
SIAM J. COMPUT. c© 2016 Society for Industrial and Applied Mathematics
Vol. 45, No. 2, pp. 497–529

NATURAL PROOFS VERSUS DERANDOMIZATION∗

R. RYAN WILLIAMS†

Abstract. We study connections between the Natural Proofs of Razborov and Rudich, deran-
domization, and the problem of proving “weak” circuit lower bounds such as NEXP �⊂ TC0, which
are still wide open. Natural Proofs have three properties: they are constructive (an efficient al-
gorithm A is embedded in them), have largeness (A accepts a large fraction of strings), and are
useful (A rejects all strings which are truth tables of small circuits). Strong circuit lower bounds
that are “naturalizing” would contradict present cryptographic understanding, yet the vast majority
of known circuit lower bound proofs are naturalizing. So it is imperative to understand how to
pursue un-Natural Proofs. Some heuristic arguments say constructivity should be circumventable:
largeness is inherent in many proof techniques, and it is probably our presently weak techniques that
yield constructivity. We prove the following: (i) Constructivity is unavoidable, even for NEXP lower
bounds. Informally, we prove for all “typical” nonuniform circuit classes C, NEXP �⊂ C if and only
if there is a polynomial-time algorithm distinguishing some function from all functions computable
by C-circuits. Hence NEXP �⊂ C is equivalent to exhibiting a constructive property useful against
C. (ii) There are no P-natural properties useful against C if and only if randomized exponential
time can be “derandomized” using truth tables of circuits from C as random seeds. Therefore the
task of proving there are no P-natural properties is inherently a derandomization problem, weaker
than but implied by the existence of strong pseudorandom functions. These characterizations are
applied to yield several new results, including improved ACC0 lower bounds and new unconditional
derandomizations. In general, we develop and apply several new connections between the existence
of certain algorithms for analyzing truth tables, and the nonexistence of small circuits for problems
in large classes such as NEXP.

Key words. circuit complexity, natural proofs, derandomization, randomized computation,
nondeterminism, ACC

AMS subject classifications. 68Q15, 68Q17, 68Q87

DOI. 10.1137/130938219

1. Introduction. The Natural Proofs barrier of Razborov and Rudich [31] ar-
gues that

(a) almost all known proofs of nonuniform circuit lower bounds entail efficient
algorithms that can distinguish many “hard” functions from all “easy” func-
tions (those computable with small circuits), and

(b) any efficient algorithm of this kind would break cryptographic primitives im-
plemented with small circuits (which are believed to exist).

(A formal definition is in section 2.) Natural Proofs are self-defeating: in the course
of proving a weak lower bound, they provide efficient algorithms that refute stronger
lower bounds that we believe to also hold. The moral is that, in order to prove stronger
circuit lower bounds, one must avoid the techniques used in proofs that entail such
efficient algorithms. The argument applies even to low-level complexity classes such
as TC0 [28, 24, 25], so any major progress in the future depends on proving un-Natural

∗Received by the editors September 24, 2013; accepted for publication (in revised form) March 9,
2016; published electronically April 27, 2016. A preliminary version of this paper appeared in the
ACM Symposium on Theory of Computing in 2013. This work was supported in part by a David
Morgenthaler II Faculty Fellowship, a Sloan Fellowship, NSF DMS-1049268 (US Junior Oberwol-
fach Fellow), and NSF CCF-1212372. Any opinions, findings and conclusions or recommendations
expressed in this material are those of the authors and do not necessarily reflect the views of the
National Science Foundation.

http://www.siam.org/journals/sicomp/45-2/93821.html
†Computer Science Department, Stanford University, Stanford, CA 94305 (rrw@cs.stanford.edu).

497

http://www.siam.org/journals/sicomp/45-2/93821.html
mailto:rrw@cs.stanford.edu

498 R. RYAN WILLIAMS

lower bounds.
How should we proceed? Should we look for proofs yielding only inefficient al-

gorithms, avoiding “constructivity”? Or should we look for algorithms which cannot
distinguish many hard functions from all easy ones, avoiding “largeness”?1 (Note
there is a third criterion, “usefulness,” requiring that the proof distinguishes a tar-
get function f from the circuit class C we are proving lower bounds against. This
criterion is necessary: f /∈ C if and only if there is a trivial property, true of only
f , distinguishing f from all functions computable in C.) In this paper, we study al-
ternative ways to characterize Natural Proofs and their relatives as particular circuit
lower bound problems and give several applications. There are multiple competing
intuitions about the meaning of Natural Proofs. We wish to rigorously understand
the extent to which the Razborov–Rudich framework relates to our ability to prove
lower bounds in general.

NEXP lower bounds are constructive and useful. Some relationships can
be easily seen. Recall EXP and NEXP are the exponential-time versions of P and
NP. If EXP �⊂ C, one can obtain a polynomial-time (nonlarge) property useful against
C.2 So, strong enough lower bounds entail constructive useful properties. However, a
separation like EXP �⊂ C is stronger than currently known, for all classes C containing
ACC0. Could lower bounds be proved for larger classes like NEXP, without entering
constructive/useful territory? In the other direction, could one exhibit a constructive
(nonlarge) property against a small circuit class like TC0, without proving a new lower
bound against that class?

The answer to both questions is no. Call a (nonuniform) circuit class C typical if
C ∈ {AC0, ACC0, TC0, NC1, NC, P/poly}.3 For any typical C, a property of Boolean
functions P is said to be useful against C if, for all k, there are infinitely many n such
that

• P(f) is true of at least one f : {0, 1}n → {0, 1}, and
• P(g) is false for all g : {0, 1}n → {0, 1} having nk-size C-circuits.

In other words, on infinitely many input lengths n, P distinguishes some function
from all easy functions. We prove the following.

Theorem 1.1. For all typical C, NEXP �⊂ C if and only if there is a polynomial-
time computable property of Boolean functions that is useful against C with O(log n)
bits of advice.

That is, NEXP �⊂ C if and only if there is a language in P/O(log n) defining a
property of Boolean functions useful against C.

We can remove the O(log n) bits of advice of Theorem 1.1 by relaxing the notion of
a “property” of Boolean functions to hold over all strings. Boolean function properties
are only defined on 2n-length binary strings; however, every binary string x can be
viewed as the truth table of a unique Boolean function, by simply appending zeroes
to the end of x until its length is a power of 2. For brevity we shall call this longer
string fx, which is a function from {0, 1}� to {0, 1} where � is the smallest integer
satisfying 2� ≥ |x|. Informally, we define an algorithm A to be useful against C if, for

1See the webpage [1] for a discussion with many views on these questions.
2Define A(T) to accept its 2n-bit input T if and only if T is the truth table of a function that

is complete for E = TIME[2O(n)]. A can be implemented to run in poly(2n) time and rejects all T
with C-circuits, assuming EXP �⊂ C.

3For simplicity, in this paper we mostly restrict ourselves to typical classes; however, it will
be clear from the proofs that we only rely on a few properties of these classes, and more general
statements can be made.

NATURAL PROOFS VERSUS DERANDOMIZATION 499

all k, there are infinitely many input lengths N such that
• for at least one x ∈ {0, 1}N , A(x) = 1, and
• for all x′ ∈ {0, 1}N such that fx′ : {0, 1}� → {0, 1} has nk-size C-circuits,
A(x′) = 0.

Theorem 1.2. For all typical C, NEXP �⊂ C if and only if there is a polynomial-
time algorithm that is useful against C.

Theorems 1.1 and 1.2 help explain why it is difficult to prove even NEXP circuit
lower bounds: any NEXP lower bound must meet precisely two of the three condi-
tions of Natural Proofs (constructivity and usefulness).4 The above two theorems say
that every NEXP circuit lower bound must exhibit some constructive property useful
against those circuits. Polynomial-time algorithms distinguishing “some” functions
from “all” easy functions look difficult to construct, even infinitely often; if one adds
in largeness too, these algorithms are likely impossible to construct.

One can make a heuristic argument that the recent proof of NEXP �⊂ ACC0 [36]
evades Natural Proofs by being nonconstructive. Intuitively, the proof uses an ACC0

Circuit SAT algorithm that only mildly improves over brute force, so it runs too slowly
to obtain a polytime property useful against ACC0. Theorem 1.1 shows that, in fact,
constructivity is necessary. Moreover, the proofs of Theorems 1.1 and 1.2 yield an
explicit property useful against ACC0.

The techniques used in these theorems can be applied, along with several other
ideas, to prove new superpolynomial lower bounds against ACC0. First, we prove
exponential-size lower bounds on the ACC0 circuit complexity of encoding witnesses
for NEXP languages.

Theorem 1.3. For all d, m there is an ε > 0 such that NTIME[2O(n)] does not
have 2n

ε

-size d-depth AC0[m] witnesses.

Formal definitions can be found in section 3; informally, Theorem 1.3 says that
there are NEXP languages with verifiers that only accept witness strings of exponen-
tially high ACC0 circuit complexity. It is interesting that while we can prove such
lower bounds for encoding NEXP witnesses, we do not yet know how to prove them
for NEXP languages themselves (the best known size lower bound for NEXP is “third-
exponential”).

These circuit lower bounds for witnesses can also be translated into new ACC0

lower bounds for some complexity classes. Recall that NE = NTIME[2O(n)] and io-P =
io-TIME[nO(1)], the latter being the class of languages L such that there is an L′ ∈ P
where, for infinitely many n, L ∩ {0, 1}n = L′ ∩ {0, 1}n. That is, L agrees with a
language in P on infinitely many input lengths. The class NE/1 ∩ coNE/1 consists of
languages L ∈ NE ∩ coNE recognizable with “one bit of advice.” That is, there are
nondeterministic machines M and M ′ running in 2O(n) time with the property that
for all n, there are bits yn, zn ∈ {0, 1} such that for all strings x, x ∈ L if and only
if M(x, yn) accepts on all paths if and only if M ′(x, zn) rejects on all paths. (In fact,
in our case we may assume yn = zn for all n.)

4One may also wonder whether nonconstructive large properties imply any new circuit lower
bounds. This question does not seem to be as interesting. For one, there are already coNP-natural
properties useful against P/poly (simply try all possible small circuits in parallel), and the con-
sequences of such properties are well known. So anything coNP-constructive or worse is basically
uninformative (without further information on the property). Furthermore, slightly more construc-
tive properties, such as NP-natural ones, seem unlikely [32].

500 R. RYAN WILLIAMS

Theorem 1.4. NE∩ io-P and NE/1∩ coNE/1 do not have ACC0 circuits of nlogn

size.5

As observed by Russell Impagliazzo and an anonymous referee, it is easy to derive
a circuit lower bound for the class NE∩ io-P, directly from a lower bound for NE. Let
L ∈ NE be a language that does not have C-circuits of size s(n), for some circuit class
C. Define the language L′ = {xx | x ∈ L}, which is in NE ∩ io-P. It is clear that
if L′ had C-circuits of size s(n/2), then L would also have C-circuits of size s(n), a
contradiction.

The lower bound for NE/1 ∩ coNE/1 is intriguing because (as far as we can tell)
it must necessarily be proved differently. The known proof of NEXP �⊂ ACC0 works
for the class NEXP because there is a tight time hierarchy for nondeterminism [38].
However, the NTIME ∩ coNTIME classes are not known to have such a hierarchy.
(They are among the “semantic” classes, which are generally not known to have
complete languages or nice time hierarchies.) Interestingly, the proof of Theorem 1.4
crucially uses the previous lower bound framework against NEXP, and builds on it, via
Theorem 1.1 and a modification of the NEXP �⊂ ACC0 lower bound. Indeed, it follows
from the arguments here (building on [37, 36]) that the lower bound consequences of
nontrivial circuit SAT algorithms can be strengthened in the following sense.

Theorem 1.5. Let C be typical. Suppose the satisfiability problem for nO(logc n)-
size C-circuits can be solved in O(2n/n10) time, for all constants c. Then NE/1 ∩
coNE/1 do not have nlogn-size C-circuits.

Theorem 1.6. Suppose we can approximate the acceptance probability of any
given nO(logc n)-size circuit (with fan-in two and arbitrary depth) on n inputs to within
1/6, for all c, in O(2n/n10) time (even nondeterministically). Then NE/1 ∩ coNE/1
do not have nlogn-size circuits.

Natural Proofs vs. derandomization. Given Theorem 1.1, it is natural to
wonder whether full-strength natural properties are equivalent to some circuit lower
bound problems. If so, such lower bounds should be considered unlikely. To set up
the discussion, let RE = RTIME[2O(n)] and ZPE = ZPTIME[2O(n)]; that is, RE is the
class of languages solvable in 2O(n) randomized time with one-sided error, and ZPE
is the corresponding class with zero-error (i.e., expected 2O(n) running time).

For a typical circuit class C, we informally say that RE (resp., ZPE) has C seeds
if, for every predicate defining a language in the respective complexity class, there
are C-circuit families succinctly encoding exponential-length “seeds” that correctly
decide the predicate. (Formal definitions are given in section 5.) Having C seeds
means that the randomized class can be derandomized very strongly: by trying all
poly-size C-circuits as random seeds, one can decide any predicate from the class in
EXP.

We prove a strong correspondence between the existence of such seeds and the
nonexistence of natural properties.

Theorem 1.7. Let C be typical. The following are equivalent:
1. There are no P-natural properties useful (resp., ae-useful 6) against C.

5These are not the strongest size lower bounds that can be proved, but they are among the
cleanest. Please note that the conference version of this paper claimed a lower bound for the class
NE∩ coNE. We are grateful to Russell Impagliazzo and Igor Carboni Oliveira [30] for observing that
our arguments presently only prove lower bounds for the above two classes.

6Here, ae-useful is just the “almost-everywhere useful” version, where the property is required
to distinguish random functions from easy ones on almost every input length.

NATURAL PROOFS VERSUS DERANDOMIZATION 501

2. ZPE has C seeds for almost all (resp., infinitely many) input lengths.

Informally, Theorem 1.7 says that ruling out P-natural properties is equivalent
to a strong derandomization of randomized exponential time, using small circuits to
encode exponentially long random seeds. Similarly, we prove that a variant of natural
properties is related to succinct “hitting sets” for RE (Theorem 5.1).

It is worth discussing the meaning of these results in a little more detail. Let
C,D be appropriate circuit classes. Roughly speaking, the key lesson of Natural
Proofs [31, 28, 24] is that if there are D-natural properties useful against C, then
there are no pseudorandom functions (PRFs) computable in C that fool D-circuits;
namely, there is a statistical test T computable in D such that, for every function
f(·, ·) ∈ C, the test T with query access to f(x, ·) (where x is a uniform random
n-bit seed) can distinguish f(x, ·) from a uniform random function (generated using
2n uniform random bits). Now, if we have a PRF computable in C that can fool
D-circuits, this PRF can be used to obtain C seeds for randomized D-circuits with
one-sided error.7 That is, the existence of PRFs implies the existence of C seeds,
so our consequence in Theorem 1.7 (of the existence of natural properties) that “no
ZPE predicate has C seeds” appears stronger than “there are no PRFs” (as in [31]).
Moreover, this stronger consequence in Theorem 1.7 (and Theorem 5.1, proved later)
yields an implication in the reverse direction: the lack of D-natural properties implies
strong derandomizations of randomized exponential-size D.

Theorem 1.7 also shows that it is plausible that some derandomization problems
are as hard as resolving P �= NP. Since we believe that there are no P-natural
properties useful against P/poly, then by Theorem 1.7, we must also believe that
there are “canonical” derandomizations of ZPE in EXP, along the lines of item 2 in
Theorem 1.7. However, proving that such a canonical derandomization exists would
in turn imply that there are no P-natural properties useful against P/poly (again by
Theorem 1.7), and hence P �= NP.

Unconditional mild derandomizations. Understanding the relationships be-
tween the randomized complexity classes ZPP, RP, and BPP is a central problem in
modern complexity theory. It is well known that

P ⊆ ZPP = RP ∩ coRP ⊆ RP ⊆ BPP,

but it is not known whether any inclusion is an equality. The ideas behind Theo-
rem 1.7 can also be applied to prove new relations between these classes. We define
ZPTIME[t(n)]/d(n) to be the class of languages solvable in zero-error time t(n) by
machines of description length at most d(n) (under some standard encoding of ma-
chines).8 The “infinitely often” version io-ZPTIME[t(n)]/d(n) is the class of languages
L solvable with machines of description length d(n) running in time t(n) that are zero-
error for infinitely many input lengths: for infinitely many n, the machine has the
zero-error property on all inputs of length n.

Theorem 1.8. Either
(a) RTIME[2O(n)] ⊆ SIZE[nc] for some c, or

7Consider any D-circuit D that tries to use f as a source of randomness. A C-circuit seed for D
can be obtained from a circuit computing f : since f fools D, at least one n-bit seed to f will make
Df print 1.

8N.B. Although our definition is standard (see, for example, [8, 14]), it is important to note
that there are other possible interpretations of the same notation. Here, we only require that the
algorithm is required to be zero-error for the “correct” advice or description, but one could also
require the algorithm to be zero-error no matter what advice is given.

502 R. RYAN WILLIAMS

(b) BPP ⊆ io-ZPTIME[2n
ε

]/nε for all ε > 0.

We have a win-win: either randomized exptime is very easy with nonuniform
circuits, or randomized computation with two-sided error has a zero-error simulation
(with description size nε) that dramatically avoids brute force. To appreciate the
theorem statement, suppose the first case could be modified to conclude that RP ⊆
io-ZPTIME[2n

ε

]/nε for all ε > 0. Then the famous (coRP) problem of polynomial
identity testing (PIT) would have a new subexponential-time algorithm, good enough
to prove strong NEXP circuit lower bounds.9 A quick corollary of Theorem 1.8 comes
close to achieving this. To simplify notation, we use the SUBEXP modifier in a
complexity class to abbreviate “2n

ε

time for every ε > 0.”

Corollary 1.1. For some c > 0, RP ⊂ io-ZPSUBEXP/nc.

That is, the error in an RP computation can be removed in subexponential time
with fixed-polynomial advice, infinitely often. We emphasize that the advice needed
is independent of the running times of the RP and ZPSUBEXP computations: the RP

computation could run in ncc
cc

time and still need only nc advice to be simulated

in 2n
1/cc

cc

time. Corollary 1.1 should be compared with a theorem of Kabanets [19],
who gave a simulation of RP in pseudo-subexponential time with zero-error. That is,
his simulation is only guaranteed to succeed against efficient adversaries which try to
generate bad inputs (but his simulation also does not require advice).

An analogous argument can be used to give a new simulation of Arthur–Merlin
games. Informally (and following the notation outlined above), io-Σ2SUBEXP/n

c is
the class of languages which agree infinitely often with Σ2 machines running in 2n

ε

time, for all ε > 0, with O(nc) bits of advice.

Corollary 1.2. For some c > 0, AM ⊆ io-Σ2SUBEXP/n
c.

The ideas used here can also be applied to prove a new equivalence between
NEXP = BPP and nontrivial simulations of BPP. Informally, the complexity class
io-HeuristicZPTIME[2n

ε

]/nε is the class of languages which, for infinitely many n,
agree on a 1 − 1/n fraction of the n-bit inputs with zero-error randomized subexpo-
nential time machines using O(nε) advice.

Theorem 1.9. NEXP �= BPP if and only if for all ε > 0, BPP is contained in
io-HeuristicZPTIME[2n

ε

]/nε.

Finally, these ideas can be extended to show an equivalence between the existence
of RP-natural properties and P-natural properties against a circuit class.

Theorem 1.10. If there exists an RP-natural property P useful against a typical
class C, then there exists a P-natural property P ′ against C.

That is, given any property P with one-sided error that is sufficient for distin-
guishing all easy functions from many hard functions, we can obtain a deterministic
property P ′ with analogous behavior. (Note this is not exactly a derandomization of
property P ; the property P ′ will in general have different input-output behavior from
P , but P ′ does use P as a subroutine.) The key idea of the proof is to swap the input
with the randomness in the property P .

9More precisely, the main result of Kabanets and Impagliazzo [21] concerning the derandomiza-
tion of PIT can be extended as follows: if PIT for arithmetic circuits can be solved for infinitely many
circuit sizes in nondeterministic subexponential time, then either NEXP �⊂ P/poly or the permanent
does not have polynomial-size arithmetic circuits.

NATURAL PROOFS VERSUS DERANDOMIZATION 503

2. Preliminaries. For simplicity, all languages are over {0, 1}. We fix some
standard encoding of Turing machines and define the description length of a ma-
chine M to be the length of M under the encoding. We assume knowledge of
the basics of complexity theory [4], such as advice-taking machines, and complex-

ity classes like EXP = TIME[2n
O(1)

], NEXP = NTIME[2n
O(1)

], AC0[m], ACC0, and so
on. We use SIZE[s(n)] to denote the class of languages recognized by a (nonuniform)
s(n)-size circuit family. We also use the (standard) “subexponential-time” notation
SUBEXP =

⋂
ε>0 TIME[2O(nε)]. (So, for example, NSUBEXP refers to the class of

languages accepted in nondeterministic 2n
ε

time, for all ε > 0.) When we refer to a
“typical” circuit class (AC0, ACC0, TC0, NC1, NC, or P/poly}), we will always assume
the class is nonuniform, unless otherwise specified. Some familiarity with prior work
connecting SAT algorithms and circuit lower bounds [37, 36] would be helpful, but
this paper is mostly self-contained.

We will use advice classes : for a deterministic or nondeterministic class C and
a function a(n), C/a(n) is the class of languages L such that there is an L′ ∈ C
and an arbitrary function f : N → {0, 1}� with |f(n)| ≤ a(n) for all x such that
L = {x | (x, f(|x|)) ∈ L′}. That is, the arbitrary advice string f(n) can be used to
solve all n-bit instances within class C.

For semantic (e.g., randomized, NTIME ∩ coNTIME) classes C, the definition of
advice is technically subtle. We shall only require that the class C algorithm exhibits
the relevant promise condition (zero-error, one-sided error, or otherwise) for the “cor-
rect” advice or description; one could also require that the algorithm satisfies the
promise condition no matter what advice is given.

More precisely, for a randomized machine M and complexity class C in the set
{RTIME[t(n)],ZPTIME[t(n)],BPTIME[t(n)]}, we say that M is of type C on a given in-
put x if M on x runs in time t(|x|) and M satisfies the promise of one-sided/zero/two-
sided error on input x. (For example, in the case of one-sided error, if x ∈ L, then
M on x should accept at least 2/3 of the computation paths; if x /∈ L, then M on x
should reject all of the computation paths. In the case of zero-error, if x ∈ L, then
M on x should accept at least 2/3 of the paths and output ? (i.e., don’t know) on
the others; if x /∈ L, then M on x should reject at least 2/3 of the paths and output
? on the others.) Then for C ∈ {RTIME[t(n)],ZPTIME[t(n)],BPTIME[t(n)]}, C/a(n)
is the class of languages L recognized by a randomized machine of description length
a(n) (under some standard encoding of machines) that is of type C on all inputs [8].
Equivalently, L ∈ C/a(n) is in the class if there is a machine M and advice function
s : N → {0, 1}a(n) such that for all x ∈ {0, 1}�, M is a machine of type C when exe-
cuted on input (x, a(|x|)) (M satisfies the promise of one-sided/zero/two-sided error
on that input) and x ∈ L if and only if M(x, a(|x|)) accepts [14].

We also use infinitely often classes : for a deterministic or nondeterministic com-
plexity class C, io-C is the class of languages L such that there is an L′ ∈ C where,
for infinitely many n, L ∩ {0, 1}n = L′ ∩ {0, 1}n. For randomized classes C ∈
{RTIME[t(n)],ZPTIME[t(n)],BPTIME[t(n)]}, as well as “semantic” complexity classes
such as (NTIME ∩ coNTIME)[t(n)], io-C is the class of languages L recognized by a
machine M such that, for infinitely many input lengths n, M is of type C on all inputs
of length n (and need not be of type C on other input lengths).

Some particular notation and conventions will be useful. For any circuit C
viewed as a function C(x1, x2, . . . , xn), i < j, and a1, . . . , an ∈ {0, 1}, the nota-
tion C(a1, . . . , ai, ·, aj, . . . , an) represents the circuit with j− i− 1 inputs obtained by
assigning the input xq to aq, for all q ∈ [1, i] ∪ [j, n]. In general, the symbol · is used

504 R. RYAN WILLIAMS

to denote free unassigned inputs to the circuit.

2.1. Truth tables and their circuit complexity. In this paper, we study
the circuit complexities of all strings, even those which are not of length equal to a
power of two. To make the discussion precise, we carefully develop the concepts in
this section.

Let y1, . . . , y2k ∈ {0, 1}k be the list of k-bit strings in lex order. For a Boolean
function f : {0, 1}n → {0, 1}, the truth table of f is defined to be

tt(f) := f(y1)f(y2) · · · f(y2n),
and the truth table of a circuit is simply the truth table of the function it defines. For
binary strings with lengths that are not powers of two, we use the following encoding
convention. Let T be a binary string, and let k = �log2 |T |�. The Boolean function
encoded by T or the function corresponding to T , denoted by fT , is the function

satisfying tt(fT) = T 02
k−|T |.

The size of a circuit is its number of gates. The circuit complexity of an arbitrary
string (and, hence, a function) takes some care to properly define, based on the circuit
model. For the unrestricted model, the circuit complexity of T , denoted as CC(T), is
simply the minimum size of any circuit computing fT . For a depth-bounded circuit
model, where a depth function must be specified prior to giving the circuit family,
the appropriate measure is the depth-d circuit complexity of T , denoted as CCd(T),
which is the minimum size of any depth-d circuit computing fT . (Note that, even
for circuit classes like NC1, we have to specify a depth upper bound c logn for some
constant c.) For the class ACC0, we must specify a modulus m for the MOD gates, as
well as a depth bound, so when considering ACC0 circuit complexity, we look at the
depth-d mod-m circuit complexity of T , CCd,m(T), for fixed d and m.

A simple fact about the circuit complexities of truth tables and their substrings
will be very useful.

Proposition 1. Suppose T = T1 · · ·T2k is a string of length 2k+� such that
T1, . . . , T2k each have length 2�. Then CC(Ti) ≤ CC(T), CCd(Ti) ≤ CCd(T), and
CCd,m(Ti) ≤ CCd,m(T).

Proof. Given a circuit C of size s for fT , a circuit for fTi is obtained by substi-
tuting values for the first k inputs of C. This yields a circuit of size at most s.

Sometimes we will require a more general claim: for any string T , the circuit
complexity of an arbitrary substring of T can be bounded via the circuit complexity
of T .

Lemma 2.1. There is a universal c ≥ 1 such that the following holds. Let T be
a binary string, and let S be any substring of T . Then for all d and m, CC(fS) ≤
CC(fT) + (c log |T |), CCd(fS) ≤ CCd+c(fT) + (c log |T |)1+o(1), and CCd,m(fS) ≤
CCd+c,m(fT) + (c log |T |)1+o(1).

Proof. Let c′ be sufficiently large in the following. Let k be the minimum integer
satisfying 2k ≥ |T | so that the Boolean function fT representing T has truth table

T 02
k−|T |. Suppose C is a size-s depth-d circuit for fT . Let S be a substring of

T = t1 · · · t2k ∈ {0, 1}2k, and let A,B ∈ {1, . . . , 2k} be such that S = tA · · · tB. Let
� ≤ k be a minimum integer which satisfies 2� ≥ B − A. Our goal is to construct a

small circuit D with � inputs and truth table S02
�−(B−A).

Let x1, . . . , x2� be the �-bit strings in lex order. The desired circuit D on input xi

can be implemented as follows: Compute i+A. If (i+A) ≤ B, then output C(xi+A);

NATURAL PROOFS VERSUS DERANDOMIZATION 505

otherwise output 0. To bound the size of D, first note there are depth-c′ circuits of
at most c′ · n log� n size for addition of two n-bit numbers [11], and there are also
well-known O(n)-size (unrestricted depth) circuits for addition.

Therefore in depth-c′ and size at most c′ ·k log� k we can, given input xi of length
�, output i + A. Determining whether i ≤ B − A can be done with (c′ · �)-size
depth-c′ circuits. Therefore D can either be implemented as a circuit of size at most
s+ c′((k log� k)+ �+1) and depth 2c′+d, or as an (unrestricted depth) circuit of size
at most s+ c′(k + �+ 1). To complete the proof, let c ≥ 3c′.

We will use the following strong construction of pseudorandom generators from
hard functions.

Theorem 2.1 (Umans [35]). There is a universal constant g and a function
G : {0, 1}� × {0, 1}� → {0, 1}� such that, for all s and Y satisfying CC(Y) ≥ sg, and
for all circuits C of size s,

∣∣∣∣ Pr
x∈{0,1}g log |Y |

[C(G(Y, x)) = 1]− Pr
x∈{0,1}s

[C(x) = 1]

∣∣∣∣ < 1/s.

Furthermore, G is computable in poly(|Y |) time.

Natural Proofs. A property of Boolean functions P is a subset of the set of all
Boolean functions. Let Γ be a complexity class, and let C be a circuit class (typically,
Γ = P and C = P/poly). A Γ-natural property useful against C is a property of
Boolean functions P that satisfies the following axioms:

• (Constructivity) P is decidable in Γ.
• (Largeness) For all n, P contains a 1/2O(n) fraction of all 2n-bit strings.
• (Usefulness) Let f = {fn} be a sequence of functions {fn} such that fn ∈ P
for all n. Then for all k and infinitely many n, fn does not have nk-size
C-circuits.10

Let f = {fn : {0, 1}n → {0, 1}} be a sequence of Boolean functions. A Γ-natural
proof that f �∈ C establishes the existence of a Γ-natural property P useful against
C such that P(fn) = 1 for all n. Razborov and Rudich proved that any P/poly-
natural property useful against P/poly could break all strong pseudorandom generator
candidates in P/poly. More generally, P/poly-natural properties useful against typical
C ⊂ P/poly imply there are no strong PRFs in C (but such functions are believed to
exist, even when C = TC0 [28]).

The natural property framework (as originally defined) only applies to strings
encoding Boolean functions, with lengths always equal to a power of two. In this
paper, we also consider the obvious extension of the natural property concept to
arbitrary length strings. We call such objects natural algorithms, to emphasize that
they are best viewed as algorithms operating on inputs of arbitrary length. For a
string x of length n, let � be the smallest integer such that 2� ≥ n. Recall we defined
the Boolean function corresponding to x to be fx : {0, 1}� → {0, 1} with truth table

x02
�−n.

Definition 2.1. A Γ-natural algorithm A useful against C satisfies the following
axioms:

• (Constructivity) L(A) is in Γ.
• (Largeness) For all n, A accepts at least a 1/nO(1) fraction of all n-bit strings.

10Note that some papers, including Razborov and Rudich [31], replace “infinitely many” with
“almost every”; in this paper, we call that version ae-usefulness.

506 R. RYAN WILLIAMS

• (Usefulness) There are infinitely many n such that
(a) A accepts at least one string x of length n, and
(b) for all y of length n accepted by A, the function fy does not have nk-size

C-circuits.
The above definition of natural algorithm does not radically change the notion of

usefulness (due to Lemma 2.1 in section 2.1); that is, padding a modest number of
zeroes onto a string does not significantly alter the circuit complexity of the function
represented by the string. However, the generalization to arbitrary input lengths is
very useful for connecting the ideas of natural proofs to derandomization and circuit
lower bounds.

2.2. Related work.

Equivalences between algorithms and lower bounds. Some of our results
are equivalences between algorithm design problems and circuit lower bounds. Equiva-
lences between derandomization hypotheses and circuit lower bounds have been known
for some time, and recently there has been an increase in results of this form. Nisan
and Wigderson [29] famously proved an equivalence between “approximate” circuit
lower bounds and the existence of pseudorandom generators. Impagliazzo andWigder-
son [17] prove that BPP �= EXP implies deterministic subexponential-time heuristic
algorithms for BPP (the simulation succeeds on most inputs drawn from an efficiently
samplable distribution, for infinitely many input lengths). As the opposite direction
can be shown to hold, this is actually an equivalence. (Impagliazzo, Kabanets, and
Wigderson [16] proved another such equivalence, which we discuss below.) Two more
recent examples are Jansen and Santhanam [18], who give an equivalence between non-
trivial algorithms for polynomial identity testing and lower bounds for the algebraic
version of NEXP, and Aydinlioglu and van Melkebeek [5], who give an equivalence
between Σ2-simulations of Arthur–Merlin games and circuit lower bounds for Σ2EXP.

Almost-Natural Proofs. Strongly philosophically related to the present work,
Chow [13] showed that if strong pseudorandom generators do exist, then there is
a proof of NP �⊂ P/poly that is almost-natural, where the fraction of inputs in the

largeness condition is relaxed from 1/2O(n) to 1/2n
poly(log n)

. Hence the Natural Proofs
barrier was already known to be sensitive to relaxations of largeness. To compare,
we show that removing the largeness condition entirely results in a direct equivalence
between the existence of “almost-natural” properties and circuit lower bounds against
NEXP. Chow also proved relevant unconditional results: for example, there exists

a SIZE[O(n)]-natural property that is 1/2n
(logn)ω(1)

-large and useful against P/poly.
Theorem 1.1 shows that if SIZE[O(n)] could be replaced with P, then NEXP �⊂ P/poly
follows.

The work of Impagliazzo, Kabanets, and Wigderson. Impagliazzo, Ka-
banets, and Wigderson [16] proved a theorem similar to one direction of Theorem 1.1,
showing that an NP-natural property (without largeness) useful against P/poly implies
NEXP �⊂ P/poly. Allender [2] proved that there is a (nonlarge) property computable
in NP useful against P/poly if and only if there is such a property in uniform AC0.
Hence his equivalence implies, at least for C = P/poly, that the “polynomial-time”
guarantee of Theorem 1.1 can be relaxed to “AC0.”

Impagliazzo, Kabanets, and Wigderson [16] also give an equivalence between
NEXP lower bounds and an algorithmic problem: NEXP �⊂ P/poly if and only if the
acceptance probability of any circuit can be approximated, for infinitely many circuit

NATURAL PROOFS VERSUS DERANDOMIZATION 507

sizes, in nondeterministic subexponential time with subpolynomial advice. The major
differences between their equivalence and Theorems 1.1 and 1.2 are in the underlying
computational problems and the algorithmic guarantees: they study subexponential-
time algorithms for approximating acceptance probabilities of circuits, while we study
algorithms which estimate the circuit complexities of given functions. Moreover, their
equivalence is less general with respect to circuit classes; for example, it is not known
how to prove an analogue of their equivalence for ACC0.

Since they proved that the existence of NP-natural properties useful against
P/poly imply that NEXP �⊂ P/poly, Impagliazzo, Kabanets, and Wigderson posed
the following interesting open problem:

Does the existence of a P-natural property useful against P/poly imply
EXP �⊂ P/poly?

Our work shows that the absence of a P-natural property useful against P/poly
implies new lower bounds.

Corollary 2.1. If there is no P-natural property useful against P/poly, then
NP �= ZPP.

Proof. We prove the contrapositive. If NP = ZPP, then there is a ZPP-natural
property useful against P/poly (since there are trivially coNP-natural properties).
Theorem 1.10 implies there is also a P-natural property useful against P/poly.

Therefore, an affirmative answer to the problem of Impagliazzo, Kabanets, and
Wigderson would prove that EXP �= ZPP.

Theorem 2.2. If (P-natural properties useful against P/poly ⇒ EXP �⊂ P/poly)
is true, then EXP �= ZPP unconditionally.

Proof. We have

EXP = ZPP ⇒ NP = ZPP

⇒ there are P-natural properties useful against P/poly, by Corollary 2.1

⇒ EXP �⊂ P/poly, by assumption

⇒ EXP �= ZPP.

Thus EXP �= ZPP.

3. NEXP lower bounds and useful properties. In this section, we prove
equivalences between NEXP circuit lower bounds and some relaxations of natural
properties.

Reminder of Theorem 1.1. For all typical C, NEXP �⊂ C if and only if there
is a polynomial-time computable property of Boolean functions that is useful against
C with O(log n) bits of advice.

Reminder of Theorem 1.2. For all typical C, NEXP �⊂ C if and only if there
is a polynomial-time algorithm that is useful against C.

Our proofs of these theorems take several steps (they could be shortened, as in
Oliveira’s survey [30], but the overall proofs would be less informative). First, we give
an equivalence between the existence of small circuits for NEXP and the existence of
small circuits encoding witnesses to NEXP languages (Theorem 3.1), strengthening
the results of Impagliazzo, Kabanets, and Wigderson [16] (who essentially proved one
direction of the equivalence). Second, we prove an equivalence between the nonexis-
tence of size-s(O(n)) witness circuits for NEXP and the existence of a P-constructive

508 R. RYAN WILLIAMS

property Ps useful against size s(O(n)) circuits (Theorem 3.2), for all circuit sizes
s(n). For each polynomial s(n) = nk, this yields a (potentially different) useful prop-
erty Ps; to get a single property that works for all polynomial circuit sizes, we show
that there exists a “universal” P-constructive property P �: if for every circuit size s
there is some P-constructive useful property Ps, this particular property P � is useful
for all s (Theorem 3.3).

We first need a definition of what it means for a language (and a complexity class)
to have small circuits encoding witnesses. We restrict ourselves to “good” verifiers
which examine witnesses of length equal to a power of two so that witnesses can be
viewed as truth tables of Boolean functions.

Definition 3.1. Let L ∈ NTIME[t(n)], where t(n) ≥ n is constructible, and let C
be a circuit class. An algorithm V (x, y) is a good predicate for L if

• V runs in time O(poly(|y|+ t(|x|))), and
• for all x ∈ {0, 1}�, x ∈ L if and only if there is a string y such that |y| =
2� ≤ O(t(|x|)) for some � (a witness for x) such that V (x, y) accepts.

Let L(V) denote the language accepted by V .

For every L ∈ NTIME[t(n)], basic complexity arguments show that there is at
least one good predicate V such that L = L(V). Furthermore, for every reasonable
verifier V used to define an NEXP language L, there is an equivalent good predicate
V ′ (with possibly slightly longer witness lengths). Now we define what it means for
a verifier to have small-circuit witnesses.

Definition 3.2. Let V be a good predicate. V has C witnesses of size s(n) if for
all strings x, if x ∈ L, then there is a C-circuit Cx of size at most s(n) such that
V (x, tt(Cx(·))) accepts.

L has C witnesses of s(n) size if for all good predicates V for L, V has C witnesses
of size at most s(n).11

The class NTIME[t(n)] has C witnesses of size s(n) if for every language L ∈
NTIME[t(n)], L has C witnesses of at most s(n) size. The meaning of NEXP having
C witnesses is defined analogously.

The above definition of circuit witnesses allows, for every x, a different circuit
Cx encoding a witness for x. We will also consider a stronger notion of oblivious
witnesses, where a single circuit Cn encodes witnesses for all x ∈ L of length n.

Definition 3.3. Let L ∈ NTIME[t(n)], and let C be a circuit class. L has obliv-
ious C witnesses of size s(n) if for every good predicate V for L, there is a C-circuit
family {Cn} of size s(n) such that for all x ∈ {0, 1}�, if x ∈ L, then V (x, tt(C|x|(x, ·)))
accepts.12

NTIME[t(n)] has oblivious C witnesses if every L ∈ NTIME[t(n)] has oblivious C
witnesses. The meaning of NEXP having C witnesses is defined analogously.

We establish an equivalence between the existence of small circuits for NEXP and
small circuits for NEXP witnesses in both the oblivious and normal senses.

Theorem 3.1. Let C be a typical polynomial-size circuit class. The following are
equivalent:

(1) NEXP ⊂ C.
11N.B. For circuit classes C where the depth d and/or modulus m may be bounded, we also

quantify this d and m simultaneously with the size parameter s(n). That is, the depth, size, and
modulus parameters are chosen prior to choosing an input, as usual.

12That is, the truth table of C|x| with x hard-coded is a valid witness for x.

NATURAL PROOFS VERSUS DERANDOMIZATION 509

(2) NEXP has C witnesses.
(3) NEXP has oblivious C witnesses.

Proof. (1) ⇒ (2) Impagliazzo, Kabanets, andWigderson [16] proved this direction
for C = P/poly. The other cases of C were observed in prior work [37, 36].

(2) ⇒ (3) Assume NEXP has C witnesses (implicitly, they are of polynomial
size). Let V (x, y) be a good predicate for an NEXP problem that (without loss of
generality) accepts witnesses y of length exactly 2p(|x|), for some polynomial p(n). We
will construct a C-circuit family {Cn} such that x ∈ L if and only if V (x, tt(C|x|(x, ·)))
accepts (recall tt(C|x|(x, ·)) is the truth table of the circuit C|x| with x hard-coded
and the remaining inputs free). The idea is to construct a new verifier that “merges”
witnesses for all inputs of a given length into a single witness. (This theme will
reappear throughout the paper.)

Let x1, . . . , x2n be the list of strings of length n in lexicographical order. We define
a new good predicate V ′ which takes a pair (x, q) where x ∈ {0, 1}n and q = 0, . . . , 2n,
along with y of length 2n+p(n):

V ′((x, q), y): Accept if and only if the following are all true:
1. y = b1z1 · · · b2|x|z2|x| , where for all i = 1, . . . , 2|x|, bi ∈ {0, 1} and zi ∈

{0, 1}2p(|x|)
;

2. exactly q of the bi’s are 1;
3. for all i’s such that bi = 1, V (xi, zi) accepts;

4. for all i’s such that bi = 0, zi = 02
p(|x|)

.

V ′ runs in time exponential in |x|; by assumption, V ′ has C witnesses of polyno-
mial size. Observe that the computation of V ′ does not depend on the input x, only
the length |x|.

To obtain oblivious C witnesses for V , let qn be the actual number of x of length
n such that x ∈ L(V). Then for every y′′ such that V ′((x′, qn), y′′) accepts, the string
y′′ must encode a valid witnesses zi for every xi ∈ L(V). By assumption, there is
a circuit C(x′,qn) such that C(x′,qn)(i) outputs the ith bit of y′′. This circuit C(x′,qn)
yields the desired witness circuit: indeed, the circuit Dn(x, j) := C(x′,qn)(x◦j) (where
x ◦ j denotes the concatenation of x and j as binary strings) prints the jth bit of a
valid witness for x (or it prints 0 if x /∈ L(V)).

(3) ⇒ (1) Assume NEXP has oblivious C witnesses. Let M be a nondeterministic
exponential-time machine. We want to give a C-circuit family recognizing L(M).
First, we define a good predicate Vk:

Vk(x, y): For all circuits C of size |x|k + k,
If tt(C) encodes an accepting computation history of M(x), then

accept if and only if the first bit of y is 1.
End for
Accept if and only if the first bit of y is 0.

By assumption, there is a k such that accepting computation histories of M on all
length n inputs can be encoded with a single C-circuit family of size at most nk + k.

For such a k, Vk will run in 2O(nk) time and will always find a circuit C encoding an
accepting computation history of M(x), when x ∈ L(M). Therefore, Vk(x, y) accepts

510 R. RYAN WILLIAMS

if and only if

[(first bit of y = 1) ∧ (x ∈ L(M))] ∨ [(first bit of y = 0) ∧ (x /∈ L(M))].

Now, because Vk is a good predicate for the NEXP language L(M), we can apply
the assumption again to Vk itself, meaning there is a C-circuit family {Cn} encoding
witnesses for Vk obliviously. This family can be easily used to compute L(M): define
the circuitDn for n-bit instances of L(M) to output the first bit of the witness encoded
by Cn(x, ·).

Next, we prove a tight relation between witnesses for NE computations and con-
structive useful properties. (This equivalence will be useful for proving new conse-
quences later.) Here, the typical circuit class C does not have to be polynomial-size
bounded, and the size function s(n) quantified below can be any reasonable function
in the range [n2, 2n/(2n)] (for example). We have two versions of the relation: one
for constructive properties of Boolean functions (defined only on 2n-bit strings) and
one for polynomial-time algorithms (running on strings of all possible lengths).

Theorem 3.2. For all circuit-size functions s(n) ∈ [n2, 2n/(2n)], the following
are equivalent:

1. There is a c ∈ (0, 1] such that NTIME[2O(n)] does not have s(cn)-size witness
circuits from C.

2. There are a c ∈ (0, 1] and a P/(logn)-computable property of Boolean func-
tions that are useful against C-circuits of size at most s(cn).13

3. There are a c ∈ (0, 1] and a polynomial-time algorithm that are useful against
C-circuits of size at most s(cn).

Proof. (1) ⇒ (2) Suppose NTIME[2O(n)] does not have s(c · n)-size witness C-
circuits for some c ∈ (0, 1]. Then there must be a good predicate V running in
TIME[2dn] for some d ≥ 1 that does not have s(c ·n)-size witnesses. Hence there is an
infinite subsequence of “bad” inputs {x′

i} such that for all i, x′
i ∈ L(V), but for every

y such that V (x′
i, y) accepts, y requires s(c · |x′

i|)-size C-circuits to encode.
To give a P/(logn)-computable property of Boolean functions P that is useful

against C-circuits, simply define P(f) with advice x′
i to be true if and only if f :

{0, 1}d|x′
i| → {0, 1} and V (x′

i, f) accepts (when f is construed as a 2d|xi|-bit string).
The property P is clearly implementable in P/(logn) (the advice can be anything
when no appropriate x′

i exists), and for infinitely many input lengths �, there is a
string x′

i ∈ L(V) of length � such that every string y of length 2d� accepted by
V (x′

i, y) requires s(c · �)-size C-circuits as a Boolean function. Hence for infinitely
many �, the property P is true of at least one Boolean function on d� bits, and is false
for all functions on d� bits with s(c · �)-size C-circuits, for some fixed d.

(2) ⇒ (3) Let P be a property of Boolean functions with logn bits of advice,
implemented by a polynomial-time algorithm B(·, ·), which is useful against C-circuits
of size s(cn). We give a polynomial-time algorithm A with no advice that is useful
against C-circuits of size at most s(cn). Again, let x1, . . . , x2� be the �-bit strings in
lexicographical order in the following.

13For circuit classes C with depth bound d, this d will be universally quantified after c. So, for
example, there is a c such that for all constant d, NTIME[2O(n)] does not have s(cn)-size depth-d
AC0[6] witnesses if and only if there is a c such that for all d, there is a polynomial-time algorithm
useful against depth-d AC0[6] circuits of size s(cn).

NATURAL PROOFS VERSUS DERANDOMIZATION 511

A(y): If y does not have the form z01k, with |z| = 2�, for some k = 0, . . . , 2�−1
and �, then reject. Otherwise, compute k by counting the trailing 1’s at the end
of y, and accept if and only if B(z, xk) accepts.

Let � be an integer such that the property P , with the appropriate advice xk of
length d�, is useful for functions on � bits. Then for every (z, xk) pair accepted by the
algorithm B, the Boolean function defined by z of length 2� is not computable with
s(c · �)-size C-circuits.

Observe that, for each �, and every possible k = 0, . . . , 2� − 1, there is exactly
one input length, namely n = 2� + k + 1, for which the input xk of length � will
be considered, along with all possible z’s of length 2�. Therefore, on those infinitely
many input lengths n for which the corresponding input xk of length � equals some
bad input x′

j , A is useful against size-s(c · �) circuits from C.
(3) ⇒ (1) Let A be a poly(n)-time algorithm that is useful against s(c · n)-size

C-circuits for some fixed constant c. In the following, let xk be the kth string in the
lexicographical ordering of strings of length |xk|. Define a machine:

M(xk, T): If |T | �= 2|xk|, reject. If k > |T |/2, reject.
Otherwise, strip the last k − 1 bits from T ,

obtaining a string T ′ of length 2|xk| − (k − 1).
Accept if and only if A(T ′) accepts.

Now define L = {x | (∃ T : |T | = 2|x|)[M(x, T) accepts]}. Note that L ∈
NTIME[2O(n)], and that M is a good verifier for L. By our assumption that A is a
polytime useful algorithm, there are infinitely many integers � such that

(1) A accepts at least one string y� of length �, and
(2) if A accepts y� of length �, then the Boolean function corresponding to y�

(possibly obtained by padding zeroes to the end of y�) has circuit complexity
greater than s(c · �).

For each such �, let j� be the smallest integer such that 2j� ≥ �. Define i� := 2j� − �;
that is, i� ∈ {0, 1, . . . , 2j�−1− 1} equals the number of zeroes needed to pad y� so that
the length becomes a power of two. In the following, let x1, . . . , x2j� be the list of all
j�-bit strings in lexicographical order.

Then, M(xi� , T) accepts if and only if |T | = 2j� , T = y�z for some z with |z| = i�,
and A(y�) accepts. For infinitely many �, each such y� has the property that y�0

i�

has circuit complexity greater than s(c · j�); therefore each of the strings T such

that M(xi� , T) accepts must have circuit complexity greater than s(c · j�) − j
1+o(1)
�

as well, by Proposition 1. So there is an infinite sequence of inputs {x′
�} such that

all strings x′
� are in L, and all witnesses of x′

� have circuit complexity greater than
s(c · |x′

�|) − |x′
�|1+o(1). Hence L is a language in NTIME[2O(n)] that does not have

(s(c · n) − n1+o(1))-size witnesses. Since s(n) ≥ n2, we have completed the proof of
this direction.

Using complete languages for NEXP, one can obtain an explicit property in P
that is useful against C-circuits if there is any constructive useful property. This
universality means that if there are multiple constructive properties that are useful
against various circuit-size functions, then there is one constructive property useful
against all these size functions.

512 R. RYAN WILLIAMS

Theorem 3.3. Let {sk(n)} be an infinite family of functions such that for all
k, there is a polynomial-time algorithm Pk (or polynomial-time property of Boolean
functions with logn bits of advice) that is useful against all C-circuits of sk(n) size.
Then there is a single P-computable algorithm P � such that, for all k, there is a c > 0
such that P � is useful against all C-circuits of sk(cn) size.

14

Proof. Let b(n) denote the nth string of {0, 1}� in lexicographical order. The
Succinct Halting problem consists of all triples 〈M,x, b(n)〉 such that the nonde-
terministic TM M accepts x within at most n steps. Define the following algorithm:

History(y): Compute z = b(|y|). If z does not have the form 〈M,x, b(n)〉,
reject. Accept if and only if there is a prefix y′ of y with length equal to a
power of two such that y′ encodes an accepting computation history to z ∈
SuccinctHalting.

Observe that History is implementable in polynomial time. The theorem follows
from the next claim.

Claim 3.1. History is useful against C-circuits of size s(cn) for some c > 0 if
and only if there is some polynomial-time algorithm (possibly with logn bits of advice)
that is useful against C-circuits of size s(n).

To see why Theorem 3.3 follows, observe that if we have infinitely many properties
Pk, each of which is useful against C-circuits of sk(n) size, then for every k, History

will be useful against sk(n)-size C-circuits.
One direction of the claim is obvious. For the other, suppose there is a polynomial-

time property with logn bits of advice (or a polynomial-time algorithm) useful against
C-circuits of size s(n). By Theorem 3.2, NTIME[2O(n)] does not have s(dn)-size wit-
nesses from C for some constant d. Let V be a good predicate running in time 2kn

that does not have s(dn)-size C witnesses, and let M be the corresponding nondeter-
ministic machine which, on x, guesses a y and accepts if and only if V (x, y) accepts.
It follows that there are infinitely many instances of SuccinctHalting of the form
〈M,x, b(2k|x|)〉 that do not have C witnesses of size s(cn) for some constant c. There-
fore, there are infinitely many zi = 〈Mi, xi, ni〉 in SuccinctHalting, where every
accepting computation history y′ of Mi(xi) has greater than s(cn)-size C-circuit com-
plexity. Then for all n such that zi = b(n) for some i, there is a y of length n such
that History(y) accepts but for all y′′ which encode functions with C-circuits of s(cn)
size, History(y′′) rejects (by Proposition 1; note that y′′ has length equal to a power
of two). Hence History is useful against C-circuits of size s(cn). This concludes the
proof of the theorem.

Putting everything together, we obtain Theorems 1.1 and 1.2.

Proof of Theorems 1.1 and 1.2. We prove Theorem 1.2; the proof of Theorem 1.1
is analogous, and we add parenthetical remarks below about how to prove it. Let C
be a typical class (of polynomial-size circuits). By Theorem 3.1, we have NEXP �⊂ C
if and only if for every k, NEXP does not have C witnesses of nk size.

Setting s(n) = nk for arbitrary k in Theorem 3.2, we infer that for every k, we
have the equivalence: NEXP does not have C witnesses of nk size if and only if there
are c > 0 and a polynomial-time algorithm that is useful against all C-circuits of size

14For depth-bounded/modulus-bounded circuit classes C, an analogous statement holds where we
quantify not only over k but also the depth d and modulus m.

NATURAL PROOFS VERSUS DERANDOMIZATION 513

at most (cn)k. (Note that Theorem 3.2 also implies an equivalence between the above
two conditions and the existence of a P/(logn)-computable property useful against
C-circuits of size (cn)k.)

Applying Theorem 3.3, we conclude that NEXP �⊂ C if and only if there is a
polynomial-time algorithm such that, for all k, it is useful against all C-circuits of size
at most nk.

4. New ACC lower bounds. In this section, we prove new lower bounds
against ACC0. Our approach uses a new nondeterministic simulation of randomized
computation (assuming small circuits for ACC0). The simulation itself uses several in-
gredients. First, we prove an exponential-size lower bound on the sizes of ACC0 circuits
encoding witnesses for NTIME[2O(n)]. (Recall that, for NEXP, the best known ACC0-
size lower bounds are only “third-exponential” [36].) Second, we use the connection
between witness-size lower bounds and constructive useful properties of Theorem 3.2.
The third ingredient is a well-known hardness-randomness connection: from a con-
structive useful property, we can nondeterministically guess a hard function, verify its
hardness using the property, and then use the hard function to construct a pseudo-
random generator. (Here, we will need to make an assumption like P ⊂ ACC0, as it is
not known how to convert hardness into pseudorandomness in the ACC0 setting [34].)

4.1. Exponential lower bounds for encoding NEXP witnesses.

Reminder of Theorem 1.3. For all d, m there is an ε = 1/mΘ(d) such that
NTIME[2O(n)] does not have 2n

ε

-size d-depth AC0[m] witnesses.15

The proof is quite related in structure to the NEXP �⊂ ACC0 proof, so we will
merely sketch how it is different.

Proof (sketch). Assume NTIME[2O(n)] has 2n
ε

-size ACC0 witnesses, for all ε >
0. We will show that the earlier framework [36] can be adapted to still establish a
contradiction. First, observe the assumption implies that TIME[2O(n)] has 2n

ε

-size
ACC0 circuits. (The proof is similar to the proof of Theorem 1.1: for any given
exponential-time algorithm A, one can set up a good predicate that only accepts its
input of length n if the witness is a truth table for the 2n-bit function computed
by A on n-bit inputs. Then, a witness circuit for this x is a circuit for the entire
function on n bits.) Therefore (by Lemma 3.1 in [36]) there is a nondeterministic

2n−nδ

time algorithm A (where δ depends on the depth and modulus of ACC0 circuits
for circuit evaluation) that, given any circuit C of size nO(1) and n inputs, generates
an equivalent ACC0 circuit C′ of 2n

ε

size, for all ε > 0. (More precisely, there is some
computation path on which A generates such a circuit, and on every path, it either
prints such a circuit or outputs fail.)

The rest of the proof is analogous to prior NEXP lower bounds [36]; we sketch
the details for completeness. Our goal is to simulate every L ∈ NTIME[2n] in non-

deterministic time 2n−nδ

, which will contradict the nondeterministic time hierarchy
of Žák [38]. Given an instance x of L, we first reduce L to the NEXP-complete Suc-

cinct 3SAT problem using an efficient polynomial-time reduction. This yields an
unrestricted circuit D of size nO(1) and n+O(log n) inputs with truth table equal to
a formula F , such that F is satisfiable if and only if x ∈ L. We run algorithm A on
D to obtain an equivalent 2n

ε

-size ACC0 circuit D′. Then we guess a 2n
ε

-size ACC0

circuit E with truth table equal to a satisfying assignment for F . (If x ∈ L, then such

15The mΘ(d) factor arises from the ACC-SAT algorithm in [36], which in turn comes from Beigel
and Tarui’s simulation of ACC0 in SYM-AND [9].

514 R. RYAN WILLIAMS

a circuit exists, by assumption.) By combining copies of D′ and copies of E, we can
obtain a single ACC0 circuit C with n+ O(log n) inputs which is unsatisfiable if and
only if E encodes a satisfying assignment for F . By calling a nontrivial satisfiability

algorithm for ACC, we get a nondeterministic 2n−nδ

time simulation for every L, a
contradiction.

Applying Theorem 3.2 and its corollary to the lower bound of Theorem 1.3, we
can conclude the following.

Corollary 4.1. For all d,m, there are an ε = 1/mΘ(d) and a P-computable
property that is useful against all depth-d AC0[m] circuits of size at most 2n

ε

.

Hence there is an efficient way of distinguishing some functions from all functions
computable with subexponential-size ACC0 circuits. Let CAPP be the problem: given
a circuit C, output p ∈ [0, 1] satisfying

|Prx[C(x) = 1]− p| < 1/6.

That is, we wish to approximate the acceptance probability of C to within 1/6. We
can give a quasi-polynomial time nondeterministic algorithm for CAPP, assuming P
is in quasi-polynomial-size ACC0.

Theorem 4.1. Suppose P has ACC0 circuits of size nlogn. Then there is a con-
stant c such that for infinitely many sizes s, CAPP for size s circuits is computable
in nondeterministic 2(log s)c time.

Theorem 4.1 is a surprisingly strong consequence: given that NEXP �⊂ ACC0, one
would expect only a 2O(nε)-time algorithm for CAPP, with nε bits of advice. (Indeed,
from the results of Impagliazzo, Kabanets, and Wigderson [16] one can derive such
an algorithm, assuming P ⊆ ACC0.)

Before proving Theorem 4.1, we first extend Theorem 1.3 a little bit. Recall a
unary language is a subset of {1n | n ∈ N} ⊆ {0, 1}�. The proof of Theorem 1.3 also
has the following consequence.

Corollary 4.2. If P has ACC0 circuits of nlogn size, then for all d, m there
is an ε such that there are unary languages in NTIME[2n] without 2n

ε

-size d-depth
AC0[m] witnesses.

Proof. The tight nondeterministic time hierarchy of Žák [38] holds also for unary
languages. That is, there is a unary L ∈ NTIME[2n] \NTIME[2n/n10]. So assume (for
a contradiction to this hierarchy) that all unary languages in NTIME[2n] have 2n

ε

-
size witnesses, for every ε > 0. This says that, for every good predicate V for every
unary language L ∈ NTIME[2n], every 1n ∈ L has a witness y with 2n

ε

-size circuit
complexity. Choose a predicate V that reduces a given unary L to a Succinct3SAT

instance and then checks that its witness is a SAT assignment to the instance; by
assumption, such SAT assignments must have circuit complexity at most 2n

ε

, for
almost all n. By guessing such a circuit and assuming P has nlogn-size ACC0 circuits,
the remainder of the proof of Theorem 1.3 goes through: the simulation of arbitrary

L in NTIME[2n−nδ

] works and yields the contradiction.

Corollary 4.2 allows us to strengthen Corollary 4.1, to yield a “nondeterminis-
tically constructive” and useful property against ACC0. Informally, having a unary
language without small witness circuits allows us to obtain a derandomization without
advice, as there is no need to store a “hard” input for a given input length. In partic-
ular, the unconditional lower bound of Corollary 4.2 can be used to build an efficient

NATURAL PROOFS VERSUS DERANDOMIZATION 515

“hardness test” for ACC0 circuit complexity, which is then used with a pseudorandom
generator to solve CAPP by guessing a hard function and verifying it with the test.
This basic idea seems to have originated with [20, 19].

Proof of Theorem 4.1. First we claim that if P has nlogn-size ACC0 circuits, then
there is a d� and m� such that every Boolean function f with unrestricted circuits of
size S has depth-d� AC0[m�] circuits of size at most SlogS . To see this, consider the
Circuit Evaluation problem: given a circuit C and an input x, does C(x) = 1?
Assuming P is in nlogn ACC0, this problem has a depth-d� AC0[m�] circuit family
{Dn} of nlogn size, for some fixed d� andm�. Therefore, by plugging in the description
of any circuit C of size S into the input of the appropriate ACC0 circuit DO(S), we

get an ACC0 circuit of fixed modulus and depth that is equivalent to C and has size
O(Slog S).

By Corollary 4.2, there are an ε and a unary L in NTIME[2n] that does not have
2n

ε

-size AC0[m�] witnesses of depth d�. By the previous paragraph (and assuming P

is in nlogn-size ACC0), it follows that L does not have witnesses encoded with 2n
ε/2

-

size unrestricted circuits. (Letting SlogS = 2n
ε

, we find that S = 2n
ε/2

.) Let V be
a good predicate for L that lacks such witnesses, and let g be the constant in the
pseudorandom generator of Theorem 2.1. Consider the nondeterministic algorithm
P which, on input 1s, sets n = (g log s)2/ε, guesses a string Y of 2n length, and
outputs Y if V (1n, Y) accepts (otherwise, P outputs reject). For infinitely many s,

P (1s) nondeterministically generates strings Y of 2(g log s)2/ε length that do not have

sg = 2n
ε/2

-size circuits: as there is an infinite set of {ni} such that all witnesses to 1ni

have circuit complexity at least 2(ni)
ε/2

, there is an infinite set {si} such that P (1si)

computes ni = (g log si)
2/ε and generates Y which does not have (si)

g = 2(ni)
ε/2

-size
circuits.

Given a circuit C of size s, our nondeterministic simulation runs P to generate
Y . (If P rejects, the simulation rejects.) Applying Theorem 2.1, Y can be used to
construct a poly(|Y |)-time PRG G(Y, ·) : {0, 1}g log |Y | → {0, 1}s which fools circuits

of size s. By trying all |Y |g ≤ 2O((log s)2/ε) inputs to GY , we can approximate the

acceptance probability of a size-s circuit in 2O((log s)2/ε) time. As ε depended only on
d� and m�, which are both constants, we can set c = 3/ε to complete the proof.

4.2. Slightly stronger ACC lower bounds. Now we turn to proving lower
bounds for the classes NE ∩ io-P and NE/1 ∩ coNE/1. We will need an implication
between circuits and Merlin–Arthur simulations that extends Babai et al. [7].

Theorem 4.2 (Lemma 8 in [26]). Let g(n) > 2n and s(n) ≥ n be increasing and
time constructible. There is a constant c > 1 such that TIME[2O(n)] ⊆ SIZE[s(n)] =⇒
TIME[g(n)] ⊆ MATIME[s(3 log g(n))c].

That is, if we assume exponential time has s(n)-size circuits, we can simulate
even larger time bounds with Merlin–Arthur games. This follows from the proof of
EXP ⊂ P/poly =⇒ EXP = MA [7] combined with a padding argument.

Reminder of Theorem 1.4. NE ∩ io-P and NE/1 ∩ coNE/1 do not have ACC0

circuits of nlogn size.

Proof. The easy proof for NE ∩ io-P was already given in the introduction.
Suppose NE/1 ∩ coNE/1 has nlogn-size ACC0 circuits. We wish to derive a con-

tradiction. Of course the assumption implies that TIME[2O(n)] has nlogn-size circuits

516 R. RYAN WILLIAMS

as well. Applying Theorem 4.2 with g(n) = 2n
2 log n

and s(n) = nlogn, we have

TIME[2n
2 log n

] ⊆ MATIME[nO(log3 n)].

Let L be an arbitrary language in O(2n
2 log n

) time. As TIME[2n
2 log n

] is closed under
complement, an analogous argument (applied to any machine accepting the comple-

ment of a given TIME[2n
2 log n

] language) implies

TIME[2n
2 log n

] ⊆ coMATIME[nO(log3 n)].

Thus, both L and L have Merlin–Arthur games running in nO(log3 n) time.
By Theorem 4.1 and assuming that P has ACC0 circuits of size nlogn, there is a

constant c and a pseudorandom generator (PRG) with the following properties: for
infinitely many circuit sizes s, the generator nondeterministically guesses a string Y
of length 2(log s)c , verifies Y in poly(|Y |) deterministic time with a useful property P ,
and then uses Y to construct a PRG that runs in poly(|Y |) time deterministically
over poly(|Y |) different seeds. The poly(|Y |) outputs of length s can then be used to
correctly approximate the acceptance probability of any size s circuit.

We can use this generator to fool Merlin–Arthur games, as well as co-Merlin–
Arthur games, as follows.

For the language L, take an nO(log3 n)-size circuit C encoding the predicate in
a given Merlin–Arthur game of that length: C takes an input x, Merlin’s string of
length nO(log3 n), and Arthur’s string of length nO(log3 n) and outputs a bit. Our
nondeterministic simulation first guesses Merlin’s string m and then runs the PRG,
which guesses a Y and verifies that Y is a hard function; if the verification fails, we
reject.

Next, the simulation uses the PRG on C(x,m, ·) to simulate Arthur’s string and
the final outcome, accepting if and only if the majority of strings generated by the
PRG lead to acceptance. On infinitely many input lengths, the simulation of the
Merlin–Arthur game will be “faithful” in the sense that the PRG simulating Arthur
will work as intended.

By adding a bit of advice yn ∈ {0, 1} to encode whether or not the PRG is
successful for a given input length n, we can simulate an arbitrary Merlin–Arthur
game for L (and its complement L) running in nO(log3 n) time infinitely often, in

NTIME[nlogd n]/1 ∩ coNTIME[nlogd n]/1

for some constant d.
In particular, we define two nondeterministic machines N and N ′ which take

one advice bit as follows. If the advice bit is 0, both simulations reject. Otherwise,
N attempts to run the Merlin–Arthur simulation of C, and N ′ attempts to Merlin–
Arthur simulate the complement language L, as described above. When the advice
bits are assigned appropriately on all input lengths, the nondeterministic N accepts a

language L′ ∈ NTIME[nlogd n]/1 which agrees with L on infinitely many input lengths
n1, n2, . . . and is empty on the other input lengths. For the complement language L,

the machine N ′ accepts a language L′′ ∈ NTIME[nlogd n]/1 which agrees with L on
the same list of input lengths n1, n2, . . . as above and is empty on the other input
lengths. It follows that L′′ = L′, and therefore we have

L′ ∈ NTIME[nlogd n]/1 ∩ coNTIME[nlogd n]/1

NATURAL PROOFS VERSUS DERANDOMIZATION 517

such that for all possible input lengths n, either L′ ∩ {0, 1}n = ∅ (for those input
lengths where the advice is set to 0) or L′∩{0, 1}n = L∩{0, 1}n (for infinitely many n).

In summary, given a language L recognizable in O(2n
2 log n

) time, there is a lan-

guage L′ in the class NTIME[nlogd n]/1 ∩ coNTIME[nlogd n]/1 which agrees with L on
infinitely many input lengths. Therefore

TIME[2n
2 log n

] ⊆ io-(NTIME[nlogd n]/1 ∩ coNTIME[nlogd n]/1).

Assuming every language in NE/1 ∩ coNE/1 has circuits of size nlogn, it follows that
every language in the class io-(NE/1∩ coNE/1) has circuits of size nlogn, for infinitely
many input lengths n. Therefore

TIME[2n
2 log n

] ⊂ io-SIZE[nlogn].

But this implies a contradiction: for almost every n, by simply enumerating all nlogn-
size circuits and computing their 2n-bit truth tables, we can determine the lexico-
graphically first Boolean function on n bits which does not have nlogn-size circuits,

in O(2n
2 log n

) time.

We conclude the section by sketching how the above argument can be recast in a
more generic form, as a connection between SAT algorithms and circuit lower bounds.

Reminder of Theorem 1.5. Let C be typical. Suppose the satisfiability problem
for nO(logc n)-size C-circuits can be solved in O(2n/n10) time, for all constants c. Then
NE/1 ∩ coNE/1 does not have nlogn-size C-circuits.

Proof (sketch). Suppose that satisfiability for C-circuits of nO(logc n) size is in
O(2n/n10) time (for all c), and that NE/1 ∩ coNE/1 has nlogn-size circuits.

By the proof of Theorem 4.1, assuming P has nlogn-size C circuits, for all ε > 0,

we obtain a nondeterministic algorithm N running in 22
O(logε s)

time on all circuits of
size s (for infinitely many s) and outputs a good approximation to the given circuit’s
acceptance probability. In particular, from the assumptions we can derive a unary
language computable in NTIME[2n] that does not have witness circuits of nlogc n size,
for every c. This can be used to obtain a nondeterministic algorithm N as in Theo-

rem 4.1, by setting s = nO(logc n), solving for n = 2O((log s)1/(c+1)), and then running

the nondeterministic algorithm N in 2O(n) ≤ 22
O(logε s)

time, where ε ≤ 1/(c+ 1).
By the same argument as in the proof of Theorem 1.4, we obtain

TIME[2n
2 log n

] ⊆ (MATIME ∩ coMATIME)[nO(log3 n)].

By applying algorithm N to circuits of size s = nO(log3 n), setting ε � 1/4, and using
a bit of advice to encode when the PRG works, we obtain

(MATIME ∩ coMATIME)[nO(log3 n)] ⊆ io-(NTIME[2O(n)]/1 ∩ coNTIME[2O(n)]/1).

But the latter class is in io-SIZE[nlog n] by assumption, so we conclude a contradiction
as in Theorem 1.4.

Reminder of Theorem 1.6. Suppose we can approximate the acceptance prob-
ability of any given nO(logc n)-size circuit (with fan-in two and arbitrary depth) on n
inputs to within 1/6, for all c, in O(2n/n10) time (even nondeterministically). Then
NE/1 ∩ coNE/1 does not have nlogn-size circuits.

518 R. RYAN WILLIAMS

Proof (sketch). For the lower bound arguments given in this section, an algorithm
which can approximate the acceptance probability of a given nO(logc n)-size circuit can
be applied in place of a faster SAT algorithm [37, 36, 33]. That is, from the hypothesis
of the theorem we can derive exponential-size witness circuit lower bounds for NEXP
(as in Theorem 1.3) and infinitely often correct PRGs against general circuits (as in
Theorem 4.1). Therefore the proofs of Theorem 1.4 and consequently Theorem 1.5
also carry over under the hypothesis of the theorem.

5. Natural properties and derandomization. In this section, we character-
ize (the nonexistence of) natural properties as a particular sort of derandomization
problem and exhibit several consequences.

Let ZPE = ZPTIME[2O(n)], i.e., the class of languages solvable in 2O(n) time
with randomness and no error (the machine can output ?, or don’t know). RE =
RTIME[2O(n)] is its one-sided-error equivalent. Analogously to Definition 3.1, we
define a witness notion for ZPE as follows.

Definition 5.1. Let L ∈ ZPE. A ZPE predicate for L is a procedure M(x, y)
that runs in time 2O(|x|) on inputs y of length 2c|x| for some constant c, such that for
every x and y, the following hold:

• The output of M(x, y) is in the set {1, 0, ?}.
• x ∈ L =⇒ Pr

y∈{0,1}2c|x| [M(x, y) outputs 1] ≥ 2/3, and for all y of length

2c|x|, M(x, y) ∈ {1, ?}.
• x /∈ L =⇒ Pr

y∈{0,1}2c|x| [M(x, y) outputs 0] ≥ 2/3, and for all y of length

2c|x|, M(x, y) ∈ {0, ?}.
ZPE has C seeds if for every ZPE predicate M , there is a k such that for all x,

there is a C-circuit Cx of size at most |x|k + k such that M(x, tt(Cx)) �= ?.16

ZPE has C seeds for infinitely many input lengths if for every ZPE predicate M ,
there is a k such that for infinitely many n and for all x of length n, there is a C-circuit
Cx of size at most nk + k such that M(x, tt(Cx)) �= ?.

That is, C seeds for ZPE are succinct encodings of strings that lead to a decision
by the algorithm. Analogously, we can define RE predicates and the notion of RE
having C seeds : RE predicates will accept with probability at least 2/3 when x ∈ L,
but reject with probability 1 when x /∈ L. Hence, when RE has C seeds, we only
require x ∈ L to have small circuits Cx encoding witnesses.

Succinct seeds for zero-error computation are closely related to uniform natural
properties as follows.

Reminder of Theorem 1.7. Let C be a typical polynomial-size circuit class.
The following are equivalent:

1. There are no P-natural properties useful (resp., ae-useful17) against C.
2. ZPE has C seeds for almost all (resp., infinitely many) input lengths.

The intuition is that, given a P-natural useful property, its probability of accep-
tance can be amplified (at a mild cost to usefulness), yielding a ZPE predicate which
accepts random strings with decent probability but still lacks small seeds. In the other
direction, suppose a ZPE predicate has “bad” inputs that can’t be decided using small

16For circuit classes where the depth d and/or modulus m may be bounded, we also quantify this
d and m simultaneously with the size parameter k. That is, the depth, size, and modulus parameters
are chosen prior to choosing the circuit family, as usual.

17Here, ae-useful is just the “almost-everywhere useful” version, where the property is required
to distinguish random functions from easy ones on almost every input length.

NATURAL PROOFS VERSUS DERANDOMIZATION 519

circuits encoding seeds. This implies that a “hitting set” of exponential-length strings,
sufficient for deciding all inputs of a given length, must have high circuit complexity—
otherwise, all strings in the set would have low circuit complexity (by Lemma 2.1),
but at least one such string decides even a bad input. Checking for a hitting set is
then a P-natural, useful property.

Proof of Theorem 1.7. (¬(1) ⇒ ¬(2)) Suppose there is a P-natural property
which is ae-useful (resp., useful) against C. For some c, d ≥ 1, this is an nc-time
algorithm A such that, for almost all n (resp., infinitely many n), A accepts at least a
1/2d log n = 1/nd fraction of n-bit inputs, for n = 2�, and for almost all n = 2� (resp.,
for infinitely many n) and all c, A rejects all n-bit inputs representing truth tables of
(logn)c-size C-circuits.

Let ε > 0 be sufficiently small. Define an algorithm V :

V (x, z): Let k = |x|. If k = 0, then output 1. If |z| �= 2(d+2)k, then output 0.
Partition z into t = 2(d+1)k strings z1, . . . , zt each of length 2k.
If A(zi) accepts for some i, then output 1; else, output ?.

We claim that V is a ZPE predicate for the language L = {0, 1}� with constant
c = d + 2. Let x be an arbitrary bit string of length k where k ≥ 1, and consider
a bit string z of length 2(d+2)k chosen uniformly at random. All zi of length 2k are
independent random strings, and by assumption, A accepts at least 1/|zi|d = 1/2dk

strings of that length. The probability that all zi are among the (1− 1/2dk) fraction

of strings of length 2k rejected by A is at most (1 − 1/2dk)2
(d+1)k ≤ exp(−2k) < 1/3

(for k ≥ 1). Therefore the probability V accepts a random z of the appropriate length
is at least 2/3.

By construction, V accepts (x, z) precisely when |z| = 2(d+2)|x| and some zi of
length 2d|x| is accepted by A. Hence for almost every k (resp., infinitely many k),
when V (x, z) accepts on z of length 2(d+2)k, some substring zi of length 2k has C-
circuit complexity at least (log 2k)c ≥ Ω(logc |z|). Therefore by Lemma 2.1, z itself
has C-circuit complexity at least Ω((log |z|)c − (log |z|)1+o(1)). As this holds for every
c, the predicate V does not have C seeds infinitely often (resp., almost everywhere).

(¬(2) ⇒ ¬(1)) Suppose there is a ZPE predicate V that does not have C seeds
almost everywhere (resp, infinitely often). This means that, for all k and for infinitely
many (resp., almost all) input lengths ni, there is some input x of length ni such that,
for every string r of length 2cni satisfying V (x, r) �= ?, the C-circuit complexity of r is
at least (cni)

k. (Note that the constant c depends only on V .) Define a new predicate
V ′ as follows, intended to be executed on the inputs x with lengths in {ni}:

V ′(x, r): If |r| �= 2�+c|x|, where � is the smallest integer such that 2|x| ≤ 2�,
then reject.

Partition r into 2� strings {ri} of length 2c|x| each.
Accept if and only if V (x, ri) �= ? for some i.

For those inputs x of length ni, any r accepted by V ′(x, r) does not have circuits
of size nk

i , due to Proposition 1 and the fact that such an r contains a substring ri
such that V (x, ri) accepts; hence ri has circuit complexity at least nk

i . By standard
probabilistic arguments and our choice of �, it is likely that the string r encodes a

520 R. RYAN WILLIAMS

hitting set for all inputs of length ni, i.e.,

Pr
r∈{0,1}2cni+�

[
(∃x ∈ {0, 1}ni)(∀ i = 1, . . . , 2�)[V (x, ri) = ?]

]
< 1/3.

Therefore, a randomly chosen r of length 2cni+� is accepted by V ′, with probability
at least 2/3. Equipped with this knowledge, we now give an algorithm A that defines
a P-natural property of Boolean functions:

A(f): Given a Boolean function f : {0, 1}�′ → {0, 1}, compute the largest
n ∈ Z such that �′ ≥ �+ cn, where � = O(log n) is the smallest integer satisfying
2n ≤ 2�. Set r to be the first 2�+cn bits of f . Search over all strings in {0, 1}n
for an x such that V ′(x, r) �= ? for some ri. Output accept if such an x is found;
otherwise reject.

The algorithm A runs in poly(2�
′
) time and accepts at least 1/2 of its inputs.

Furthermore, when the integer n computed by A is in the sequence {ni}, A rejects
all f with C-circuit complexity at most nk

i = Θ((�′)k): if f had such circuits, then all
substrings ri of f would as well, by Proposition 1. As this is true for every constant
k, A is a P-natural property useful against polynomial-size C-circuits.

To prove a related result for RE predicates, we first need a little more notation.
Let V be an RTIME[2kn] predicate accepting a language L. For a given input length

n, a set Sn ⊆ {0, 1}2kn

is a hitting set for V on n if, for all x ∈ L of length n, there
is a y ∈ Sn such that V (xn, y) accepts. For a string T of length m · 2kn, T encodes a
hitting set for V on n if, breaking T into m strings y1, . . . , ym of equal length, the set
{y1, . . . , ym} is a hitting set for V on n.

We consider yet another relaxation of naturalness. For a typical circuit class C,
we say that a polynomial-time algorithm A is io-P-natural against C provided that,
for every k and infinitely many integers n,

• A accepts at least a 1/poly(n) fraction of n-bit inputs, and
• A rejects all n-bit inputs x such that the corresponding Boolean function fx
has ((log n)k + k)-size C-circuits.18

(Compare with Definition 2.1.) In the usual notion of natural properties, we are
restricted to inputs with length equal to a power of two, and largeness holds almost
everywhere; here, neither condition is required.

We can relate succinctly encoded hitting sets to natural algorithms as follows.

Theorem 5.1. Suppose, for all c, RTIME[2O(n)] does not have n2-size hitting sets
encoded by nc-size circuits. Then, for all c, there is an io-P-natural algorithm useful
against nc-size circuits.

Proof. The hypothesis says that for every c, there is an RTIME[2O(n)] predicate
Vc accepting some language L with the following property: for every nc-size circuit
family {Cn}, there are infinitely many n where tt(Cn) does not encode an n2-size
hitting set for Vc on n.

We may obtain an io-natural algorithm running in poly(N) time with O(logN)
bits of advice (where N is the length of the input) as follows.

18As usual, if C is also characterized by a depth d or modulus constraint m, those d and m are
quantified alongside k.

NATURAL PROOFS VERSUS DERANDOMIZATION 521

A(Y, a): Given Y of length N = 2kn+2 logn, view the O(logN)-bit advice
string a as the number of inputs of length n in L(Vc).

Partition Y into y1, . . . , y22 log n of length 2kn.
Let b be the number of x of length n ≤ (logN)/k such that Vc(x, yi) accepts

for some i. If (a = b), then accept ; else reject.

For infinitely many N , this procedure (with the appropriate advice string a)
accepts a random string with high probability, because a random collection of n2

strings is a hitting set with high probability. On those same input lengths N , the
procedure A also rejects strings encoded by nc-size circuit families, by assumption.
Therefore A defines io-P/(logn)-natural algorithm A useful against nc-size circuits,
running on strings Y with length equal to a power of two.

We can use A to design an io-P-natural algorithm A′ that runs on arbitrary length
strings, analogously to one direction of Theorem 3.2. For every n ∈ N, we associate
the interval In = [n2, (n + 1)2 − 1]; note that the collection of In is a partition of N.
Our algorithm A′ runs as follows:

A′(X): On input X of length m, determine n such that m ∈ In.
If n is not a power of two, reject.
Compute a = m− n2, and treat a as a binary string of length O(log n).
Let Y be the first n bits of X .
Run A(Y, a) and output the answer.

Observe that A′(X) runs in poly(m) time. Since a as defined in A′ is contained
in {0, . . . , 2n}, the number a can be treated as an advice string of length (logn) for
n-bit inputs.

For infinitely many input lengths ni, the original algorithm A (equipped with the
appropriate advice ai) satisfies largeness and usefulness against nc-size circuits. For
each such ni, there is a slightly larger input length mi such that the number of ni-bit
inputs in L(Vc) is exactly ai = mi − n2

i .
On these integers mi, the algorithm A′(·) also satisfies largeness and usefulness,

since it is essentially equivalent to running A(·, ai) on inputs of length ni. More
precisely, since the input length has increased by a square (mi = Θ(n2

i)), the strings
of length mi define functions on only twice as many input bits as ni. Therefore, when
A(x, ai) accepts (hence x has circuit complexity at least (log ni)

c), by Lemma 2.1
we may conclude that the original input X to A′ defines a Boolean function on at
most 2 logmi ≤ 4 logni bits, with circuit complexity at least (log ni)

c− (logni)
1+o(1).

Therefore the new algorithm A′ is useful against circuits of size up to (n/4)c. As this
condition holds for every constant c, the theorem follows.

The other direction (from io-P-natural algorithms to RTIME[2O(n)]) seems diffi-
cult to satisfy: it could be that, for infinitely many n, the natural algorithm does not
obey any nice promise conditions on the number of accepted inputs of length n.

5.1. Unconditional mild derandomizations. We are now prepared to give
some unconditionally true derandomization results. The first one is the following.

Reminder of Theorem 1.8. Either RTIME[2O(n)] ⊂ SIZE[nc] for some c, or
BPP ⊂ io-ZPTIME[2n

ε

]/nε for all ε > 0.

522 R. RYAN WILLIAMS

To give intuition for the proof, we compare with the “easy witness” method
of Kabanets [19], which shows that RP can be pseudo-simulated in io-ZPTIME[2n

ε

]
(no efficient adversary can generate an input on which the simulation fails, almost
everywhere). That simulation works as follows: for all ε > 0, given an RP predicate,
try all nε-size circuits and check whether any encode a good seed for the predicate.
If this always happens (against all efficient adversaries), then we can simulate RP
in subexponential time. Otherwise, some efficient algorithm can generate, infinitely
often, inputs on which this simulation fails. This algorithm generates the truth table
of a function that does not have nε-size circuits; this hard function can be used to
derandomize BPP.

In order to get a nontrivial simulation that works on all inputs for many lengths,
we consider easy hitting sets : sets of strings (as in Theorem 5.1) that contain seeds for
all inputs of a given length, encoded by nc-size circuits (where c does not have to be
tiny, but rather a fixed constant). When such seeds exist for some c, we can use Õ(nc)
bits of advice to simulate RP deterministically. Otherwise, we apply Theorem 5.1 to
obtain an io-P-natural algorithm which can be used (by randomly guessing a hard
function) to simulate BPP in subexponential time. This allows us to avoid explicit
enumeration of all small circuits; instead, we let the circuit size exceed the input
length, and we enumerate over (short) inputs in our natural property.

Proof of Theorem 1.8. First, suppose there exists a c ≥ 2 so that for every
RTIME[2O(n)] predicate V accepting a language L, there is an nc−1-size circuit family
{Cn} such that for almost all n, Cn has O(n) inputs and its truth table encodes a
hitting set for V on n with 22 logn strings. That is, the truth table of Cn is a string
Y of length � = 22 log n · 2kn for a constant k, with the property that when we break
Y into O(n2) equal length strings y1, . . . , y22 log n , the set {yi} is a hitting set for V
on n. Then it follows immediately that RTIME[2O(n)] ⊂ TIME[2O(n)]/nc, because for
almost all lengths n, we can provide the appropriate nc−1-size circuit Cn as O(nc)
bits of advice, and recognize L on any n-bit input x by evaluating C on all its possible
inputs, testing the resulting hitting set of O(n2) size with x. (We will show later how
to strengthen this case.)

If the above supposition is false, that means for every c, there is an RTIME[2O(n)]
predicate Vc accepting some language L with the following property: for every nc-
size circuit family {Cn}, there are infinitely many n such that the truth table of
Cn does not encode a hitting set for V on n. Theorem 5.1 says that for all c, we
can extract an io-P-natural algorithm Ac useful against nc-size circuits, for all c. In
particular, the proof of Theorem 5.1 shows that for all c there are infinitely many n
and m ∈ [2n/3, 23n] such that Ac is useful and large on its inputs of length m. So if
we want a function f : {0, 1}O(n) → {0, 1} that does not have nk-size circuits, then by
setting c = k, providing the number m as O(n) bits of advice, and randomly selecting
Y of m bits, we can generate an f that has guaranteed high circuit complexity, with
zero-error.

For every k, we can simulate any language in BPTIME[O(nk)] (two-sided random-
ized nk time) as follows. Given any k and ε > 0, set c = gk/ε (where g is the constant
in Theorem 2.1). On input x of length n, our ZP simulation will have hard-coded
advice of length O(nε), specifying an input length m = 2Θ(nε). Then it chooses a
random string Y of length m and computes Ac(Y). If Ac(Y) rejects, then the simu-
lation outputs don’t know. (For the proper advice m and the proper input lengths,
this case will happen with low probability.) Otherwise, for infinitely many n, Y is an
m = 2Θ(nε) bit string with circuit complexity at least (nε)c ≥ ngk.

NATURAL PROOFS VERSUS DERANDOMIZATION 523

Applying Theorem 2.1, Y can be used to construct a PRG GY : {0, 1}g log |Y | →
{0, 1}n3k

which fools circuits of size n3k, where d is a universal constant (independent
of ε and k). Each call to GY takes poly(|Y |) ≤ 2O(nε) time. Trying all |Y |g ≤
2O(nε) seeds to GY , we can approximate the acceptance probability of an n3k-size
circuit simulating any BPTIME[O(nk)] language on n-bit inputs, thereby determining
acceptance/rejection of any n-bit input.

Now we have either (1) RTIME[2O(n)] ⊂ TIME[2O(n)]/nc for some c, or (2) BPP ⊂
io-ZPTIME[2n

ε

]/nε for all ε > 0. To complete the proof, we recall that Babai et al. [7]
proved that if BPP �⊂ io-SUBEXP, then EXP ⊂ P/poly. Therefore, if case (2) does not
hold, the first case can be improved: using a complete language for E, we infer from
EXP ⊂ P/poly that TIME[2O(n)] ⊂ SIZE[nc] for some c, so RTIME[2O(n)] ⊂ SIZE[nc]
for some constant c.

Reminder of Corollary 1.1. For some constant c, RP ⊆ io-ZPSUBEXP/nc.

Proof. By Theorem 1.8, there are two cases: (1) RTIME[2O(n)] ⊂ SIZE[nc] for
some c, or (2) BPP ⊂ io-ZPTIME[2n

ε

]/nε for all ε. In case (1), RP ⊆ RTIME[2O(n)] ⊆
TIME[nc]/nc. In case (2), RP ⊆ BPP ⊆ io-ZPTIME[2n

ε

]/nε.

The simulation can be ported over to Arthur–Merlin games. Recall that a lan-
guage L is in AM if and only if there is a k and deterministic algorithm V (x, y, z)
running in time |x|k with the following properties:

• If x ∈ L, then Pry∈{0,1}|x|k [∃z ∈ {0, 1}|x|k V (x, y, z) accepts] = 1.

• If x /∈ L, then Pry∈{0,1}|x|k [∀z ∈ {0, 1}|x|k V (x, y, z) rejects] > 2/3.

An AM computation corresponds to an interaction between a randomized verifier
(Arthur) that sends random string y and a prover (Merlin) that nondeterministically
guesses a string z.

Reminder of Corollary 1.2. For some c ≥ 1, AM ⊆ io-Σ2SUBEXP/n
c.

Note that AM ⊆ Π2P [6], but it has been open for some time to find an interesting
relationship between AM and Σ2P; see, for example, [15, 5].

Proof (sketch). The proof is roughly analogous to relativizing Theorem 1.8 with
an NP oracle; for completeness, we include some of the details. Instead of hitting sets
for RP computations, we consider hitting sets for AM computations: a poly(n)-size
set S of nk-bit strings that can replace the role of y (Arthur) in the AM computation.
(Such hitting sets always exist, by a probabilistic argument.) That is, on all strings
x of length n, computing the probability of (∃z)[V (x, y, z)] over all y ∈ S allows us
to approximate the probability over all nk-bit strings. Instead of considering hitting
sets that are succinctly encoded by typical circuits, we consider AM hitting sets that
are succinctly encoded by circuits with oracle gates that compute SAT. There are
two possible cases:

1. There is a c such that for all languages L ∈ AM and verifiers Vc for L, there is
an nc-size SAT-oracle circuit family encoding hitting sets for Vc, on almost all input
lengths n. In this case, we can put AM in the class PNP/Õ(nc): we can use Õ(nc)
advice to store a circuit encoding a hitting set for each input length n, evaluate this
circuit on nO(1) inputs in PNP, producing the hitting set, and then use the hitting set
and the NP oracle to simulate the AM computation.

2. For all c, there is some verifier V of some AM language such that, for infinitely
many input lengths n, every hitting set for V over all inputs of length n has SAT-
oracle circuit complexity greater than nc. First we show how to use this case to check
that a given string Y has high SAT-oracle circuit complexity for infinitely many input

524 R. RYAN WILLIAMS

lengths; the argument is similar to prior ones. Given a string Y , let k ≥ 1 be a
parameter, let ε > 0 be sufficiently small, and consider the verifier V10k/ε on all
inputs of length n = mε (where n is one of the infinitely many input lengths which
are “good”). We can verify that the string Y encodes a hitting set for V10k/ε on
inputs of length n as follows. First we guess those 2n strings of length n which are
accepted, and those which are rejected (comparing our guesses against the O(n) bits
of advice, which will encode the total number of accepted inputs of length n). For
each string that is guessed to be accepted, we use the set S and nondeterminism to
simulate Arthur and Merlin’s acceptance in 2n · poly(n) time. Then, for each string
that is guessed to be rejected, we use the string Y and universal guessing to confirm
that Arthur and Merlin reject in 2n · poly(n) time. This is a Σ2 computation running
in time 2O(n) ≤ 2O(mε), which (when given the appropriate advice of length O(mε))
correctly determines that at least some string Y has SAT-oracle circuit complexity at
least (mε)10k/ε ≥ n10k, on infinitely many input lengths.

Now suppose we want to simulate an AM computation on inputs of length m run-
ning in time mk. That AM computation can be simulated in io-Σ2TIME[2n

ε

]/O(nε)
as follows: we guess a string Y with high SAT-oracle circuit complexity, and we apply
known relativizing results in derandomization (in particular, Theorems 3.2 and 3.3
from [22]) that use the string Y to simulate AM computations in NSUBEXP. Then
we apply the aforementioned Σ2 procedure to verify that the Y guessed has high
SAT-oracle circuit complexity. We accept if and only if the simulation of AM accepts
and the verification of Y accepts.

It looks plausible that Corollary 1.2 could be combined with other results (for
example, the work on lower bounds against fixed-polynomial advice of Buhrman,
Fortnow, and Santhanam [10]) to prove new separations.

Another application of Theorem 1.8 is an unexpected equivalence between the
infamous separation problem NEXP �= BPP and zero-error simulations of BPP. We
need one more definition: Heuristic C is the class of languages L such that there is
an L′ ∈ C whereby, for almost every n, the symmetric difference (L ∩ {0, 1}n)Δ(L′ ∩
{0, 1}n) has cardinality less than 2n/n.19 (That is, there is a language in C that
“agrees” with L on at least a 1− 1/n fraction of inputs.) The infinitely often version
io-Heuristic C is defined analogously.

Reminder of Theorem 1.9. NEXP �= BPP if and only if for all ε > 0, BPP ⊆
io-HeuristicZPTIME[2n

ε

]/nε.

This extends an amazing result of Impagliazzo and Wigderson [17] that EXP �=
BPP if and only if for all ε > 0, BPP ⊆ io-HeuristicTIME[2n

ε

]. It is interesting that
NEXP versus BPP, a problem concerning the power of nondeterminism, is equivalent
to a statement about derandomization of BPP without nondeterminism. Theorem 1.9
should also be contrasted with the NEXP vs. P/poly equivalence of Impagliazzo, Ka-
banets, and Wigderson[16]: NEXP �⊂ P/poly if and only if MA ⊆ io-NTIME[2n

ε

]/nε

for all ε > 0.

Proof of Theorem 1.9. First, assume BPP is not in io-HeuristicZPTIME[2n
ε

]/nε

for some ε. Then BPP �⊆ io-ZPTIME[2n
ε

]/nε, so by Theorem 1.8 we have that
RTIME[2O(n)] has size-nc seeds, which implies REXP = EXP. The hypothesis also im-
plies that BPP is not in io-HeuristicTIME[2n

ε

], so by Impagliazzo and Wigderson [17]
we have EXP = BPP. Therefore REXP = BPP. But this implies NP ⊆ BPP, so by

19N.B. This is a weaker definition than usually stated, but it will suffice for our purposes.

NATURAL PROOFS VERSUS DERANDOMIZATION 525

Ko’s theorem [23] we have NP = RP. Finally, by padding, NEXP = REXP = BPP.
For the other direction, assume NEXP = BPP and that for all ε > 0 we have

BPP ⊆ io-HeuristicZPTIME[2n
ε

]/nε. We wish to prove a contradiction. The two
assumptions together say that NEXP ⊆ io-HeuristicNTIME[2n

ε

]/nε for all ε > 0.
NEXP = BPP implies NEXP = EXP, and since NE has a linear-time complete lan-
guage, we have NTIME[2O(n)] ⊆ TIME[2O(nc)] for some constant c. (More precisely,
the SuccinctHalting problem from Theorem 1.1 can be solved in 2O(nc) time
for some c, and every language in NTIME[2O(n)] can be reduced in linear time to
SuccinctHalting.) As a consequence, we derive
(1)

EXP = NEXP ⊆
⋂
ε>0

io-HeuristicNTIME[2n
ε

]/nε ⊆
⋂
ε>0

io-HeuristicTIME[2O(nc)]/nε.

The last inclusion in (1) can be proved as follows: let L be an arbitrary language
in

⋂
ε>0 io-HeuristicNTIME[2n

ε

]/nε, and let L′ ∈ ⋂
ε>0 NTIME[2n

ε

]/nε be such that
(L ∩ {0, 1}n)Δ(L′ ∩ {0, 1}n) ≤ 2n/n on infinitely many n. This means that, for any
ε, L′ can be solved using a collection of nondeterministic machines {Mn} running in
2n

ε

time such that Mn solves all instances on n bits and the description of Mn can be
encoded in O(nε) bits. To get a collection of equivalent deterministic machines, let
Mn be the advice for inputs of length n; on any input x of length n, call the 2O(nc)

time algorithm for SuccinctHalting on the input 〈Mn, x, b(2
nε

)〉, where b(m) is the
binary encoding of m. Using standard encodings, this instance has n+O(nε) length;
hence it is solved deterministically in 2O(nc) time.

Finally, we prove that the above inclusion (1) is false, by direct diagonalization.
That is, we can find an L ∈ EXP such that L �∈ io-HeuristicTIME[2O(nc)]/n1/2. Let

{Mi} be a list of all 2n
c

time machines. We will give a 2n
c+1

-time M diagonalizing
(even heuristically) against all {Mi} with n1/2 advice. For every n, M divides up its
n-bit inputs into blocks of length B = 1 + n1/2 + log n, with 2n/B blocks in total.
On input x of length n, M identifies the block containing x, letting x1, . . . , xB be the
strings in that block. Let {aj} be the set of all possible advice strings of length n1/2.
The following loop is performed.

Let S0 = {(j, k) | j = 1, . . . , n, k = 1, . . . , 2n
1/2}. For i = 1, . . . , B, decide that

M accepts xi if and only if the majority of Mj(xi, ak) reject over all (j, k) ∈ Si−1.
Set Si to be the subset of Si−1 containing those (Mj , ak) which agree with M on xi.
If xi = x, then output the decision.

Observe that M runs in B · n · 2O(nc) ≤ O(2n
c+1

) time. For every block and

every i, we have |Si| ≤ |Si−1|/2. Since |S0| = 2n
1/2 · n, this implies that |SB | =

0. So for every block, every pair (Mj, ak) disagrees with M on at least one input.
Therefore every pair (Mj , ak) disagrees with M on at least 2n/B > 2n/n inputs,
one from each block, and this happens for almost all input lengths n. Summing up,
for almost every n we have that M disagrees with every Mi and its n1/2 bits of
advice, on greater than a 1/n fraction of n-bit inputs. That is, L(M) ∈ EXP but
L(M) �∈ io-HeuristicTIME[2O(nc)]/n1/2.

Remark 1. An anonymous reviewer observed that the previous proof, very slightly
modified, also shows NEXP �= BPP if and only if BPP ⊆ io-HeuristicNTIME[2n

ε

]/nε for
all ε > 0. That is, separating NEXP from BPP is equivalent to obtaining a nontrivial
simulation of BPP with nondeterminism.

6. Unconditional derandomization of natural properties. In this last sec-
tion, we show how one can use similar ideas to generically “derandomize” natural

526 R. RYAN WILLIAMS

properties, in the sense that RP-natural properties entail P-natural ones. The formal
claim is the following.

Reminder of Theorem 1.10. If there exists an RP-natural property P useful
against a typical class C, then there exists a P-natural property P ′ useful against C.

That is, suppose there is a randomized algorithm that can distinguish hard func-
tions from easy functions with one-sided error—the algorithm may err on some hard
functions but never on any easy functions. Then we can obtain a deterministic algo-
rithm with essentially the same functionality. The idea behind P ′ is directly inspired
by other arguments in the paper (such as the proof of Theorem 1.7): we split the
input string T into small substrings, and we feed the substrings as inputs to P while
the whole input string T is used as randomness to P .

Proof. Suppose A is a randomized polytime algorithm taking n bits of input and
nk−2 bits of randomness (for some k ≥ 3), deciding a large and useful property against
nc-size circuits for every c. For concreteness, let us say that A accepts some 1/nb-
fraction of n-bit inputs with probability at least 2/3, and rejects all n-bit truth tables
of (logn)c-size circuits, where b ≥ k (making b larger is only a weaker guarantee).
Standard amplification techniques show that, by increasing the randomness from nk−2

to nk, we can boost the success probability of A to greater than 1− 1/4n.
Our deterministic algorithm A′ will, on n-bit input T , partition T into substrings

T1, . . . , Tn1−1/k of length at most n1/k each and will accept if and only if A(Ti, T)
accepts for some i.

First, we show that A′ satisfies largeness. Consider the set R of n-bit strings T
such that for all n1/k-bit strings x, A(x, T) accepts if and only if A(x, T ′) accepts for
some n-bit T ′. As there are only 2n

1/k

strings on n1/k bits, and the probability that

a random n-bit T works for a given n1/k-bit string is at least 1− 1/4n
1/k

, we have (by

a union bound) that |R| ≥ 2n · (1− 2n
1/k

/4n
1/k

) ≥ 2n · (1− 1/2n
1/k

).
Now consider the set S of all n-bit strings T = T1 · · ·Tn1−1/k (where for all i,

|Ti| = n1/k) such that A(Ti, T
′) accepts for some i and some n-bit T ′. Since there

are at least t = 2n
1/k

/nb/k such strings Ti of length n1/k (by largeness of A), the
cardinality of S is at least

n1−1/k · t ·
(
2n

1/k − t
)n1−1/k−1

= n1−1/k · 2
n1/k

nb/k
·
(
2n−n1/k

)
·
(
1− 1/nb/k

)n1−1/k−1

,

as this expression just counts the number of strings T with exactly one Ti from

the t strings accepted by A. Since b ≥ k, (1 − 1/nb/k)n
1−1/k−1 ≥ 1/e, and the

above expression simplifies to Ω(2n/n1/k−1+b/k). Therefore, there is a constant e =
b/k + 1/k − 1 such that |S| ≥ Ω(2n/ne).

Observe that if T ∈ S ∩R, then A(Ti, T) accepts for some i (where Ti is defined
as above). Applying the inequality |S ∩ R| ≥ |S| + |R| − 2n, there are at least

2n(1/ne − 1/2n
1/k

) strings such that A(Ti, T) accepts for some i. This is at least
2n/ne+1 for sufficiently large n, so A′ satisfies largeness.

Second, we show that A′ is useful. Suppose for a contradiction that A′(T) accepts
for some T with (log |T |)c-size circuits, where c is an arbitrarily large (but fixed)
constant. Then A(Ti, T) must accept for some i. Because A is useful against nd-size
circuits for all d, it must be that Ti cannot have (log |Ti|)c+1-size circuits. However,
recall that if a string T has (log |T |)c-size circuits, then by Lemma 2.1, every |T |1/k-
length substring Ti of T has circuit complexity at most (log |T |)c + (log |T |)1+o(1) ≤

NATURAL PROOFS VERSUS DERANDOMIZATION 527

2 · (k · log |Ti|)c. As k is a fixed constant, this quantity is less than (log |Ti|)c+1 when
|Ti| is sufficiently large, a contradiction.

7. Conclusion. Ketan Mulmuley has recently suggested that “P �= NP because
P is big, not because P is small” [27]. That is to say, the power of efficient computation
is the true reason we can prove lower bounds. The equivalence in Theorems 1.1 and
1.2 between NEXP lower bounds and constructive useful properties can be viewed as
one rigorous formalization of this intuition. We conclude with some open questions
of interest.

• Do NEXP problems have witnesses that are average-case hard for ACC0?
More precisely, are there NEXP predicates with the property that, for almost
all valid witnesses of length 2O(n), their corresponding Boolean functions on
O(n) variables are such that that no ACC0 circuit of polynomial size agrees
with these functions on 1/2+1/poly(n) of the inputs? Such predicates could
be used to yield unconditional derandomized simulations of ACC0 circuits (us-
ing nondeterminism). The primary technical impediment seems to be that
we do not think ACC0 can compute the majority function, which appears to
be necessary for hardness amplification (see [34]). But this should make it
easier to prove lower bounds against ACC0, not harder!

• Equivalences for nonuniform natural properties? In this paper, we have
mainly studied natural properties decidable by algorithms with logn bits of
advice or less; however, the more general notion of P/poly-natural proofs has
also been considered. Are there reasonable equivalences that can be derived
between the existence of such properties and lower bounds?

• What algorithms follow from stronger lower bound assumptions? There is
an interesting tension between the assumptions “NEXP �⊂ P/poly” and “in-
teger factorization is not in subexponential time.” The first asserts non-
trivial efficient algorithms for recognizing some hard Boolean functions (as
seen in Theorems 1.1 and 1.2); the second denies efficient algorithms for
recognizing a nonnegligible fraction of hard Boolean functions [20, 3]. An
equivalence involving NP �⊂ P/poly could yield more powerful algorithms for
recognizing hardness. In recent work addressing this problem, Chapman and
Williams [12] prove that NP �⊂ P/poly is equivalent to the existence of natural
properties which are true of SAT but are useful against all polynomial-size
“SAT-solving” circuits.

Acknowledgments. I thank Amir Abboud, Marco Carmosino, Russell Impagli-
azzo, Igor Carboni Oliveira, Steven Rudich, Rahul Santhanam, and the anonymous
reviewers of SICOMP and STOC for useful comments and discussions. I also thank
Emanuele Viola for a pointer to his paper with Eric Miles.

REFERENCES

[1] S. Aaronson, Shtetl-Optimized, http://www.scottaaronson.com/blog/?p=240 (May 2007).
[2] E. Allender, When worlds collide: Derandomization, lower bounds, and Kolmogorov com-

plexity, in FST TCS 2001: Foundations of Software Technology and Theoretical Computer
Science, Lecture Notes in Comput. Sci. 2245, Springer, Berlin, 2001, pp. 1–15.

[3] E. Allender, H. Buhrman, M. Koucký, D. van Melkebeek, and D. Ronneburger, Power
from random strings, SIAM J. Comput., 35 (2006), pp. 1467–1493, doi:10.1137/050628994.

[4] S. Arora and B. Barak, Computational Complexity: A Modern Approach, Cambridge Uni-
versity Press, Cambridge, UK, 2009.

[5] B. Aydinlioglu and D. van Melkebeek, Nondeterministic circuit lower bounds from mildly
de-randomizing Arthur-Merlin games, in Proceedings of the IEEE Conference on Compu-

http://www.scottaaronson.com/blog/?p=240
http://dx.doi.org/10.1137/050628994

528 R. RYAN WILLIAMS

tational Complexity, 2012, pp. 269–279.
[6] L. Babai, Trading group theory for randomness, in Proceedings of the 17th Annual ACM

Symposium on Theory of Computing, 1985, pp. 421–429.
[7] L. Babai, L. Fortnow, N. Nisan, and A. Wigderson, BPP has subexponential time simula-

tions unless EXPTIME has publishable proofs, Comput. Complexity, 3 (1993), pp. 307–318.
[8] B. Barak, A probabilistic-time hierarchy theorem for “slightly non-uniform” algorithms, in

Randomization and Approximation Techniques in Computer Science, Lecture Notes in
Comput. Sci. 2483, Springer, Berlin, 2002, pp. 194–208.

[9] R. Beigel and J. Tarui, On ACC, Comput. Complexity, 4 (1994), pp. 350–366.
[10] H. Buhrman, L. Fortnow, and R. Santhanam, Unconditional lower bounds against advice,

in Automata, Languages and Programming. Part I, Springer, Berlin, 2009, pp. 195–209.
[11] A. K. Chandra, S. Fortune, and R. J. Lipton, Unbounded fan-in circuits and associative

functions, J. Comput. System Sci., 30 (1985), pp. 222–234.
[12] B. Chapman and R. Williams, The circuit-input game, natural proofs, and testing circuits

with data, in Proceedings of the 2015 Conference on Innovations in Theoretical Computer
Science (ITCS 2015), Rehovot, Israel, 2015, pp. 263–270.

[13] T. Y. Chow, Almost-natural proofs, J. Comput. System Sci., 77 (2011), pp. 728–737.
[14] L. Fortnow, R. Santhanam, and L. Trevisan, Hierarchies for semantic classes, in Proceed-

ings of the 37th Annual ACM Symposium on Theory of Computing, 2005, pp. 348–355.
[15] D. Gutfreund, R. Shaltiel, and A. Ta-Shma, Uniform hardness versus randomness tradeoffs

for Arthur-Merlin games, Comput. Complexity, 12 (2003), pp. 85–130.
[16] R. Impagliazzo, V. Kabanets, and A. Wigderson, In search of an easy witness: Exponential

time vs. probabilistic polynomial time, J. Comput. System Sci., 65 (2002), pp. 672–694.
[17] R. Impagliazzo and A. Wigderson, Randomness vs time: Derandomization under a uniform

assumption, J. Comput. System Sci., 63 (2001), pp. 672–688.
[18] M. J. Jansen and R. Santhanam, Stronger lower bounds and randomness-hardness trade-

offs using associated algebraic complexity classes, in Proceedings of the 29th International
Symposium on Theoretical Aspects of Computer Science, 2012, pp. 519–530.

[19] V. Kabanets, Easiness assumptions and hardness tests: Trading time for zero error, J. Com-
put. System Sci., 63 (2001), pp. 236–252.

[20] V. Kabanets and J.-Y. Cai, Circuit minimization problem, in Proceedings of the Thirty-
Second Annual ACM Symposium on Theory of Computing, 2000, pp. 73–79.

[21] V. Kabanets and R. Impagliazzo, Derandomizing polynomial identity tests means proving
circuit lower bounds, Comput. Complexity, 13 (2004), pp. 1–46.

[22] A. R. Klivans and D. van Melkebeek, Graph nonisomorphism has subexponential size proofs
unless the polynomial-time hierarchy collapses, SIAM J. Comput., 31 (2002), pp. 1501–
1526, doi:10.1137/S0097539700389652.

[23] K.-I. Ko, Some observations on the probabilistic algorithms and NP-hard problems, Inform.
Process. Lett., 14 (1982), pp. 39–43.

[24] M. Krause and S. Lucks, Pseudorandom functions in TC0 and cryptographic limitations to
proving lower bounds, Comput. Complexity, 10 (2001), pp. 297–313.

[25] E. Miles and E. Viola, Substitution-permutation networks, pseudorandom functions, and
natural proofs, in Advances in Cryptology—CRYPTO 2012, Lecture Notes in Comput.
Sci. 7417, Springer, Heidelberg, 2012, pp. 68–85.

[26] P. B. Miltersen, N. V. Vinodchandran, and O. Watanabe, Super-polynomial versus half-
exponential circuit size in the exponential hierarchy, in Computing and Combinatorics
(Tokyo, 1999), Lecture Notes in Comput. Sci. 1627, Springer, Berlin, 1999, pp. 210–220.

[27] K. Mulmuley, private communication, 2011.
[28] M. Naor and O. Reingold, Number-theoretic constructions of efficient pseudo-random func-

tions, J. ACM, 51 (2004), pp. 231–262.
[29] N. Nisan and A. Wigderson, Hardness vs randomness, J. Comput. System Sci., 49 (1994),

pp. 149–167.
[30] I. Oliveira, Algorithms versus Circuit Lower Bounds, Tech. Report TR13-117, Electronic

Colloquium on Computational Complexity (ECCC), 2013.
[31] A. Razborov and S. Rudich, Natural proofs, J. Comput. System Sci., 55 (1997), pp. 24–35.
[32] S. Rudich, Super-bits, demi-bits, and NP̃/qpoly-natural proofs, in Randomization and Ap-

proximation Techniques in Computer Science (Bologna, 1997), Lecture Notes in Comput.
Sci. 1269, Springer, Berlin, 1997, pp. 85–93.

[33] R. Santhanam and R. Williams, On medium-uniformity and circuit lower bounds, in Pro-
ceedings of the IEEE Conference on Computational Complexity, 2013, pp. 15–23.

[34] R. Shaltiel and E. Viola, Hardness amplification proofs require majority, SIAM J. Comput.,
39 (2010), pp. 3122–3154, doi:10.1137/080735096.

http://dx.doi.org/10.1137/S0097539700389652
http://dx.doi.org/10.1137/080735096

NATURAL PROOFS VERSUS DERANDOMIZATION 529

[35] C. Umans, Pseudo-random generators for all hardnesses, J. Comput. System Sci., 67 (2003),
pp. 419–440.

[36] R. Williams, Non-uniform ACC circuit lower bounds, in Proceedings of the IEEE Conference
on Computational Complexity, 2011, pp. 115–125.

[37] R. Williams, Improving exhaustive search implies superpolynomial lower bounds, SIAM J.
Comput., 42 (2013), pp. 1218–1244, doi:10.1137/10080703X.

[38] S. Žák, A Turing machine time hierarchy, Theoret. Comput. Sci., 26 (1983), pp. 327–333.

http://dx.doi.org/10.1137/10080703X

	Introduction
	Preliminaries
	Truth tables and their circuit complexity
	Related work

	NEXP lower bounds and useful properties
	New ACC lower bounds
	Exponential lower bounds for encoding NEXP witnesses
	Slightly stronger ACC lower bounds

	Natural properties and derandomization
	Unconditional mild derandomizations

	Unconditional derandomization of natural properties
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

