S) ∩ S = ∅.

Hence the Boolean matrix-vector multiplication algorithm can be used to more efficiently de-

termine if a given query subset S is dominating, independent, or a vertex cover.

Corollary 3.1 A graph G can be preprocessed in O(n2+ε) time such that one can determine in

O(n2/(ε log n)2) time if a given subset of nodes is dominating, independent, or a vertex cover.

The problem of finding an independent set or dominating set is quite general. As a result,

certain other graph queries can also be performed in subquadratic time as well. For example, one

can determine if a given query node participates in a triangle.

Corollary 3.2 A graph G can be preprocessed in O(n2+ε) time such that one can determine in

O(n2/(ε log n)2) time if a given query node is in a 3-cycle.

Proof. Let vu be the neighborhood vector for the query node u, obtainable in O(n) time. Determine

if the set of vertices denoted by vu is independent, in O(n2/ log2 n) time. But this set is independent

if and only if every pair of neighbors of u do not have an edge between them, i.e. if and only if u

does not participate in a 3-cycle. ¤

Note that in the absence of preprocessing, these tasks require Ω(n2) time on dense graphs.
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4 Matrix-vector multiplication over finite semirings

The matrix-vector multiplication scheme can be extended to all finite semirings, with a few modi-

fications. We recall the statement of Theorem 1.2 from the Introduction for convenience:

Theorem 1.2: Let (R, +,×) be a semiring on K elements. For all ε ∈ (0, 1), every n × n

matrix A over R can be preprocessed in O(n2+ε log2 K) time such that every subsequent matrix-

vector multiplication can be performed in O(n2/(ε log n)2) steps, assuming operations in R take

constant time.

Proof. As in the Boolean case, we build a graph H with two layers, and each layer has n/(ε log n)

groups of nodes, where each group represents a part Pi. However, four changes are made to the

preprocessing phase:

1. The number of nodes in a group is now Kε log2 n = nε log2 K , for all of the possible values of a

vector over R with ε log n components.

2. There are no edges between nodes in the second layer.

3. The edges from the first layer to the second layer are redefined as follows. Each ε log n

part of an input vector, when multiplied with the corresponding n × ε log n submatrix of

A, contributes an n-vector to the overall matrix-vector product. For a node u in the first

layer, let xu be its corresponding ε log n vector over R, and let yu be the corresponding n-

vector obtained from left-multiplying xu by the proper n × ε log n submatrix of A. Finally,

let v1, . . . , vn/(ε log n) be the second layer node representation of the vector yu. Then u has

outgoing edges to v1, . . . , vn/(ε log n). For each node u, its neighbors can be computed in

O(n · ε log n) steps. Therefore O(n1+ε log2 K/(ε log n) · n · ε log n) = O(n2+ε log2 K) semiring

operations and computation steps suffice for determining the edges.

4. For every node u in the second layer, maintain a variable cu that is set to 0 ∈ R at the start

of a query.

Multiplication of A with an n-vector x is performed as follows:

1. For all n/(ε log n) nodes in the first layer node representation of x, starting with the node in

group 1, compute the node’s list of neighbors u1, . . . , un/(ε log n) in the second layer, and set

cui
:= cui

+ 1 for all i, where + is over the semiring. These counts and neighbor queries can

be computed in O(n2/(ε log2 n)) additions and computation steps, using fast neighborhood

queries and the assumption that operations in R take constant time.

2. For each node u in the second layer, let yu be its corresponding ε log n vector over R. Set

y′u := cu × yu. That is, y′u is obtained by semiring-multiplying the scalar cu with each

component of yu. This takes O(ε log n) arithmetic operations for each node in the second

layer.

3. For each group i = 1, . . . , n/(ε log n), compute the sum of all y′u. That is, determine

zi =
∑

u in group i

cuyu,

and output the block vector [z1 z2 · · · zn/(ε log n)]
T .
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The multiplications take O(nε·poly(log n)) time per group, and the sum takes O(nε·poly(log n))

time as well. (Note that no table lookup is required to achieve these runtimes.) Hence the

number of steps taken by stages 2 and 3 is O(n1+ε · poly(log n)).

The runtime analysis is already embedded in the description of the algorithm. We now prove

that the output vector is indeed Ax. We need to show that for the ith group of ε log n components

of Ax, the corresponding sum zi is equal to it. Without loss of generality, let us only consider group

1. Then formally our objective is to show (Ax)[1, . . . , ε log n] = z1.

Observe that by construction, the number of times that an increment occurs to some cu in group

1 is n/(ε log n). Let u′
1, . . . , u

′
n/(ε log n) be the temporal sequence of second layer nodes in group 1

whose cu′

i
’s were incremented, i.e. u′

1 is a neighbor of a first layer node in group 1, u′
2 is a neighbor

of a first layer node in group 2, etc. (Notice that the sequence has repetitions, for nε < n/(ε log n).)

Then, letting yu′

i
be the vector corresponding to u′

i, yu′

i
= Aixi, where Ai is the matrix A restricted

to rows 1, . . . , ε log n and columns (i − 1)dε log ne + 1, . . . , idε log ne, and

xi = x[(i − 1)dε log ne + 1, . . . , idε log ne].

By distributivity of R, and commutativity of +,

n/(ε log n)
∑

i=1

yu′

i
=

∑

u in group 1:∃i.u=u′

i

cuyu =
∑

u in group 1

cuyu,

the second equality following since all other cu are 0.

Finally, by definition of Ai and xi,

(Ax)[1, . . . , ε log n] =

n/(ε log n)
∑

i=1

(Aixi) =

n/(ε log n)
∑

i=1

yu′

i
,

therefore the output of group 1 is indeed the first ε log n components of Ax, i.e. (Ax)[1, . . . , ε log n] =

z1. ¤

5 Conclusion

We have demonstrated how preprocessing makes it possible to achieve sub-quadratic matrix-vector

multiplication for all constant-sized semirings. Our method implies an on-line combinatorial matrix

multiplication algorithm, in the sense that a Θ(log2 n) speedup is achieved even if the columns of

one input matrix are only revealed one at a time.

We conclude with three interesting open problems. First, it might be of more practical impor-

tance if one could obtain a speedup of matrix-vector multiplication for sparse matrices. A time

bound of the form O(m/poly(log n) + n) is desirable, but it is not clear how to extend our ideas to

this case. Another interesting question is whether or not the algebraic methods for matrix multi-

plication (such as Strassen’s [S69], Coppersmith-Winograd’s [CW90], etc.) can be applied to our

problem of matrix-vector multiplication with preprocessing. This possibility seems unlikely to us,

but we have not rigorously ruled it out. The power of algebraic matrix multiplication algorithms
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stems from the redundancy in multiplying different pairs of the same collections of vectors. Such

redundancy is not present in matrix-vector multiplication.

Finally, is it possible to combine our preprocessing techniques with others to achieve a non-

algebraic o(n3/ log2 n) Boolean matrix multiplication algorithm? Achieving such an algorithm is

an important open problem at the intersection of theory and practice that has resisted many efforts.

The answer would be yes if, for example, it were possible to preprocess an n × n matrix so that it

can be multiplied with an arbitrary n × log n matrix in o(n2/ log n) time.
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