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ABSTRACT
We present the first truly sub-cubic algorithms for find-
ing a maximum node-weighted triangle in directed and
undirected graphs with arbitrary real weights. The first

is an O(B · n
3+ω

2 ) = O(B · n2.688) deterministic algo-
rithm, where n is the number of nodes, ω is the matrix
multiplication exponent, and B is the number of bits
of precision. The second is a strongly polynomial ran-

domized algorithm that runs in O(n
3+ω

2 log n) expected
worst-case time. To achieve this, we show how to effi-
ciently sample a weighted triangle uniformly at random,
out of just those triangles whose total weight falls in
some prescribed interval (W1, W2) for arbitrary weights
W1 and W2. Previous approaches to the problem re-
sulted in time bounds with either an exponential depen-
dence on B, or a runtime of the form Ω(n3/(log n)c).
The algorithms are easily extended to finding a maxi-
mum node-weighted induced subgraph on 3k nodes in

Õ(n
(3+ω)k

2 ) = Õ(n2.688k) time.
We give applications to a variety of problems, includ-

ing a stable matching problem between buyers and sell-
ers in computational economics, and discuss the pos-
sibility of extending our approach to a truly sub-cubic
algorithm for computing all-pairs shortest paths on di-
rected graphs with arbitrary weights.
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1. INTRODUCTION
We revisit the fundamental problem of efficiently find-

ing a triangle in a graph. In particular, we focus on the
case where the graph has arbitrary real weights on its
nodes, and we wish to determine if there is a trian-
gle of maximum weight. We give a deterministic algo-
rithm of the form O(n3−δ · log W ), where δ > 0 and
W is the largest weight, and a randomized algorithm
that is O(n3−δ) (strongly polynomial) in an addition-
comparison model.

Since the 1970’s, it has been known that the time
complexity of finding a triangle in an unweighted graph
is at most the time complexity of matrix multiplication,
cf. Itai and Rodeh [8]. Therefore, triangle-finding is
possible in O(nω) time, where ω < 2.376. The algo-
rithm naturally extends to an algorithm for finding a
3k-clique, and more generally an induced H-subgraph
of size 3k, in O(k2nωk).

On the other hand, the time complexity of finding
an optimal triangle in a weighted graph has been wide
open. In general, reductions to fast matrix multiplica-
tion tend to fail miserably in the case of real-weighted
graph problems. The most prominent example of this
is the famous all-pairs shortest paths (APSP) problem.

Seidel [12] and Galil and Margalit [5] developed Õ(nω)
algorithms for undirected unweighted graphs. However,



for arbitrary edge weights, the best algorithm known
is the recent O(n3/ log n) one, by Chan [2]. When the
edge weights are integers in [−M, M ], the problem is

solvable in Õ(Mnω) by Shoshan and Zwick [13], and

Õ(M0.681n2.575) by Zwick [17], respectively. Earlier, a
series of papers in the 70’s and 80’s starting with Yu-
val [16] attempted to speed up APSP directly using fast
matrix multiplication. Unfortunately, these works re-
quire a model that allows for infinite-precision opera-
tions in constant time.

Our techniques have several interesting applications.
We cite two here:

1. We can solve a generalization of the ubiquitous 3-
Sum problem in computational geometry: given
three tables of numbers T1, T2, T3, along with a
target K, is there x ∈ T1, y ∈ T2, and z ∈ T3 such
that x + y + z = K? Imposing an edge relation
that constrains what possible pairs of numbers can
be summed together is precisely the problem of
finding a node-weighted triangle of a prescribed
weight, which we can handle.

2. We consider a general buyer-seller problem from
computational economics. Suppose we have a set
of k commodities, along with n buyers and n sell-
ers. Seller i has a reserve price vij for commodity
j. Buyer i has a value pij for commodity j corre-
sponding to the maximum price that i is willing
to pay for the commodity.

In the simplest case considered, a buyer ` prefers
seller i to seller j if the number of commodities k
for which vik ≤ p`k exceeds the number of com-
modities k for which vjk ≤ p`k. In the event of a
tie, the buyer will prefer the seller with the cheap-
est sum of prices. In other words, the perception
of buyer ` is that the ith seller has more affordable
goods than the jth seller does. The preferences of
sellers are defined analogously.

A natural question is: how quickly can one deter-
mine a stable matching of buyers and sellers, un-
der the above definition of preferences? The triv-
ial algorithm takes Ω(n2k) time. Applying ideas
from our triangle-finding algorithm, we can com-
pute a stable matching in O(n2 + n

�
kM(n, k)),

where M(n, k) is the complexity of multiplying an
n×k matrix with a k×n matrix. For example, for
k = n, the bound is O(n2.688), and for k ≤ n.294,
the bound is O(n2.147).

We are currently working to extend our algorithm
to a sub-cubic algorithm for finding a maximum edge-
weighted triangle. (The node-weighted version is a spe-
cial case of the edge-weighted version.) We believe that
if such an extension is possible, it should help us make
further headway into the problem of finding a truly sub-

cubic algorithm for APSP with arbitrary weights. This
possibility will be discussed later in the paper.

2. PRELIMINARIES
Definition 2.1 Let A, B ∈ (R ∪ {+∞,−∞})n×n. The
(min, +)-product of A and B, denoted as A ? B, is the
matrix C such that

C[i, j] = min
k

{A[i, k] + B[k, j]}.

A ? B is also sometimes called the distance product.

2.1 Model of computation
We use the familiar addition-comparison model, where

additions and comparisons of input weights are allowed
as unit operations. This model allows for the possibility
of strongly polynomial algorithms, whose time complex-
ity is independent of the weights in the input.

3. DOMINATING PAIRS
Given a set of points {v1, . . . , vn} in R

d, the well-
known dominating pairs problem is to find all pairs of
points (vi, vj) such that for all k = 1, . . . , d, vi[k] ≤
vj [k]. The key insight to our method is a connection
between the problem of finding triangles and the prob-
lem of computing dominating pairs. This connection
was inspired by recent work of Chan [2], who demon-
strated how a O(cdn1+ε + n2) algorithm for computing
dominating pairs in d dimensions can be used to solve
the arbitrary APSP problem in O(n3/ log n) time.

In particular, we use an elegant algorithm by Ma-
tousek for computing dominating pairs in n dimensions
[10]. Matousek’s algorithm does more than determine
dominances — it actually computes a matrix D such
that

D[i, j] = |{k | vi[k] ≤ vj [k]}|.
We will call D the dominance matrix in the following.

Theorem 3.1 (Matousek [10]) For a set S of n points
in R

n, the dominance matrix for S can be computed in

O � n
3+ω

2 � time.

We outline Matousek’s approach in the following para-
graphs. For each coordinate j = 1, . . . , n, sort the n
points by coordinate j. This takes O(n2 log n) time.
Define the jth rank of point vi, denoted as rj(vi), to be
the position of vi in the sorted list for coordinate j.

Let s ∈ [log n, n] be a parameter to be determined
later. Define n/s pairs of Boolean matrices (A1, B1),
. . ., (An/s, Bn/s) as follows:

Ak[i, j] = 1 ⇐⇒ rj(vi) ∈ [ks, ks + s),

Bk[i, j] = 1 ⇐⇒ rj(vi) ≥ ks + s.

Now, multiply Ak with BT
k , obtaining a matrix Ck.

Then Ck[i, j] equals the number of coordinates c such



that vi[c] ≤ vj [c], rc(vi) ∈ [ks, ks + s), and rc(vj) ≥
ks + s.

Therefore, letting

C =

n/s�
k=1

Ck,

we have that C[i, j] is the number of coordinates c such
that brc(vi)/sc < brc(vj)/sc.

Suppose we compute a matrix E such that E[i, j] is
the number of c such that vi[c] ≤ vj [c] and brc(vi)/sc =
brc(vj)/sc. Then, defining D := C + E, we will have
the desired matrix

D[i, j] = |{k | vi[k] ≤ vj [k]}|.

To compute E, we use the n sorted lists. For each
pair (i, j) ∈ [n] × [n], we look up vi’s position p in the
sorted list for coordinate j. By reading off the adjacent
points less than vi in this sorted list (i.e. the points
at positions p − 1, p − 2, etc.), and stopping when we
reach a point vk such that brj(vk)/sc < brj(vi)/sc, we
obtain the list vi1 , . . . , vi`

of ` ≤ s points such that
vix [j] ≤ vi[j] and brj(vi)/sc = brj(vix)/sc. For each
x = 1, . . . , `, we add a 1 to E[ix, i]. Assuming constant
time lookups and constant time probes into a matrix,
this entire process takes only O(n2s) time.

The runtime of the above procedure is O(n2s+ n
s
nω),

where ω < 2.376 is the matrix multiplication expo-

nent. Choosing s = n
ω−1

2 , the time bound becomes

O � n
3+ω

2 � .

3.1 The low-dimensional case
Here we sketch a slight but useful extension of the

previous algorithm that uses rectangular matrix mul-
tiplication to get an improved time bound, when the
points are in R

d with d << n.

Theorem 3.2 Given a set of n points in R
d, the dom-

inance matrix can be computed in O(n1.706 · d2 + n2+ε)
time for all ε > 0, or in O(n · d2 + nω) time.

So for example, when d < n0.688, we can compute
the dominance matrix in O(nω). We will just sketch
the improvement, for sake of space. The Ak and Bk

matrices in the above become n× d and d×n matrices,
respectively. We replace the sum of Ck’s in the above
by a product of block matrices:

C = � A1 A2 · · · An/s � ·

����� B1

B2

...
Bn/s

	 


�
that is, we are multiplying an n × dn/s and a dn/s × n
matrix.

Computing E in this situation can be verified to take
O(n · d · s) time. As before, our goal is to choose s

optimally so that this runtime is minimized. Results
of Huang and Pan [7] coupled with the optimal choice
of s show that we can either compute the dominances
matrix in O(n1.706 · d2 + n2+ε) time for all ε > 0, or
O(n · d2 + nω) time. (Details omitted in this version.)

4. MAXIMUM WEIGHT TRIANGLE
We begin with a simple result for the node and edge

weighted version of the maximum triangle problem. We
have not seen it in the literature, but it is most likely
folklore.

Given a (directed) graph G = (V, A) with weights
we : A → R, wv : V → R for some arithmetic domain
R (integers, reals, etc.), one wishes to find a triangle,
that is u, v, w ∈ V so that (u, v), (v, w), (w, u) ∈ A and
we(u, v)+we(v, w)+we(w, u)+wv(u)+wv(v)+wv(w)
is maximized.

Proposition 1 (Folklore) A maximum node and edge
weighted triangle can be found in O(D(n)), where D(n)
is the time complexity of (min, +)-product.

Proof. It is easy to see that the general case is equiv-
alent to the edge-weighted case. Given we and wv, de-
fine w′

v(u) = 0 for each u ∈ V and w′
e(u, v) = we(u, v)+

(wv(u) + wv(v))/2.
Let A be the weighted adjacency matrix of the graph

with w′. Compute B = (−A) ? (−A). Now take C =
A − B and find an i, j such that C[i, j] is maximum.
It follows that that (i, j) is an edge on the maximum
weighted triangle. Finding an explicit triangle can be
done by testing all vertices k for adjacency with (i, j).
The runtime is O(D(n) + n2) = O(D(n)).

Note that the best known time bounds for D(n) are

• O(n3/ log n) for arbitrary real weights, by Chan [2],
and

• O(M · nω) for integer weights in [−M, M ], by Yu-
val [16] and Zwick [17].

Thus, prior to our work, the only known truly sub-cubic
triangle algorithms were also pseudo-polynomial.

The above can be easily generalized to find a maxi-
mum weighted induced H-subgraph.

Corollary 4.1 For an n node graph G, a maximum
node and edge weighted induced H-subgraph on k nodes
can be found in O(D(ndk/3e) + k2n2dk/3e), where D(n)
is the time complexity of (min, +)-product.

Proof. The idea is to construct a new graph G′ on
O(ndk/3e) nodes that has a triangle of weight W iff G
has an induced H-subgraph of weight W . Let H = H1∪
H2 ∪H3, where Hi are disjoint and have at most dk/3e
nodes each. Assume each node in each Hi is labelled
1, . . . , |Hi|. For each i = 1, 2, 3, create a vertex in G′ for
every ordered |Hi|-tuple of nodes of G that is an induced



copy of Hi, where the jth node in the tuple corresponds
to the node in Hi with label j. The node weight of a
vertex in G′ equals the sum of node and edge weights
of the corresponding induced subgraph of G.

In G′, put an edge between two vertices representing
copies of Hi and Hj for i 6= j iff the tuples they represent
are node-disjoint, and the union of those tuples is a copy
of Hi ∪ Hj , under the same mapping that mapped the
nodes of the first tuple to Hi and the nodes of the second
tuple to Hj (i.e., if the intertuple edges match the edges
of Hi∪Hj). The weight of such an edge (u, v) equals the
sum of all weights of edges in G connecting the tuples
represented by u and v.

The proof follows by observing that there is a weight-
preserving bijection between weighted triangles in G′

and induced weighted H-subgraphs of G.

4.1 Node weights
Given the close relationship of the above problem to

the distance product of matrices, it is perhaps surprising
that in the case of node weights, we can find a maximum
weight triangle in sub-cubic time. We first present a
weakly polynomial deterministic algorithm, then a ran-
domized strongly polynomial algorithm.

4.1.1 Deterministic algorithm

Theorem 4.1 On graphs with integer weights, a maxi-
mum node-weighted triangle can be found in

O(n(ω+3)/2 · log W ) time,

where W is the maximum weight of a triangle. On
graphs with real weights, a maximum node-weighted tri-
angle can be found in O(n(ω+3)/2 · B) time, where B is
the maximum number of bits in a weight.

Proof. The idea is to obtain a procedure that, given
a parameter K, returns an edge (i, j) from a triangle of
weight at least K. Then one can binary search to find
the weight of the maximum triangle, and try all possible
vertices k to get the triangle itself.

We first explain the binary search. Without loss of
generality, we assume that all edge weights are at least
1. Let W be the maximum weight of a triangle. Start by
checking if there is a triangle of weight at least K = 1
(if not, there are no triangles). Then try K = 2` for
increasing `, until there exists a triangle of weight 2`

but no triangle of weight 2`+1. This ` will be found
in O(log W ) steps. After this, we search on the interval
[2`, 2`+1) for the largest K such that there is a triangle of
weight K. This takes O(log W ) time for integer weights,
and O(B) time for real weights with B bits of precision.

We now show how to return an edge from a triangle of
weight at least K, for some given K. Let V = {1, . . . , n}
be the set of vertices. For every i ∈ V , we make a point

fi = (e(1), . . . , e(n)), where

e(j) = � K − w(i) if there is an edge from i to j

∞ otherwise.

(In implementation, we can of course substitute a suffi-
ciently large value in place of ∞.) We also make a point
gi = (e′(1), . . . , e′(n)), where

e′(j) = � w(i) + w(j) if there is an edge from i to j

−∞ otherwise.

Compute the dominance matrix D(K) on the union of
the sets {fi} and {gi}. For all edges (i, j) in the graph,
check if there exists a k such that fi[k] ≤ gj [k]. This can
be done by examining the appropriate entry in D(K).
If such a k exists, then we know there is a vertex k such
that

K −w(i) ≤ w(j) + w(k) =⇒ K ≤ w(i) + w(k) + w(j),

that is, there exists a triangle of weight at least K using
edge (i, j).

Observe that the above works for both directed and
undirected graphs.

4.1.2 Randomized strongly-polynomial algorithm
In the above, the binary search over all possible weights

prevents our algorithm from being strongly polynomial.
We would like to have an algorithm that, in a comparison-
based model, has a runtime with no dependence on the
bitlengths of weights. Here we present an randomized
algorithm that achieves this.

Theorem 4.2 On graphs with real weights, a maximum
node-weighted triangle can be found in

O(n(ω+3)/2 · log n) expected worst-case time.

We would like to somehow binary search over the
collection of triangles in the graph to find the maxi-
mum. As this collection is O(n3), we would then have
a strongly polynomial bound. Ideally, one would like
to pick the “median” triangle from a list of all trian-
gles, sorted by weight. But as the number of triangles
can be Ω(n3), forming this list is hopeless. Instead,
we shall show how dominance computations allow us to
efficiently and uniformly sample a triangle at random,
whose weight is from any prescribed interval (W1, W2).
If we pick a triangle at random and measure its weight,
there is a good chance that this weight is close to the
median weight. In fact, a binary search that randomly
samples for a pivot can be expected to terminate in
O(log n) time.

Let W1, W2 ∈ R ∪ {−∞,∞}, W1 < W2, and G be a
node-weighted graph.

Definition 4.1 C(W1, W2) is defined to be the collec-
tion of triangles in G whose total weight falls in the
range [W1, W2].



Lemma 4.1 One can sample a triangle uniformly at ran-
dom from C(W1, W2), in O(n(ω+3)/2) time.

Proof. From the proof of Theorem 4.1, one can com-
pute a matrix D(K) in O(n(ω+3)/2) time, such that
D(K)[i, j] 6= 0 iff there is a node k such that (i, k) and
(k, j) are edges, and w(i) + w(j) + w(k) > K. In fact,
the i, j entry of D(K) is the number of distinct nodes k
with this property.

Similarly, one can compute matrices E(K) and L(K)
such that

• E(K)[i, j] = |{k| (i, k), (k, j) ∈ E, w(i) + w(j) +
w(k) ≤ K}|

• L(K)[i, j] = |{k| (i, k), (k, j) ∈ E, w(i) + w(j) +
w(k) < K}|.

(This can be done by flipping the signs on all coordinates
in the sets of points {fi} and {gi} from Theorem 4.1,
then computing dominances, disallowing equalities for
L.)

Therefore, if we take F = E(W1)−L(W2), then F [i, j]
is the number of nodes k where there is a path from i
to k to j, and w(i) + w(j) + w(k) ∈ [W1, W2].

Let f be the sum of all entries in F . For each (i, j) ∈
E, choose (i, j) with probability F [i, j]/f . By the above,
this step uniformly samples an edge from a random tri-
angle. Finally, we look at the set of nodes S that are
neighbors to both i and j, and pick each node in S with
probability 1

|S|
. This step uniformly samples a triangle

with edge (i, j). The final triangle is therefore chosen
uniformly at random.

Observe that there is an interesting corollary to the
above.

Corollary 4.2 In any graph, one can sample a trian-
gle uniformly at random in O(nω) time.

Proof. (Sketch) Multiplying the adjacency matrix
with itself counts the number of 2-paths from each node
to another node. Therefore one can count the number
of triangles and sample just as in the above.

We are now prepared to give the strongly polynomial
algorithm.

Proof of Theorem 4.2. Start by choosing a tri-
angle t uniformly at random from all triangles. By the
corollary, this is done in O(nω) time.

Measure the weight W of t. Determine if there is a
triangle with weight in the range (W,∞), in O(n(ω+3)/2)
time. If not, return t. If so, randomly sample a triangle
from (W,∞), let W ′ be its weight, and repeat the search
with W ′.

It is routine to estimate the runtime of this procedure,
but we include it for completeness. Let T (n, k) be the
expected runtime for an n node graph, where k is the
number of triangles in the current weight range under

inspection. In the worst case,

T (n, k) ≤ 1

k

k−1�
i=1

T (n, k − i) + c · n(ω+3)/2

for some constant c ≥ 1. But this means

T (n, k − 1) ≤ 1

k − 1

k−2�
i=1

T (n, k − i) + c · n(ω+3)/2,

so

T (n, k) ≤  1

k
+

k − 1

k � · T (n, k − 1)

+  1 − k − 1

k � cn(ω+3)/2

= T (n, k − 1) +
c

k
n(ω+3)/2,

which solves to T (n, k) = O(n(ω+3)/2 log k). 2

4.1.3 An algorithm for sparse graphs
On sparse graphs, we can give a maximum node-

weighted triangle algorithm which has comparable run-
time to that of the unweighted version of the problem.

Theorem 4.3 Let m be the number of edges in a graph
with real weights on its nodes. A triangle of maximum

node weight can be found in O(m2− 4
5+ω ) = O(m1.46)

time.
Note that the best known algorithm for the unweighted

version of this problem runs in O(m2ω/(ω+1)) = m1.41

time, by Alon, Yuster, and Zwick [1].

Proof. We follow the high/low technique of Alon,
Yuster, and Zwick. Let ∆ > 0 be a parameter to be
determined later. Divide the set of nodes into high de-
gree nodes (those with degree at least ∆) and low degree
nodes (those with degree less than ∆). By a counting
argument, there are at most 2m/∆ high degree nodes.
Either a triangle contains only high degree nodes, or it
contains some low degree node.

To cover the first case, restrict the graph to only its
high degree nodes, and find the max node-weighted tri-

angle in Õ((m/∆)
ω+3

2 ) time. To cover the second case,
iterate over all edges. When the current edge has a
low degree node, check all of its O(∆) neighbors for
a triangle. This takes time O(m · ∆). Setting ∆ op-

timally to minimize runtime, ∆ = m1−4/(5+ω), and
O(m2−4/(5+ω)) = O(m1.458).

4.1.4 Maximum node-weighted H-subgraph
The result for node-weighted triangle can easily be ex-

tended to find a maximum node-weighted clique, and in
general a maximum node-weighted induced H-subgraph.
The transformation from Corollary 4.1 immediately gives

Theorem 4.4 On graphs with arbitrary integer weights,
a maximum node-weighted induced H-subgraph on 3k



nodes can be found in

O(n(ω+3)k/2 · log n) expected worst-case time.

5. TOWARDS TRULY SUB-CUBIC APSP
Starting with Floyd’s n3 algorithm [6], finding an

n3−δ algorithm for the general APSP has been a land-
mark problem in algorithms for at least forty years. It
has seen its ups and downs. Kerr [9] in 1970 showed
that the distance product requires Ω(n3) on a straight-
line program using + and min. The first o(n3) algo-
rithm was given by Fredman in 1976, running in O(n3 ·
(log log n/ log n)1/3) time. The time complexity of APSP
on dense graphs has gone through several improvements
over the years, culminating in the aforementioned algo-
rithm of Chan [2].

Computing the distance product quickly has long been
considered as the key to a truly sub-cubic APSP algo-
rithm, since it is known that the time complexity of
APSP is no worse than that of the distance product of
two arbitrary n × n matrices. Practically all APSP al-
gorithms with runtime of the form O(nα) have, at their
core, some form of distance product. Therefore, any
improvement on the complexity of distance product is
interesting.

Here we show that the most significant bits of A ? B
can be computed in sub-cubic time, again with no expo-
nential dependence on edge weights. In previous work,
Zwick [17] shows how to compute approximate distance
products. Given any ε > 0, his algorithm computes dis-
tances dij such that the difference of dij and the exact
value of the distance product entry is at most O(ε). The
running time of his algorithm is O( W

ε
· nω log W ). Un-

fortunately, guaranteeing that the distances are within
ε of the right values, does not necessarily give any of the
bits of the distances. Our strategy is to use dominance
matrix computations.

Proposition 2 Let A, B ∈ (Z ∪ {+∞,−∞})n×n. The
k most significant bits of all entries in A?B can be deter-

mined in O(2k·n 3+ω
2 log n) time, assuming a comparison-

based model.

Proof. For a matrix M , let M [i, :] be the ith row,
and M [:, j] be the jth row. For a constant K, define the
set of vectors

ML(K) := {(M [i, 1]−K, . . . , M [i, n]−K) | i = 1, . . . , n}.
Also, define

MR(K) := {(−M [1, i], . . . ,−M [n, i]) | i = 1, . . . , n}.
Now consider the set of vectors

S(K) = AL(K) ∪ BR(K).

Suppose we compute the matrix C(K) defined by

C(K)[i, j] := |{k | vi[k] ≤ vj [k] | vi, vj ∈ S(K)}|.

Then for any i, j,

min
k

{A[i, k] + B[k, j]} ≤ K ⇐⇒ C(K)[i, j] 6= 0.

Let W = maxij{A[i, j] + maxij B[i, j]}. Then C(W
2

)
gives the most significant bit of each entry in A ? B. To
obtain the second most significant bit, compute C( W

4
)

and C( 3W
4

). The second bit of (A ? B)[i, j] is given by
the expression:

(C(W
2

)[i, j] ∧ C( 3W
4

)[i, j]) ∨ (¬C(W
2

)[i, j] ∧ C(W
4

)[i, j]).

In general, to recover k bits of (A ? B), one computes
C(·) for 2k values of K. We omit the details.

6. BUYER-SELLER STABLE MATCHING
In our final application, we show how the “dominance-

comparison” ideas can be used to improve the runtime
for solving a matching problem arising in computational
economics. In this problem, we have a set of buyers and
a set of sellers. Each buyer has a set of items he wants
to purchase, together with a maximum price for each
item which he is willing to pay for that item. In turn,
each seller has a set of items she wishes to sell, together
with a reserve price for each item which she requires to
be met in order for the sale to be completed. Formally:

Definition 6.1 An (n, k)-Buyer-Seller instance consists
of

• a set C = {1, . . . , k} of commodities 1

• an n-tuple of buyers B = (b1, . . . , bn) where bi =
(Bi, pi), s.t. Bi ⊆ C are the commodities desired
by buyer i, and pi : Bi → R

+ is the maximum
price function for buyer i

• an n-tuple of sellers S = (s1, . . . , sn) where si =
(Si, vi), s.t. Si ⊆ C are the commodities owned
by seller i, and vi : Si → R

+ is the reserve price
function for seller i

A sale transaction for an item ` between a seller who
owns ` and a buyer who wants ` can take place if the
price the buyer is willing to pay is at least the reserve
price the seller has for the item. Let us imagine that
each buyer wants to do business with only one seller,
and each seller wants to target a single buyer. Then the
transaction between a buyer and a seller consists of all
the items for which the buyer’s maximum price meets
the seller’s reserve price.

Definition 6.2 For a buyer (Bi, pi) and a seller (Sj , vj)
the transaction set Cij is defined as Cij = {`| ` ∈
Bi ∩ Sj , pi(`) ≥ vj(`)}. Denote by C the transaction
matrix with entries |Cij |.
1We will use the words “commodities” and “items” in-
terchangably.



The price of Cij is defined as Pij = � `∈Cij
pi(`), and

the reserve of Cij is defined as Rij = � `∈Cij
vj(`). De-

note by P and R respectively the transaction price and
reserve matrices with entries Pij and Rij.

Further, we assume that every buyer i has a prefer-
ence relation on the sellers j which depends entirely on
Pij , Rij and |Cij |. Conversely, every seller has a pref-
erence relation on the buyers determined by the same
three values. More formally,

• buyer i has a (computable) preference function fi :
R

+ × R
+ × Z

+ → Z such that i prefers seller j to
seller j′ iff fi(Pij , Rij , |Cij |) ≥ fi(Pij′ , Rij′ , |Cij′ |).

• Similarly, seller j has a (computable) preference
function gj : R

+ × R
+ × Z

+ → Z such that j
prefers buyer i to buyer i′ iff gj(Pij , Rij , |Cij |) ≥
gj(Pi′j , Ri′j , |Ci′j |).

Ideally, each buyer wants to talk to his most preferred
seller, and each seller wants to sell to her most preferred
buyer. Unfortunately, this is not always possible for
all buyers, even when the prices and reserves are all
equal, and all preference functions equal |Cij |. This is
evidenced by the following example: Buyer 1 wants to
buy item 2, buyer 2 wants to buy items 1 and 2, seller
1 has item 1, seller 2 has items 1 and 2. Here buyer 1
will not be able to get any items.

In a realistic setting, we want to find a buyer-seller
matching so that there is no pair (bi, sj) for which bi is
not paired with sj , such that both bi and sj would bene-
fit from breaking their matches and pairing among each
other. This is the stable matching problem, for which
optimal algorithms are known when the preferences are
known (e.g., Gale-Shapley [4] can be implemented to
run in O(n2)). However, for large k, the major bottle-
neck in our setting is that of computing the preference
functions of the buyers and sellers.

The obvious approach to compute Pij , Rij and |Cij | is
to explicitly find the sets Cij . This gives an O(kn2) al-
gorithm to compute Pij , Rij and |Cij | for all pairs (i, j).
Note that the sizes of Pij , Rij and |Cij | do affect the
running time, hence our results are per arithmetic op-
eration on numbers of this size.

Let f be a (computable) function. Let Tf (b) be a
time bound sufficient for computing f(p, r, c), over all
b-bit p, r and c. Define

T = max
i=1,...,n

{Tfi
, Tgi}.

Then in time O(kn2 + Tn2 + n2 log n), one can easily
obtain for every buyer (seller) a list of the sellers (buy-
ers) sorted by the buyer’s (seller’s) preference function.

Exploiting fast dominance computation, we can do
better than the above trivial algorithm.

Theorem 6.1 The matrices P , R and C for an (n, k)-

Buyer-Seller instance can be found in O(n
�

kM(n, k))

time, where M(n, k) is the time required to multiply an
n × k by a k × n matrix.

Proof. Using the dominance technique, we can com-
pute matrix C as follows. For each buyer i we create a
k-dimensional vector βi = (βi1, . . . , βik) so that βij =
pi(j) if j ∈ Ci, and βij = −∞ if j /∈ Ci. For each seller
i we create a k-dimensional vector σi = (σi1, . . . , σik) so
that σij = vi(j) if j ∈ Si, and σij = ∞ if j /∈ Si. Com-
puting the dominance matrix for these points computes
exactly the number of items ` which buyer i wants to
buy, seller j wants to sell, and pi(`) ≥ vj(`).

By a modification of Matousek’s algorithm for com-
puting dominances, we can also compute the matrices
P and R.

We demonstrate how to find R. Recall that the dom-
inance algorithm does a matrix multiplication Ak · BT

k

with entries Ak[i, j] = 1 iff rj(bi) ∈ [ks, ks + s), and
Bk[i, j] = 1 iff rj(si) ≥ ks + s (using the notation from
Theorem 3.1). Let Bk be the same, but redefine Ak to
be

Ak[i, j] = � vi(j) if rj(bi) ∈ [ks, ks + s)

0 otherwise
.

Similar modifications are made to the computation of
the matrix E. Instead of adding 1 to the matrix entry
E[ix, i] in the step for coordinate j, we add the corre-
sponding reserve price vix(j). Determining P can be
done analogously.

Corollary 6.1 A buyer-seller stable matching can be
determined in O(n

�
kM(n, k) + n2 log n + n2T ), where

T is the maximum time to compute the preference func-
tions of the buyers/sellers, given the buyer price and
seller reserve sums for a buyer-seller pair.

For instance, if k = n and T = O(
√

n), the runtime

of finding a buyer-seller stable matching is O(n
3+ω

2 ) =
O(n2.688).

7. CONCLUSION
We have presented the first “truly” sub-cubic algo-

rithm for finding a node-weighted triangle, along with
several interesting applications that exploit dominance
matrices in similar ways. We conjecture that our ideas
can be extended to a sub-cubic algorithm for the edge-
weighted case, and perhaps even to computing the dis-
tance product. As demonstrated above, we can estimate
the maximum weight of a length-two path between two
nodes, but one must be very conservative in the num-
ber of dominance matrix calls to have a chance of being
sub-cubic.

Perhaps the most tangible open problem related to
this work is to improve the runtime for computing a
dominance matrix. Our intuition is that the following
is true.

Conjecture: The dominance matrix for a set of n
points in n dimensions is computable in Õ(nω) time.



We believe that one might prove the conjecture by
invoking recursion on the two subproblems (the matrices
C and E) of the current algorithm in an interesting way.

Note added in camera-ready: We have recently
found a sub-cubic, deterministic strongly polynomial al-
gorithm for max and min weight triangle. It runs in
Õ(n2.575) time, and uses rectangular matrix multiplica-
tion. However, this algorithm is more specialized, and
does not extend to dominance computations, estimat-
ing the distance product, or computing a buyer-seller
matching. Independently of us, Raphael Yuster [15]
found an algorithm similar to our new one, as well as
several extensions. The details will appear in later work
[14].
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